HIGH TECHNOLOGY LETTERSIVol. 22 No.21June 2016 | pp. 170 ~ 176

doi:10.3772/j. issn. 1006-6748. 2016. 02. 008

An optimizing algorithm of static task scheduling problem
based on hybrid genetic algorithm®

Liu Yu (Hl %)@, Song Jian, Wen Jiayan
(The Scientific Research Department, Naval Marine Academy, Guangzhou 510430, P. R. China)

Abstract

To reduce resources consumption of parallel computation system, a static task scheduling opti-
mization method based on hybrid genetic algorithm is proposed and validated, which can shorten the
scheduling length of parallel tasks with precedence constraints. Firstly, the global optimal model and
constraints are created to demonstrate the static task scheduling problem in heterogeneous distributed
computing systems(HeDCSs). Secondly, the genetic population is coded with matrix and used to
search the total available time span of the processors, and then the simulated annealing algorithm is
introduced to improve the convergence speed and overcome the problem of easily falling into local
minimum point, which exists in the traditional genetic algorithm. Finally, compared to other existed
scheduling algorithms such as dynamic level scheduling(DLS) , heterogeneous earliest finish time
(HEFT) , and longest dynamic critical path(LDCP), the proposed approach does not merely de-
crease tasks schedule length, but also achieves the maximal resource utilization of parallel computa-

tion system by extensive experiments.

Key words: genetic algorithm, simulated annealing algorithm, parallel computation, directed

acyclic graph

0 Introduction

A parallel application can be abstracted as tasks
sets, in which the elements are organized as a partial
order and is in serial or parallel working mode. The
task scheduling system allocates tasks to specified com-
puters or processors and implement in parallel, based
on some rules and constraints. In general, task sched-
uling algorithms are classified into two classes: static
and dynamic, the former outputs scheduling schems in
a compiling state, while the latter is made at run time.
Static scheduling algorithms are widely used for their
simplicity, high execution efficiency and low cost''’.
The task scheduling is to find a kind of tasks assign-
ment scheme which can make application finished in
the shortest time, and has been approved as an NP-
complete problem. The results of scheduling decisions
directly affect the total performance of distributed com-
puting environment, even possibly offset the gains from
distributed platform in worse case. Therefore, the de-
sign and implementation of an excellent task scheduling
algorithm need to be focused and researched by com-
puter scientists.

There are several static tasks scheduling algo-
rithms ; graphs'?' | queuing theory®’ | math program-
mingm and heuristics, etc. , where the last is the most
popular. According to the characteristics of task re-
tained, there are two types of heuristic algorithms; task
duplication and non-task duplication, and it has been
proved that the former is better than the latter’ | typi-
cal examples including TDS'®' and OSA'”' algorithms.
For example, The TDS assign the nodes with their pre-
order nodes at the same processor to decrease parallel
executing time. As an improved version of TDS, the
OSA achieves similar results by removing some unnec-
essary constraints. In summary, the mathematical mod-
els for previous static tasks scheduling algorithms be-
long to the integer-programming applications essential-
ly. Although the heuristic and branching-bounding al-
gorithms were introduced later to improve the algo-
rithms speed and efficiency in some extent, their com-
puting time remains unbearable, especially when facing
many more tasks and processors, and their results are
easy to produce early maturity and fall into local ex-
treme points. Therefore it is difficult to take full advan-
tage of high performance computing environment.

Genetic algorithm is a kind of highly parallel,

(@D Supported by the National Natural Science Foundation of China (No. 61401496).

2 To whom correspondence should be addressed. E-mail; game _liuyu@ 163. com

Received on Dec. 20, 2014

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016

171

randomized, adaptive search algorithm by learning na-
ture selection and evolution mechanism from nature,
which has excellent robustness and is especially suit-
able for complicated, non-linear problems puzzled by
the traditional searching algorithm'®'. In this paper,
by adding constraints such as heterogeneity, idle time
interval and so on, an optimization model of static task
scheduling is proposed in the heterogeneous distributed
computing systems. In this model, by us real matrix
coding seeds, combined with the simulated annealing
in the process of evolution, the genetic population can
achieve rapid convergence. As a result, the mixed in-
teger nonlinear static task scheduling problems with
multiple variables and constraints can be successfully
solved and achieve to their global optimal solutions.
Finally, results and performance of the proposed algo-
rithm are tested by specific computational experiments
and compared with other widely used scheduling algo-
rithms.

The remainder of this paper is organized as fol-
lows: in Section 1, the research problem and some
necessary assumptions are defined. Section 2 intro-
duces the optimized mathematical model of task sched-
uling problem. Section 3 considerably depicts hybrid
genetic algorithm. Section 4 conducts two sets of exper-
iments to acquire the performance of the algorithm. Fi-
nally a conclusion and an overview of future work are

given in Section 5.
1 Problem definition

Definition 1 The heterogeneous distributed com-
puting system (HeDCSs) is a computing environment
with heterogeneous computing nodes or heterogeneous
interconnection network in which computational nodes
are located in different geographical districts'®’.

Hypothesis 1 Not considering the data transfer
type, style, interface and other compiler details, a
parallel application, can be represented by a directed
acyclic graph (DAG). DAG is defined by the tuple
(T, E), where T = {t,, t,,*+, ty_,| is a set of N
tasks and E = {e, = (t,, 1,) 11, t;€ T, i#]} is a set of
edges. Each edge e; represents a precedence constraint
and a communication message between tasks ¢, and ¢;.
That means if e; € £, then the execution of ¢; cannot be
started before ; finishes its execution. A task with no
parents is called an entry task, and a task with no chil-
dren is called an exit task. Associated with each edge

e;, there is a value w; that represents the amount of

iy
data to be transmitted from task ; to task ;.
Hypothesis 2 Representing heterogeneity only

through the difference of computing resources of pro-

cessors which are fully connected. Let P = {p,, p,,

-, py_; | denote a set of processors in the HeDCSs
environment, M is the number of processors, compu-
ting ability of tasks is described by two-dimensional
matrix C = [¢, or ¢(t;, p,) Jxeu, Where c, denotes
the task #; execution time needed in the processor p,, to
reflect heterogeneity of computation.

Hypothesis 3 The calculating cost is monotonic,
if 31, e T,dAm, ke {0,1,--- M -1} andm # k,c,,
=cy,then Vi, e T, ¢, = c,.

Hypothesis 4 If the network data transmission rate
is fixed, and the communication overhead of tasks exe-
cuted in the same processors is zero, the communica-
tion cost between the two tasks can be measured by
their interactive data amount.

To sum up, static task scheduling problem in het-
erogeneous distributed computing environment may
achieve the following optimization goal ;

(D The time to complete all the parallel tasks is
shortest

@ Communication overhead between parallel
tasks is most economical ;

3 Average waiting time of tasks is the shortest;

@) Balance processors allocation as far as possible

(5 Improve the operation efficiency of the compu-
ting system as far as possible.

2 Problem modeling

If static tasks scheduling problem Z can be seen
as two procedures: processors allocation and computing
task executing time in the processor, it establishes its
mathematical model through analyzing time relationship
between the first executed task and the last one .

Z = min(F(tiN_] ’ PA(tiN_I)) = S<ti0 , PA(t4)))

tigs tisees by, e T (1)

The constraint conditions :

(1) ifVYi,je {0,1,-- N-1}, de; € E, then
F(t;, PA(t;)) = S(t;, PA(t;)).

(2)ifVYi,je {0,1,---,N-1}, dm e {0,1,

- \M -1} PA(t,) = PA(t;) = m, then e; =0.

(3) F(tiﬁa PA(tiﬁ)> = S<tiﬁ9 PA<tiB>) +C(tiﬁ,
PA(tiB)), B e {0,1,- N-1}.

(4) if ¥YP, e P,VYVi,j e {0,1,---,N -1},
PA(t;) = PA(t) =P, then [S(t,,t,), F(1,,4,)] N
[S(t;,1), F(1,,1)] =0.

(5) S(tio’ PA(tiO)) = 0.

(6) PA(-) is a surjective function that is
mapped from definition domain {0,1,---,N -1} to val-
ue domain {0,1,---,M - 1}.

In the above conditions,

PA(t,), S(t

i

172

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016

PA(t,)) and F(t, , PA(t,)) respectively denote the
processor assigned starting execution time and comple-

tion execution time of task ¢, . The solution of Eq. (1),

t L. o0, 8

ig > Vip o

iy_, » Shows a kind of parallel task schedu-
ling sequence. The first item in the constraints list
shows that the starting time of any child tasks must be
less than their parents’ completed time. The second
shows the communication overhead between two tasks
assigned in the same processor is zero. The third shows
that completion time of a task equals to the sum of its
starting time and computation time needed. The first
three conditions in fact explain that the final solution
must meet the definition of HeDCSs model. The fourth
illustrates that when a task begins to run, it cannot be
interrupted until it is finished, namely each parallel
task is viewed as an atomic one in the HeDCSs. The
fifth shows that tasks begin from zero point and in the
last condition, the function PA denotes which processor
is allocated to the task.

Definition 2 CPU idle time refers to execution
time intervals of task ¢, and its successor ¢; in processor
P denoted as Idle(t,, t;, p,) and ldle(t,, t;, p,) =
0.

If ldle(t,, t;, p,,) =0, it means that task ¢, is im-
mediately started when task ¢, is finished, otherwise the
computing procedure of ¢, and ¢; is discontinuous,
namely there are time fragments of CPU that are was-
ted.

Definition 3 S(¢;, p,) represents the start time of
task ¢; executed in processor p,, for a specified schedu-
ling scheme.

When a task has parent nodes, it begins running
until all parents are completed.

Definition 4 F(¢,, p,) represents the completion
time of ¢, executed in processor p, for a specified
scheduling schema, and F(t;, p,) =S(¢;, p,) +¢
(Lis Pu)-

Definition 5 The earliest completion time of task
t;, EFT(t,), is the least finish-time value in all pro-

M-1
cessors, and EFT(t;) = mjf)l(F(t; s Pu))

Definition 6 The scheduling length is the earliest
time when all tasks are finished in DAG, denoted as SL

N-1
and SL = mj(gl(EFT(£)).

Therefore, the optimal decision for the shortest
scheduling length of static tasks is equivalent to compu-
ting the shortest scheduling length of parallel tasks re-
lationship diagram, which is a mixed integer, nonlin-
ear programming problem with multi-variables and
many constraints. Genetic algorithm has highly paral-
lel, random and self-adaptive search performance and

can solve this kind of problem more effectively.

3 Model resolution with hybrid genetic al-
gorithm

Such traditional linear optimization as heuristic al-
gorithm, intelligent simulated annealing algorithm, ta-
boo search algorithm and neural network try to seek a
local approximate solution or satisfactory solution. It is
a fresh way to tackle the problem of task scheduling in
HeDCSs by the fusion of genetic algorithm with global
searching characteristics and traditional ones with fast
convergence speed.

Firstly, randomly generated initial population in a
solution of the problem space, then the genetic annea-
ling operation of the initial population equation can be
defined as

GASA = (S(o0) ,A,L,R,Pp,p,d,TP,£)
where S(0) denotes the initial population and A is its
population size, L is the individual code length, R re-
presents selection operator, P,, is used to describe
state transition of random (probability) matrix, p is a
set of genetic operator, ¢ represents fitness function,
TP = {TP,, t =0,1,2,--+, f} describes the tempera-
ture sequence, £ is the last condition of this algorithm.

When the algorithm runs, it first calculates the in-
dividual fitness function value in the initial population,
in which probability P, decides whether an individual
should be remained in gene pool or participated in the
following hybridization evolution choice. The resulting
population of genetic evolution is processed as the same
rules implementing mutation operation. According to
the Metropolis criterion, individuals staying in the gene
pool or participating in the hybrid mutation are chosen
to constantly lower their temperature. The process is
repeated for each newly generated offspring, until a
termination condition of this algorithm is satisfied.

3.1 Individuals with binary matrix code

Taking the scheduling sequence of tasks as an in-
dividual in the genetic algorithm, the k-th individual
G, coded by binary matrix can be expressed as

G, = [P, P, PN—I]T
Py, Py, PO,M—I
Pl() Pn PI,M—] (2>
P»V—I,O PeV—],I PN—],M—I

where P, denotes the allocated processor of specified
task t;, p; , is the element in the i-th row and m-th col-

umn that shows ¢; is placed on processor p,, to run.
According to the 4-th constraint of Eq. (1), CPU

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016

173

is only allowed to perform a task in a period until fin-
ished, so element p, ,, can be deduced to meet the fol-

lowing ;
1, task ¢, is allocated to processor p,,
pi,m = { .
0 otherwise
N-1 M-1
2 zpi,m = M
1=0 m=0
M-1
Zpi»mzl’i:0919”'aN_l (3)
m=0

3.2 Generation of initial population

The initialization of genetic population is done by
row sequences of encoding matrix of individuals and
tasks are ordered afterwards by graph levels first and
branches quantity later.

(1) To compute the task level. Any nodes with-
out independence relation constitute a level in DAG,
which can be calculated by

HI(1) = { 0, t; e T

max(HI(1)) + 1, 1 Pred(,)

(4)
where symbol HI(t;) denotes the level of task ¢, T,
is a set of entry points, function max is to return the
maximal value of definition domain and Pred(t;) is al-
so a set of parent nodes of ¢, in DAG.

(2) Given that there are L levels in DAG, and
the i-th level contains 8 nodes, all tasks can be ar-
ranged by their level grade: Ly s Laz 0, Lash
ty(ll) , ty(zz) JEETI t7<282) ST ty(“) , ty(u) ST L‘y(w")-

(3) Tasks in each level are organized with full
permutation, and then do Descartes product. The re-

1 2
. -1 -1
sult is2° 7' x 287! x ...

(4) In view of feasibility and fairness in tasks as-

L
-1 . . .
x 2° 7" valid combinations.

signment of processors, each task can be run on arbi-

trary processor. So, the above combinations can pro-
1 2 L

duce the total 2° 7' x2° 7" x -+ x2° 7' x M" initial indi-

viduals.

3.3 Individuals adjustment measurement

Taking individual G, as an example, specific ad-
justment measurements are given in the following:

Rule 1 If all tasks meet the demand of the earliest
completion time, they should be unchanged.

Rule 2 If a task violates executing dependency
constraints, the corresponding value in the P,-th row
should be adjusted as

max (F(lijA(t_,')) +wﬁ) +e(t,p,) < S<tﬁ’pm))

[/ePred(l,j)
Rule 3 If there exists some CPU idle time pieces
in the scheduling scheme, the value in the P,-th row

should be adjusted as follows:

@® 3¢, ty € T,1dle(t,,t5,p,) = c(t;,p,);

@ Vy,8 € T,t; € Suce(t,), Idle(t,,t,,p,) =
c(t;,p,), ldle(t,,t;,p,) = Idle(t,,t5,p,), where
Succ(t;) is a set of successor nodes of task ;.

Generally, the start time of the task executed in
the processor is affected by the computation cost, com-
munication cost and the length of processor idle time
pieces. By properly exerting above three rules to com-
pute the finish time of tasks in each processor, the val-
ue of element in the P,-th row corresponding to a pro-
cessor that can make the task finish with earliest speed
is set to 1.

3.4 The selection of fitness function

When appling the above individual adjustment
measurement, only the fourth constraint is possibly un-
satisfied because the parallel tasks in execution cannot
be interrupted. Meanwhile in order to accelerate the
convergence, the following fitness function of an indi-
vidual is established

F(G,) = A

N-1 (5)
7+ z (mxuxS,)

where G, denotes an individual in the population, S, is

penalty degree while task ¢, violates the constraint that
executing process cannot be interrupted, Z is set to the
computational cost of ¢;, u is the penalty factor, m is
the number of the violation of that constraint, and A is
the positive constant to represent penalty coefficient
when ¢, violates that constraint on one time.

3.5 The definition of genetic operator

1) The selection operator

P(G,) is the selected probability of individual G,
in the genetic process, and defined as

P(G,) = M (6)

ZaF(Gi)

By introducing of Roulette policy, a uniformly dis-
tributed random number w, is decided in the zone [0,

1], g, is the accumulative probability of the individual
G, and ¢, = z P(G)). If w,<q,, G, is selected, oth-
i

erwise ¢, <w,<¢q,(2<k<sN-1), G, is selected.
2) The crossover operator
Let C, and C, respectively denote two individuals
preparing to implement crossover operation, expressed

as €, = GC] = I_Poc1 Plc

1

owlC]], and

c2

LPOCZ P pN_lch. The crossover procedure

takes place between odd and even elements in the co-

174

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016

ded matrix of individuals. The main step is given as
follows :

Step 1 Generate random crossover factor w, in
[0, 1], and an integer j in [0, N —1] which denotes
the position of crossover.

Step 2 Begin to crossover and produce two indi-

viduals D,, D,. The result is

D, =[P, P - PHC1 (1 -w,) ><PI,C1 +
w, x P? P P,

D, = [POCQ PIC2 Pff] w, ><P}.C2 + (1 -
wy) X P77 P e Py

Step 3 Modify D, and D, in accordance with rules
in Section 3.3, and compute F(D,) and F(D,).
Step 4 Employ a local tournament method to gen-
erate offspring O, , 0,, where they satisfy the following
conditions ;
0, %C'l’Dl}’ F(O,) = max(F(C,), F(D,)),
0, e {C,,D,}, F(0,) = max(F(C,), F(D,)).
3) The mutation operator
Let C, denote an individual with preparation to

. . . cl
implement mutation operation, expressed as C;, = G
cl

= Ll’oc1 P
mutation operation through the following steps;

Step 1 Generate a random factor 8 in [0, 1],
and an integer y in [0, N — 1] which denotes the posi-

vy C |, where E, is the result of

tion of mutation.

Step 2 Generate a random binary mutation factor
w, from the set {0, 1}, where w; =1 represents muta-
tion occurrence, otherwise no variation.

Step 3 Implement mutation operation and generate
offspring Q expressed as

Table 1

[P P Py,
Step 4 Modify Q in accordance with rules in Sec-

tion 3.3, and compute F(Q).
Step 5 Employ a local tournament method to gen-

w; xBxP P °

y+1

erate offspring S, where they satisfy that E, e {C,,

Qf, F(S) = max(F(C,), F(Q)).
4 Performance evaluation

4.1 Performance metrics

1) Normalized schedule length (NSL)

For the convenience of analysis and fairness of
comparison, a standardized processing approach is in-
troduced and given as

NSL = SL (7)

min c(t;, p,))

m=0,1,2,- M-1

tieTep
where T, is a collection of nodes on the critical path in
DAG.
2) Speedup' "
The speedup of a parallel application is defined as

Y (min (4. p,)

el m=0,1,2,--,1
L

SL (8)

where M is the number of processors contained in

HeDCSs. Meanwhile, 1 < S < M.

NSL =

4.2 Testing environment

Hardware environment of parallel computation is
composed of DELL PowerEdge series blade servers.
Software communication interface is chosen to MPICH
1.5. Parallel applications are simulated by 2000 ran-
dom graphs where generation parameters are seen in

Table 1.

Generation parameters of random graphs

Value

Parameter name

Interpretation

The size of the graph
The number of processors
CCR 0.1,0.5,1.0,2.0,5.0
0.5,1.0,2.0,5.0

The degree of parallelism factor

0.1,0.2,0.4,0.6,0.8

Heterogeneous factors

Integer in [20, 100] with times 20
Integer in [2, 8] with times 2

the number of computation nodes

reflect the computing power of parallel environment
average communication to computation cost ratio
parallel tasks number contained by an application

show that difference degree between the different

computing nodes

Topcuoglu'""’ has proved that among popular static
algorithms in HeDCSs, HEFT and DLS are better than
CPOP. Mohammad'"™' further compared the perform-
ance difference between LDCP, HEFT and DLS.
Through the same performance metrics used in the a-
bove work, NSL and Speedup, detailed comparison ex-

periments between our proposed algorithm and the oth-
er three algorithms are also done.

4.3 Performance results on random graphs
1) Comparison of NSL for four algorithms
Generating 2000 DAGs with parameters from Ta-

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016 175

ble 1, the static task scheduling schemes are calculated and DLS. Furthermore, their NSL is computed by
respectively by the proposed algorithm, LDCP, HEFT Eq. (7), the last statistical result is shown in Table 2.

Table 2 Performance results; a standardized schedule length (NSL)

LDCP HEFT DLS Proposed algorithm

Better Equal ~ Worse Better Equal Worse Better Equal Worse Better Equal = Worse

LDCP 1438 201 361 1727 38 235 136 271 1593
71.90% 10.05% 18.05% 86.35% 1.90% 11.75% 6.80% 13.55% 79.65%

361 201 1438 102 137 1761

HEFT - - - 1324 2 41

18.05% 10.05% 71.90% 3 66 0 5.10% 6.85% 88.05%

DLS 235 38 1727 266 410 1324 87 68 1845
11.75% 1.90% 86.35% 13.30% 20.50% 66.20% 4.35% 3.40% 92.25%

Proposed 1593 271 136 1761 137 102 1845 68 87

algorithm 79.65% 13.55% 6.80% 88.05% 6.85% 5.10% 92.25% 3.40% 4.35%

Note:the data in a cell indicates comparison results on NSL using the left algorithm and the top one, including the number and proportion.

It is shown in Table 2 that for the given tested da- algorithms is ordered by LDCP, HEFT, and DLS from

ta, the number of applications whose NSL value used high to low. Hence, correctness of the proposed algo-
by the proposed algorithm is 1593, 1761, 1845, re- rithm is verified.
spectively, shorter than those of the LDCP, HEFT, 2) The influence of the generated parameters of
and DLS and 79.65% , 88.05% , 92.25% of propor- random graphs on scheduling algorithm
tion respectively relative to the gross data. The pro- In order to further validate proposed algorithm in-
posed algorithm can shorten the execution time of a fluences on different types of parallel applications, two
parallel application, improve the utilization perform- parameters of CCR and number of task nodes are
ance of processors, and has general character. In addi- changed to randomly generate 2000 DAG again. The
tion, experiments also achieve the same result as difference of average NSL and speedup of four algo-
Ref. [9], and the performance on NSL of other three rithms is shown in Fig. 1.
T 351
6 3K
Sr 25¢
g 4r g 2t
w2 [>3
Z Q
3l S5l
2 DLS 1} DLS
—e— HEFT —e—HEFT
1+ —&—LDCP 05+ —=—LDCP
—+— Proposed algorithm —+— Proposed algorithm
0 1 1 1 1 1 T T 5 ¢ T 1 0 1 1 1 1 1 T T T T 1
0 05 1 15 2 25 3 35 4 45 5 0 05 1 1.5 2 25 3 35 4 45 5
CCR CCR
(a) average NSL by changing CCR (b) speedup by changing CCR
35r
5t
3+
4t 25¢
o
= 3 2 2r
2] [>]
z 2,
S 15t
2+
DLS 1+ DLS
7l —o— HEFT —o—HEFT
—&—LDCP 05+ —=—LDCP
—+— Proposed algorithm i —+— Proposed algorithm
0 1 L 1 1 I T T] 1 1 Il Il T I I 1
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Number of task nodes Number of task nodes
(c) NSL by changing number of task nodes (d) speedup by changing number of task nodes

Fig.1 Effects of generation parameters of random graphs on scheduling algorithms

176

HIGH TECHNOLOGY LETTERSIVol. 22 No. 2| June 2016

It is shown that the average NSL value of the pro-
posed algorithm is shorter than those of DLS, HEFT,
and LDCP by (27. 03%, 19. 04% , 10. 52%),
(11.98% , 3.68% , 2. 08%), (10.89% , 9.09% ,
2.87%), (10.08% , 7.30% , 3.50%) and (9.67% ,
5.08% , 2.94%), respectively. The first value of
each parenthesized pair is the improvement achieved by
the proposed algorithm over the DLS, while the second
value is the improvement over the HEFT algorithm and
the last value is relative to the LDCP algorithm. This
convention for representing results will be adhered
throughout this paper, unless an exception is explicitly
noted. The average speedup of the proposed algorithm
is higher than those of DLS, HEFT, and LDCP by
(15.92% , 14.73% , 9.84%), (11.91% , 7.27% ,
6.90%), (16.92% , 9.35% ,8.19%), (11.89% ,
4.60% , 1.11%) and (30.08% , 11.11% , 6.67%),
when the CCR is equal t0 0.1, 0.5, 1.0, 2.0, 5.0,
respectively. In these experiments, the proposed algo-
rithm outperforms the others on NSL, and their NSL
trend is directly proportional to CCR, while their
speedup is in the reverse situation. This result fully
satisfies the physical meaning of CCR and indicates
that the proposed algorithm is effective. On the other
hand, as the number of parallel tasks increases, the
NSL and speedup value of the four algorithms men-
tioned above become greater, but the proposed algo-
rithm in this paper is relatively more advantageous.
Experiments on random graphs conformably show that
our algorithm is effective and general.

5 Conclusions

It is a challenging work in high performance com-
puting domain for parallel task scheduling under heter-
ogeneous distributed computing environment, which di-
rectly affects the existing resource utilization of hetero-
geneous computing system. In this paper, by construc-
ting a mathematical model of static task scheduling,
the tasks scheduling problem in HeDCSs is further re-
searched, and is solved properly based on hybrid ge-
netic algorithm. We discuss and achieve such technical
details of the algorithm as individual coding, genera-
tion of initial population, individual adjustment, selec-
tion of fitness function, and definition of genetic opera-
tor, etc. , and verify the generality and the effective-
ness of the algorithm by abundant experiments. The
further research effort is to focus on the parallelization
of genetic algorithm self and influences of all generation
parameters of random graphs on scheduling algorithm

therefore make further improvement on the performance
and pertinence of task scheduling algorithm in HeDC-
Ss.

References

[1] Nelissen G, Su H. An optimal boundary fair scheduling.
Real-Time Systems, 2014 ,50(4) . 456-508

[2] LiuM, Chu C B, Xu Y F, et al. An optimal online algo-
rithm for single machine scheduling to minimize total gen-
eral completion time. Journal of Combinatorial Optimiza-
tion, 2012,23(2) . 189-195

[3] Lombardi M, Milano M. Optimal methods for resource al-
location and scheduling: a cross-disciplinary survey.
Constraints, 2012,17(1) : 51-85

[4] Regnier P, Lima G, Massa E, et al. Multiprocessor
scheduling by reduction to uniprocessor: an original opti-
mal approach. Real-Time Systems, 2012,2013(4) . 436-
474

[5] Epstein L, Hanan Z H. Online scheduling with rejection
and reordering: exact algorithms for unit size jobs. Jour-
nal of Combinatorial Optimization, 2014 ,28 (4) . 875-
892

[6] Darbha S, Agrawal P D. Optimal scheduleing algorithm
for distributed-memory machines. [IEEE Transactions on
Parallel and Distributed Systems, 1998 ,9(1) . 87-95

[7] Park C I, Choe T Y. An optimal scheduling algorithm
based on task duplication. IEEE Transactions on Parallel
and Distributed Systems, 2002 ,51(4) ; 444-448

[8] Falzon G, Li M. Enhancing genetic algorithms for de-
pendent job scheduling in grid computing environments.
Journal of Supercomputing, 2012 ,62(1) ; 290-314

[9] Arabnejad H, Barbosa J G. List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE
Transactions on Parallel and Distributed Systems, 2014,
25(3) . 682-694

[10] Paredes R U, Cazorla D, Sanchez J L., et al. A compara-
tive study of different metric structures in thinking on
GPU implementations. Lecture Notes in Engineering and
Computer Science, 2012 312-317

[11] Topcuoglu H, Hariri S, Wu M Y. Performance-effective
and low-complexity task scheduling for heterogeneous
computing. [EEE Transactions on Parallel and Distributed
Systems, 2002,13(3) : 260-274

[12] Mohammad I D, Nawwaf K. A high performance algo-
rithm for static task scheduling in heterogeneous distribu-
ted computing systems. Journal of Parallel and Distribu-
ted Computing , 2008,19(8) : 399409

Liu Yu, born in 1982. He received his Ph. D de-
gree from Naval Engineering University in 2011. He
also received his M. S. degree from Naval Aeronautical
Engineering Institute in 2008. His research focuses on
military modeling and simulation, operational system
and high performance computing technology.

