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Abstract

An antenna selection algorithm based on large-scale fading between the transmitter and receiver

is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output
(D-MIMO) systems. By utilizing the radio access units (RAU) selection based on large-scale fa-

ding, the proposed algorithm decreases enormously the computational complexity. Based on the

characteristics of distributed systems, an improved particle swarm optimization ( PSO) has been pro-

posed for the antenna selection after the RAU selection. In order to apply the improved PSO algo-

rithm better in antenna selection, a general form of channel capacity was transformed into a binary

expression by analyzing the formula of channel capacity. The proposed algorithm can make full use

of the advantages of D-MIMO systems, and achieve near-optimal performance in terms of channel ca-

pacity with low computational complexity.

Key words: distributed MIMO systems, antenna selection, particle swarm optimization, large-

scale fading

0 Introduction

Multi-input multi-output ( MIMO) technique can
improve the reliability of transmission and channel ca-
pacity exponentially without extra bandwidth'''. For
traditional centralized antenna systems, due to the in-
ter-cell interference, the spectral and energy efficien-
cies remain low, especially at the cell edges. Re-
cently, a distributed antenna system ( DAS) as a
promising candidate for future wireless communications
has got wide attention for the reason that it can provide
power saving, extend coverage and increase system ca-
pacity'?’. Distributed MIMO ( D-MIMO ) systems,
which combine the advantages of MIMO systems and
DAS, can obtain better performance than traditional
co-located MIMO ( C-MIMO) systems>*'. In a typical
D-MIMO system, radio access units ( RAUs) equipped
with a number of antennas are deployed on the distrib-
uted system over a large area and connected to a cen-
tral unit (CU). Relying on its distributed construc-
tion, D-MIMO systems can not only inherit the advan-
tages of DAS which decreases path loss and overcomes
shadow effect, but also improve capacity performance

remarkably.

Generally, MIMO systems should have the same
number of radio frequency chains as the number of an-
tennas at both transmitter and receiver, which dramat-
ically increases additional hardware costs and system
complexity. In order to solve this problem, antenna se-
lection technologies have been proposed at the right
moment, which only use a subset of transmit and/or
receive antennas with the best channel condition to
communicate and it achieves excellent performance
with fewer radio frequency chains and decreases the
complexity and hardware cost of MIMO systems. In re-
cent years, a number of studies have been done on an-
tenna selection techniques and several antenna selec-

tion algorithms have been proposed >,

The optimal
antenna selection algorithm, namely exhaustive search
algorithm (ESA), is an exhaustive search of all possi-
ble combinations for locating the best antenna sub-
set”’). However, the required computational complexi-
ty grows exponentially with the number of antennas,
which is unaffordable for antenna selection problem in
practical scenarios. In view of this, several suboptimal
antenna selection algorithms are proposed, such as the

) [6]

norm-based selection algorithm ( NBS norm and
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correlation based algorithm ( NCBA) Lol
rithms used in traditional C-MIMO systems can be ap-

These algo-

plied directly into D-MIMO systems. However, in the
C-MIMO systems, the antenna distance between the
user terminal ( UT) and the base station (BS) are
equal so that path losses in the large-scale fading are
not considered. On the contrary, the antenna distance
between the UT and the RAUs are unequal in the D-
MIMO systems so that path loss becomes an important
factor to be considered.

In order to make use of the full advantages of D-
MIMO systems, a near-optimal antenna selection algo-
rithm is proposed in this paper based on large-scale fa-
ding for D-MIMO systems, which combines improved
particle swarm optimization ( PSO ) algorithm with
large-scale fading based RAU selection. Taking ac-
count of the large-scale fading, the proposed algorithm
shows remarkable capacity performance and low com-
putational complexity. Simulation results confirm that
its capacity performance approaches that of the exhaus-
tive search algorithm and is better than the previous al-
gorithms.

The rest of paper is organized as follows. In Sec-
tion 1, the D-MIMO system model is illustrated. In
Section 2, a binary expression of channel capacity is
introduced and a near-optimal antenna selection algo-
rithm based on large-scale fading is presented to opti-
mize the binary expression of channel capacity. Simu-
lation results are presented in Section 3 and final con-
clusions are given in Section 4.

Notation. Throughout this paper, for matrix A,
A", A" and det(A) denote the transpose, complex
conjugate transpose, and the determinant of A, respec-
tively. The terms C “*" represent the (a x b)-dimen-
sional space with complex valued elements.

1 Distributed MIMO system models

It is considered that a (M, N, L) D-MIMO sys-
tem where a central unit (CU) connects to N = 5
RAUs via high-speed, less-delay and error-free chan-
nels such as optical fiber links. Each RAU is equipped
with L antennas that serve UT with M antennas, shown
in Fig. 1. The signal information is transmitted between
CU and RAUs. Assume all processes are perfectly syn-
chronized.

It is assumed that the communication band is nar-
row enough to have a flat response across the frequency
band, and signal model is linear time-invariant. The
received signal parameterized by the distance vector d
is given as Ref. [2]

Fig.1 Distributed MIMO system model

r(t,d) = H(d) - s(t) +z(t) (1)
where s(¢) € C"andz(t) e C"", for the uplink, de-
note the transmit signal from the UT and noise vector at
the time ¢ respectively, z(¢) is independent and identi-
cally distributed, and complex zero mean Gaussian
D-MIMO channel matrix
H(d) e C""is parameterized by the distance vector
d=[d, d,---d,]", where d,(n=1,2,--- N) is the
distance between the UT and the nth RAU.

H,(d)

H(d) =| (2)
H\(dy)

where H (d,) e C"*"is the channel matrix from the

UT to nth RAU, and can be expressed as

noise with unit variance.

hi (d,) hi.(d,)
H, (d,) = (3)
hyn (d,) Ry (d,) -,
where h),(d,) is the composite fading channel coeffi-

cient from the m-th antenna at UT to the [-th antenna at
the n-th RAU and it includes small-scale fading and
large-scale fading ( shadow fading and path loss),
which can be written as Ref. [ 3]

B(d,) = hdi10 "

where b, ~ CN(0,1) is fast fading, « is path loss ex-
%) is the log-

sh

ponent and o =4 is adopted, £ ~ N(0,o
arithm of shadow fading, o, € {8,10}.

2 Antenna selection algorithm

2.1 Binary expression of channel capacity

In order to apply the improved PSO algorithm bet-
ter in antenna selection, the general form of channel
capacity is transformed into a binary expression by re-
deriving the formula of channel capacity.

Assume that the perfect channel state information
(CSI) is only available at the receiver, and the total
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power is uniformly allocated among the transmit anten-
nas. On account of the antenna optimal selection prob-
lem, K optimal antennas are selected from the NL
available ones to serve the UT and the channel matrix
is H € C™". Then the channel capacity in D-MIMO
systems can be expressed as,

C = log, det(I,, + SNWRI?HH)

SNR

= log, det(I, + W[ﬁh’ 0M><(NL—K)J

H
)
[ 0 x—x) ><M]
= log, det(I, + %ﬁ”ﬁ) (5)

where I, is a M x M identity matrix, ( + )" represents
the conjugate transpose. 0y, _x 5 and 0, ) are
zero matrix, H is defined as H = [0 H ]
(NL-K) xM
Let an NL x NL diagonal matrix A be used for an-
tenna selection at N RAUs, which is represented as

A,

A= A

(6)
AM NLxNL
where A;(i=1, ---, NL) is defined as the antenna se-
lection variable for each available antenna. If the i-th
antenna is picked out, A, =1, otherwise, A, =0. The
total number of candidate A, is K whose value equals 1
in A. According to the relationship between H and H
(d), it can be represented as H = PAH(d) , where P
is a permutation matrix satisfying condition as P"P =1.
Accordingly, H"H can be represented as H'H =
H"AH(d). Using det (I, + UV) = det(I, + VU)
the channel capacity in Eq. (5) can be transformed
as

b

log, det(I,, + %ﬂ”ﬂ)

log, det(I,, + %H(d)” ‘A -H(d))
SNR
logz(det(IM + WAH(d)H(d)”)) (7)

As a result, the antenna selection problem be-

C

comes a combinatorial optimization problem on obtai-

ning appropriate A and maximizing the channel capaci-

ty (Eq. (7)).

2.2 RAU selection based on large-scale fading

So far, a few schemes have discussed on the RAU
selection problem in D-MIMO systems. The scheme in
Ref. [11] computes the Euclidean norms of channel
matrix, and selects all antennas from the RAU which

contains the maximal Euclidean norm as the optimal
transmission antennas. This scheme ignores the possi-
bility that some antennas in other RAUs have better
performance than those in RAU with the maximal Eu-
clidean norm.

In this paper, a more effective RAU selection
scheme has been proposed for the characteristic of dis-
tribution in D-MIMO systems. In this scheme, P opti-
mal RAUs are selected from the N available ones to re-
duce the number of selectable antennas greatly so as to
decrease the computational complexity of selection.
Since N available RAUs with a number of antennas
have been distributed into the small cells, the total an-
tennas in all RAUs can be decreased by the large-scale
fading between different RAUs and UT. So the follow-
ing antenna selection will be performed with only P x L
candidate antennas.

The RAU selection is a norm-based approach,
which compares the norm of all antennas and picks out
the K maximal values one by one, where K denotes the
number of the required optimal antennas. Then, P op-
timal RAUs is found out that these K antennas are in-
volved in N available RAUs to build a new candidate

set and the channel matrix H(d) e C ™
P

can be
transformed as H, e . Generally, since the large-
scale fading has a significant effect on the composite fa-

(d,) in Eq. (4) under dif-

ferent d,, the antennas will obtain better CSI with a

ding channel coefficient h”,
better large-scale fading coefficient, and vice versa. So
these K antennas will hardly be involved in every RAU
at the same time, i.e. , P <N. However, with an ex-
tremely low probability that the K antennas are uni-
formly distributed in all RAUs, i.e., P =N, and all
RAUs should be considered in order to achieve the op-
timal scheme.

Therefore, the antenna selection problem of selec-
ting K optimal antennas from the NL selectable anten-
nas in D-MIMO systems can be simplified as a problem
of selecting K optimal antennas from the PL selectable
antennas, i. e. , the size of all potential solutions will
be simplified from C}, to C},. Thus, by utilizing the
RAU selection based on large-scale fading, the compu-
tational complexity will be decreased enormously with
the decrease of the number of selectable antennas,
which is impossible for antenna selection in traditional
C-MIMO systems because it does not consider the
large-scale fading. The main steps of RAU selection
are summarized in Table 1 with the right column show-
ing the complexity corresponding to each part of the al-
gorithm.
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Table 1  Antenna RAU selection algorithm. The complexity cor-
responding to each part of the algorithm is shown in

the right column

Step  Manipulation Complexity
RAUSelection( M, N, L, K, h,, h,,

: “y hy)

2 0.=1{1,2, -, NL|

3 x:=11,2, -, N{

4 H:=[h, hy, -, hy]"

5 S:= 0

6 forj .= 11to NL

7 a;: = h'h; O(MNL)

8 end

9 forn: =11t K

10 J: = argmaxq O( MNK)

11 Q: =L%J

12 if Qey

13 Xx: =x - 10}

14 end

15 0.=0 - 1{J!

16  end

17 fori: =1 to length[ y]

18 r:=xli]

19 S:=S8S-{r,r+1, -, r+L}

20 end

21 return S

2.3 Particle swarm optimization algorithm based
on large-scale fading

In this section, an antenna selection scheme that
utilizes particle swarm optimization ( PSO) has been
presented. PSO is a collaborative computational tech-
nique derived from the social behavior of bird flocking
and fish schooling'?’. PSO is found that it has a huge
advantage in solving global optimization problems, thus
it can be applied to solve the antenna selection prob-
lem' "',

PSO algorithm in the antenna selection can be
characterized by parameters and notations (I, F, Q,
G, D, X,, P,, G,,, V), where I_is the space of all
potential solutions, F denotes a fitness function, i. e.
the channel capacity, ( is the size of population, i. e.
the number of particles, G is the maximum number of
iteration and D is the dimension of the particle posi-
tion, i. e. the number of the P X L selectable anten-
nas. X, denotes the position of the k-th particle at the

I-th iteration. P, denotes the best position at which par-

!

b denotes

ticle k has been up to the [-th iteration. G

the globally best position ever visited by any particle up
to the [-th iteration in terms of fitness function F. V,
denotes the velocity of the k-th particle at the [-th itera-
tion.

There are some improvements to the conventional
PSO. Firstly, a priority-based mechanism is addressed
to initialize the population. In this modification, the
initial population is constructed by @ particles and the
position of each particle X = (x),, 2} ,,,x,,) is a
random permutation of {1, 2,-+-, D}, where x%i de-
notes the priority of the i-th antenna for the k-th parti-
cle, the larger the value of x) ;, the higher probability
the i-th antenna is selected.

In conventional PSO, the initial population is gen-
erated randomly. A different method of optimizing the
initial populations is proposeed, which reduces the av-
erage convergence time (the number of iterations until
reaching an acceptable solution). The basic idea is to
use the large-scale fading ( path loss and shadow fa-
ding) to optimize the value of xg,l-. If the i-th antenna
has a good CSI with a good large-scale fading, but the
value of x; ; is very low, the i-th antenna will have a
low priority probability to be selected, which means
that it should take a lot of iterations to increase the pri-
ority for the i-th antenna before it is chosen. In order
to solve this problem, x); is multiplied by the large-
scale fading coefficient of the i-th antenna to increase
the priority probability of the i-th antenna with a good
large-scale fading coefficient, while decreasing priority
probability of those antennas having the bad CSI but
with a higher weight x(z,/'(ﬁéi). As a result, the initial
population will be optimized by large-scale fading coef-
ficient and a sufficiently good solution is found quick-
ly. The optimized position of each particle in the initial
population can be represented as

X, =X, - W (8)
where W is a D x D diagonal matrix of large-scale fa-
ding,

(9)

Wo-pp
where w, € (0,1), ¢ = 1,2,---,D, w, denotes the
large-scale fading on the i-th antenna, which is nor-
malized by the maximum of large-scale fading coeffi-
cient.
Secondly, the selection of antennas is represented
by a binary diagonal matrix
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A,

A,

A(X,) = , A e {0,1}

A,

(10)
where A, is associated with an available antenna. Ac-
cording to the priority of each antenna, K antennas
with the highest priority are picked out one by one
without replacement, and the corresponding A, is set to
1 while others are set to 0. As a result, by using
Eq. (7), the fitness function of the k-th particle is re-
presented as

F(X,) = logz(det(ID + SNR

I TAX)H H], ))

(11)
where I, is a D x D identity matrix, H, is the channel
matrix after the RAU selection.

The last modification over the conventional PSO is
an improvement in updating velocity. Velocity updating
formula in conventional PSO is represented as

Vi=w: V. 4 - UO0,1) - (Gl - X,)

be s UL - (P -XTY (12)
where U(0,1) is the random variable uniformly distrib-
uted in interval (0,1), and ¢, >0 and ¢, >0 are social
and cognitive parameters to control the movement of the
particle in any specific direction. V| = (Ui,l , Ui,z L0t
Ui_‘ ») denotes the velocity of the k-th particle at the [-th
iteration, where vi, ; denotes the magnitude of increasing
the priority of the i-th antenna for the k-th particle. In-
ertia weight w is employed to control the impact of the
previous history of velocities on the current velocity,
thereby influencing the trade-off between global (wide-
ranging ) and local (nearby) exploration abilities of the
“flying points. 7 Larger inertia weight o facilitates
global exploration (searching new areas) while a smal-
ler inertia weight tends to facilitate local exploration to
fine-tune the current search area. Suitable selection of
the inertia weight w can provide more balance of load
between global and local exploration abilities and thus
fewer iterations are needed on average to find the opti-
mum'

In conventional PSO, V. ™' just has a fixed impact
on V;" with the constant inertia weight w. It is hard for
the conventional PSO to adjust the search capability to
achieve the best global solution with a fixed w. In this
paper, adapting the large-scale fading coefficient W
(Eq. (9)) as the inertia weight @ in Eq. (12) has a
significantly positive effect on the composite fading
channel coefficient in H,. Then, velocity formula
(Eq. (12)) can be expressed as

Vi=W-V," +¢ -U(0,1) - (G

best

- X

+c, - U0,1) - (P =X7") (13)

Compared with the constant inertia weight w,
large-scale fading W can retains more positive impact
on ﬂi’,- from vi_: with a better large-scale fading coeffi-
cient or retains less impact on vfu- with a bad large-scale
fading. As a result, the particles can adaptively adjust
their search capability and their direction of search ac-
cording to the current environment ( large-scale fading)
so that they are hard to fall into the local optimum.
Based on the large-scale fading coefficients between the
UT and RAUs, this scheme provides a macro tendency
for all particles to fly towards even better solution so
that the average convergence time can be reduced sub-
stantially.

The main steps are as follows.

Step 0 Set the iteration counter [ = 0. Randomly
initialize a total number of Q particles X! as well as
their corresponding velocities VO, k = 1,2,--(.

Step 1 Evaluate the fitness value of each particle
by using the fitness function in Eq. (11). Set the best
position of each particle P! = X and the global best
G(l))est = arg maxlsks()F(PZ)-

Step 2 Update the iteration counter [ =/ +1. Cal-
culate the velocity of each particle by using improved
velocity formula (Eq. (13)). Update the position of
the k-th particle as X, = X;' + V.

Step 3 Evaluate the current fitness value of each
particle by using the fitness function in (Eq. (11)).
Store the position of each particle in temporary vector
PI = [P PI e pr ]

Step 4 If the convergence criteria is satisfied,
then terminate. Otherwise go to step 5.

Step 5 If F(P;"™) > F(P;"), update the best of
the k-th particle as P, = P ; otherwise, P, = P..

Step 6 Update the global best as G, = arg
max, _;_ F(P.). Go to step 2 and repeat the step 2 to
4.

3 Simulation results and discussion

For performance comparison, simulation results of
the proposed PSO antenna selection scheme in D-MI-
MO systems are presented and all the results are com-
pared with other antenna selection schemes. The chan-
nels are assumed to be quasi-static and statistically in-
dependent in the MIMO systems. All the simulations
are performed using Monte Carlo runs and each result
is an average value with 5000 independent simulation
runs.

For performance comparison, a D-MIMO system

with (M, N, L) setto be (4, 6, 2) is presented, and
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the number of uplink receive antennas needed to be se-
lected optimally is K =4. The population size @ of PSO
is 30 and the number of iterations G is 30. The radius
of the circular cell is 1000m, and the distances be-
tween the UT and 6 antenna RAUs are 1000m,
1500m, 2000m, 500m, 2500m, 700m in the coordi-
nate system respectively. In order to show the perform-
ance of the proposed algorithm, it is compared with ex-
hausting search algorithm ( ESA )" RAU-selection
norm-based algorithm ( PNBA) Y norm and correla-
tion based antenna selection algorithm ( NCBA) 100 and
norm-based antenna selection algorithm ( NBS)'®'.
Fig.2 shows that 10% outage capacities achieved by
these algorithms increase remarkably as SNR increa-
ses, while the achievable capacity of the proposed al-
gorithm approaches that of ESA and better than other
algorithms for a wide range SNR.

30 T T T T T T T
~ ESA,
25 _%‘ 24 | Proposed
=
<
" b5 23
2
Q

Capacity (bit/s/Hz)
s &

-+ PNBA
——NCBA
—NBA 1
—&- Proposed

10 12 14 16 18 20
SNR(dB)

Fig.2 Capacity versus SNR withM =4, N =6, L =2,
K=4,0 =30, G =30

o
N
&
o b
)

Moreover, another larger D-MIMO system with
(M, N, L) set to be (10, 7, 4) is considered, and
the number of uplink receive antennas needed to be se-
lected optimally is K = 10. The population size Q of
PSO is 30 and the number of iterations G is 30. The
radius of the circular cell is 1000m, and the distances
between the UT and 7 antenna RAUs are 1000m,
1500m, 2000m, 500m, 2500m, 1800m, 700m in the
coordinate system respectively. Fig.3 shows that 10%
outage capacities achieved by these algorithms increase
remarkably as SNR increases, while the achievable ca-
pacity of the proposed algorithm approaches that of
ESA and much better than other algorithms for a wide
range SNR.

Fig. 4 illustrates the performance of the proposed
algorithm with PNBA, NCBA, and NBS for different
numbers of selected antennas as a function of selected
antennas K for M =12, N=7, L =3, ( =30, G =30.
SNR is set to 25dB. The radius of the circular cell is
1000m, the distances between UT and 7 antenna RAUs

70 T T T T T T T
ESA -
60 - ’Eﬁ 56 | Proposed NBS
= /
< 50f 3%
X 2z
% g 52 NCBA
= -
2 01 &5 e
2 17 175 18 185 19 _¢
g 30r SNR@B)
g »
& = ——ESA
20 ——PNBA ||
——NCBA
10 ——NBS
—#— Proposed
0 | 1 1 1 | 1 1 1

1
0 2 4 6 8 10 12 14 16 18 20
SNR(dB)

Fig.3 Capacity versus SNR with M =10, N =7, L = 4,
K =10, Q =30, G =30

are also 1000m, 1500m, 2000m, 500m, 2500m,
1800m, 700m in the coordinate system respectively.
As can be seen from Fig.4, the outage capacity
achieved by each algorithm increases substantially with
the number of antennas K. The capacity achieved by
the proposed algorithm is better than other algorithms
for all values of K. In particular, the advantage of the
proposed algorithm will increase continuously with the
value of K compared with the other algorithms.

100 T T T T T T T T
9 |™ PNBA
——NCBA
80 | |[—NBS
—=— Proposed
70t 1

@

=

< 60 ~— 90 1

2 E Proposed

® 30T 2 \/NBS 1

2. =

Saof & 85//_
30 ;% N NCcBA ||

3 80 NPBA

20 -

10 1 1 1 ! L 1
1 2 3 4 5 6 7 8 9 10 11 12

Number of selected antennas

10.5 11 11.5 o
Number of Selected Antennas
| f | 1

Fig.4 Capacity versus number of antennas K with M = 12,
N=7, L=3, SNR=25dB, Q¢ =30, G = 30.

Fig. 5 provides some interesting data regarding the
performance improvement by applying proposed meth-
ods of optimizing population in PSO, with M =11, N =
8, L=3,K =11, Q =40. The SNR is fixed at 20dB.
It is assumed that the radius of the circular cell is
1000m, the distances between the UT and 8 antenna
RAUs are 1000m, 800m, 1500m, 2000m, 1200m,
500m, 2500m, 1800m in the coordinate system re-
spectively. The conventional PSO with arbitrary popu-
lation randomly choses initial population, and updates
the population with constant inertia weight. The im-
proved PSO not only optimizes the population initializa-
tion with large-scale fading coefficient but also im-
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proves the updating of population by utilizing inertia
weight based on large-scale fading coefficient. Tt is ob-
served from the simulation results that the conventional
PSO finds its global optimum early and this global opti-
mum is obviously worse than the global optimum ob-
tained by improved PSO. Moreover, the channel ca-
pacity obtained by the proposed algorithm is larger than
that of conventional PSO. It can be seen that the explo-
ration ability of the proposed algorithm is better than
that of conventional PSO with the inertia weight W
based on large-scale fading. Therefore, it can be con-
cluded that the performance of the proposed algorithm
generates a considerable improvement over that of con-
ventional PSO.

67 T T T T
66.5 8
=
=5
2
g
g
&}
-+ Improved PSO 4
—o— Conventional PSO
64 1 1 Il 1 1
0 10 20 30 40 50 60
Number of iteration G
Fig.5 Capacity versus G withM =11, N =8, L =3,

K =11, Q = 40, SNR =20dB

As for computational complexity, it is considered
the number of complex multiplications and additions is
required. As an example, when M =16, N=8, L =4,
K=11, Q =30, and G =28, the proposed algorithm
computes ) X G =30 x 28 = 840 determinants ( or,
equivalently, it is assumed that P =3 in this selection,
QxG x (1/3)min (M, PL)’ = 483840 complex
multiplications and additions ). In contrast, the ex-
haustive conducts C§, =64512240 determinants ( each

determinant requires ( 1/3) min (M, NL)’ = 1365
complex multiplications and additions). Gorokhov al-
gorithm'” requires M x N x L x K> = 681472 complex
multiplications and additions. On the other hand, NBS
and NCBA require M x N X L, =512 and 2M x N x L x
K =11264 complex multiplications and additions, re-
spectively. Therefore, the proposed algorithm requires
higher complexity than NBS and NCBA but lower than
other algorithms. The NBS and NCBA, however, suf-
fer a substantial performance loss.

In order to intuitively compare the computational
complexity of the aforementioned five antenna selection
schemes, the parameters of their computational time
(In Table 2) are evaluated by using practical hard-
ware, say the Texas Instruments digital signal process-
ing (DSP) chip C6711, which possesses computation-
al capability of 500 million of multiplications and addi-
tions per second ( MMACS) ") Tt is clear from Table
2 that the proposed algorithm is better in terms of com-
putational complexity than ESA and Gorokhov algo-
rithm, especially with the increase of the antennas.
NBS and NCBA require less computation than the pro-
posed algorithm, but their performances of the channel
capacity are much worse than that of our proposed algo-
rithm. In such a scenario, except for ESA, the afore-
mentioned four schemes are all suitable to the MIMO
system in Ref. [15], as the computational time of
these antenna selection schemes is all lower than the
elapsed time of 80ms between two channel matrix
measurements. However, as the time between two
channel matrix measurements decreases or other anten-
na selection scenarios are considered, the aforemen-
tioned schemes with higher computational time such as
the optimum algorithm may encounter some difficulties.
Therefore, the proposed algorithm provides a viable al-
ternative to previous work by striking a better tradeoff

between performance and computational complexity.

Table 2 Comparisons of computational complexity with 500 million multiplications and additions per second

Parameters (M, N, L, K, Q, G, P) ESA (ms) Gorokhov (ms) NCBA (us) NBS (us) The proposed algorithm (ms)
(4.6.4.4,10,25.2) 0.45 0.01 1.53 0.19 0.01
(8,4,4,8,15,25,3) 4.39 0.13 1.28 0.64 0.12

(16.8.4,11,30,28.3) 176000 1.36 22.53 1.02 0.9

4 Conclusions

In this paper, based on large-scale fading, a
modified PSO algorithm is presented combined with
norm-based RAU selection for antenna selection in D-
MIMO system. The proposed algorithm for the antenna

selection requires low computational complexity and the

performance approaches that of the exhaustive search
algorithm, which makes the best use of the large-scale
fading in D-MIMO systems to simplify the antenna se-
lection problem by reducing the number of candidate
antennas remarkably. This paper indicates that the pro-
posed algorithm is a suitable candidate for solving com-
plex communication problems in D-MIMO system.
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