HIGH TECHNOLOGY LETTERS! Vol. 22 No.31Sep. 2016 pp. 288 ~296

doi:10.3772/j. issn. 1006-6748. 2016. 03. 008

MapReduce based computation of the diffusion

method in recommender systems

Peng Fei (3%

o)

K)@" ™, You Jiali*, Zeng Xuewen ", Deng Haojiang "

(" National Network New Media Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences, Beijing 100190, P. R. China)
(™ University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract

The performance of existing diffusion-based algorithms in recommender systems is still limited

by the processing ability of a single computer. In order to conduct the diffusion computation on large

data sets, a parallel implementation of the classic diffusion method on the MapReduce framework is

proposed. At first, the diffusion computation is transformed from a summation format to a cascade

matrix multiplication format, and then, a parallel matrix multiplication algorithm based on dynamic

vector is proposed to reduce the CPU and 1/0 cost on the MapReduce framework , which can also be

applied to other parallel matrix multiplication scenarios. Then, block partitioning is used to further

improve the performance, while the order of matrix multiplication is also taken into consideration.

Experiments on different kinds of data sets have verified the efficiency of the proposed method.

Key words: MapReduce, recommender system, diffusion, parallel, matrix multiplication

0 Introduction

Recommender systems''' adopt knowledge discov-
ery techniques to provide personalized recommenda-
tions. It is now considered to be the most promising
way to efficiently filter out the overload information.
Thus far, recommender systems have successfully
found applications in e-commerce, such as book rec-

. . 2
ommendations in Amazon. com'?’

(3]

, movie recommenda-
tions in Netflix. com ™', and so on.

Collaborative filtering (CF) is currently the most
successful technique in the design of recommender sys-
tems'* | where a user will be recommended with items
that people with similar tastes liked in the past. As the
CF technique evolves, some diffusion-based algorithms
were proposed for better prediction accuracy. Huang et
al. ! proposed a CF algorithm based on an iterative
diffusion process. Considering the system as a user-
item bipartite network , Zhou, et al. *® proposed an al-
gorithm based on two-step diffusion. Zhang, et al.'”
proposed an iterative opinion diffusion algorithm to pre-
dict ratings in Netflix. com.

As the size of data grows rapidly, many research-
ers have focused on the design of distributed recommen-

der algorithms. Jiang, et al. "®" and Zhao, et al. "*’ pro-
posed an item-based CF algorithm and a user-based CF

10]

algorithm based on Hadoop'"! respectively. Sebanstian

et al. 'V

proposed a KNN algorithm based on user sim-
ilarity and implemented it on the MapReduce frame-
work' . However, there is little research on diffusion-
based recommender algorithms on the MapReduce
framework.

As the diffusion-based recommender methods are
based on graphs, matrix multiplication can be used to
perform the computation task, which can facilitate par-
allel processing as shown in the next sections. Li, et
al. ' used a parallel matrix multiplication method to
do the similarity calculation in recommender systems.
They proposed a single tuple method (STM) and a row
divided method (RDM) to implement the matrix multi-
plication computation on the MapReduce framework.
STM is rather inefficient as will be explained in the fol-
lowing sections. RDM requires servers in the Hadoop
cluster to save the whole matrix in memory, which can-
not be used on large data sets. Zheng, et al. '™/ pro-
posed a parallel matrix multiplication algorithm based
on vector linear combination. However, it still needs
servers to save the whole matrix in memory in the re-

duce step, which suffers from the same problem with

@ Sponsored by the National High Technology Research and Development Program of China (No. 2011AA01A102) , the Key Program of the Chi-

nese Academy of Sciences (No. KGZD-EW-103-2).

2 To whom correspondence should be addressed. E-mail; pengf@ dsp. ac. cn

Received on July 26, 2015

HIGH TECHNOLOGY LETTERSIVol. 22 No. 3 |Sep. 2016

289

RDM.

In order to make the diffusion-based recommender
methods applicable on large data sets, a parallel cas-
cade matrix multiplication algorithm is proposed to re-
) on the MapReduce

framework. The contributions of this work are as fol-

alize the classic diffusion method

lows .

(1) The classic diffusion method in recommender
systems is transformed from the summation format to
the cascade matrix multiplication format, which can fa-
cilitate parallel processing.

(2) A parallel matrix multiplication algorithm
based on dynamic vector on the MapReduce framework
is proposed, which can reduce the CPU and 1/0 cost
effectively. In addition, the algorithm is improved by
block partitioning. The order of matrix multiplication is
also taken into consideration to enhance performance.

(3) Experiments are conducted on different kinds
of data sets, including Moviel.ens and Jester, to verify
the effectiveness of the proposed method.

The rest of this paper is organized as follows. Sec-
tion 1 gives the background information of the study.
Section 2 introduces the vectorization of the classic dif-
fusion method and describes our dynamic vector based
matrix multiplication algorithm. A performance analysis
is presented in Section 3. The study is concluded in
Section 4.

1 Preliminaries

1.1 The diffusion method on bipartite graphs

A bipartite graph can be used to represent the in-
put of a recommender system. In the bipartite graph,
the vertexes are consisted of two sets, users U = {U,,
U,,-,U | and items I = {I,,1,,--

m

,I,| respectively.
The user-item relation can be described by an adjacent

matrix A. If U, has used [, set A(i,j) =1,

A(i,j) = 0. Fig. 1 shows an illustration consisting of

otherwise

three users and five items.

((b) Ttems)

Users

. L g
Fig.1 [llustration of the diffusion process on a bipartite graph

Suppose that a kind of resource is initially located
on items. Each item will averagely distribute its re-
source to all connected users, and then each user will
redistribute the received resource to connected items.
Plot (a) shows the initial condition given U, as the tar-
and plot (b) describes the result after the

first step diffusion,

get user,
during which the resources are

transferred from items to users. Eventually, the re-

sources flow back to items, and the result is shown in

plot (c).

Denoting r'”

as the initial resource vector on
items. r;is the amount of resource located on L. The fi-

nal resource vector after the two-step diffusion'®’ is

shown in
nA(L, j) o "
) _
n s S Sy i 2 ()
where k(U,) Z 1A(l, j) is the number of con-
j=

nected items for U,, and k(1) z :n:lA(i,s) is the
number of connected users for 1. Given a target user
U,, and set the initial resource vector r'” (U,) as

" (U) =A@, j), j=12,+.n (2)

In this case, the initial resource can be under-
stood as giving a corresponding recommending capacity
to each connected item based on history records, and
the different initial resource vectors for different users
have captured the personalized preferences. The final
resource vector > (U,) is obtained by Eq. (1). U, ’s
unconnected items are sorted in descent order based on
final resource values. Items with the highest values are
recommended. This algorithm was originally motivated
by the resource-allocation process on graphs, and has
been shown to be more accurate than traditional collab-

orative filtering based on MovieLens data set '

1.2 MapReduce computing model

MapReduce is a parallel computing model . Tt
splits an input data set into several parts. Each mapper
deals with one part, produces key/value pairs and
The key/value

pairs are partitioned and emitted to reducers to calcu-

writes them into the intermediate files.

late the final result. In this work, all implementations
are based on the Hadoop platform.

2 MapReduce based computation of the
diffusion method

2.1 Vectorization of the diffusion method
The diffusion result is calculated by summation as
shown in Eq. (1). Such formation is not convenient for

parallel processing. Vectorization of the diffusion

290

HIGH TECHNOLOGY LETTERSIVol. 22 No. 31Sep. 2016

process would facilitate the parallel computation.

In the first step of diffusion, resources are trans-
ferred from items to users. The transition matrix is

T = A". /K’ (3)

where A" denotes the transpose of A, and “./” per-
forms the right-array division by dividing each element
of A" by the corresponding element of K. K' is an
n X m matrix as shown in Eq. (4). The elements in
row j are initialized to k(/;).

k(L) k(1) k(1))
L B O
k(1) k(1) k(1,)

After the first step, the resource vector on U, is
r(l) (Ui) — r(O) (Ui> . T(l).
Similarly, the transition matrix in the second step
of diffusion is
T = A./K' (5)
K" is an m x n matrix as shown in Eq. (6). The ele-
ments in row I are initialized to £(U,).

E(U,) k(U,)) kE(U,)
KU - | B0 k(U) k(U,) (6)
k(U,) k(U,) k(U,)

Finally, the resources on each item are shown in

Eq. (7), which is the vectorization result of Eq. (1).
P = () T

— r(0)<Ui) . T(l) . T(2) (7)

The computation complexity of a recommendation

process for a target user is O(mn) based on Eq. (1) or

Eq. (7). It is impossible to do online computation

when the data set is in large scale. So one should em-

A(:l,l) A(1:,2) A(},t) B
- : | B@Y
AGD AG2) AG) [|x|
: : : B
A(m,1) A(m,2) A(m,t)

ploy offline computation to make recommendation for
each user. In order to compute the diffusion results of
all users, Eq. (7) can be extended to the cascade ma-
trix multiplication format as shown in Eq. (8), where
F is the diffusion result of all users in matrix form.
F=A-T".7% (8)
Therefore a cascade matrix multiplication ap-
proach is adopted to perform the diffusion computation
task. In the next section, the MapReduce framework
will be used to design an efficient matrix multiplication
algorithm.

2.2 Parallelism of matrix multiplication

Eq. (8) entails three matrix-matrix multiplica-
tions. So the core of the diffusion method is to do the
matrix multiplication in parallel. In this section, the
single tuple method (STM)'" based on the MapRe-
duce framework is the first to be introduced. Then a
dynamic vector based method (DVBM) is which can
decrease the CPU and 1/0 cost effectively. further im-
provement is made for DVBM by block partitioning. In
addition, the order of matrix multiplication is also
taken into consideration.
2.2.1 Single Tuple Method

Suppose A is an m X ¢t matrix and B is at X n ma-
trix. Then the elements of matrix C = A - B can be cal-
culated as

CG,j) = ;A(i,@ *B(k, j) (9)

So an element of matrix C can be got by the inner
product of the corresponding row vector in matrix A and

column vector in matrix B as shown in Fig.2.

| B(Lj) | B(.m) :
sen - san| | e
 B(,)) .- B(t,n) :

Fig.2 Matrix multiplication in STM

In recommender systems, the user history records
are usually in a three-tuple format {U,,I,value}
which are the cases both in MovieLens and Jester data
sets. Based on this input format, the MapReduce
process of the STM is shown in Table 1.

In the map procedure, {i,k,A(i,k)} and {k,],
B(k,j)!| denote the original input format of matrix A
10,k,ACi,k)f)

and matrix B respectively. {{i,j |,

and ({i, jl,{1,k,B(k,j)}) denote the intermediate
key/value pairs used for sort and shuffle. Each {{i,
jl,10,k,A(i,k)}) is emitted by n times, while { {1,
jt,{1,k,B(k, j)}) is emitted by m times. 0 in {0k,
A(i,k)} indicates it is from matrix A, and 1 in {1k,
B(k, j)| indicates it is from matrix B. In the reduce
procedure, C(i, j) is obtained as described in

Eq. (9).

HIGH TECHNOLOGY LETTERSIVol. 22 No. 3 |Sep. 2016

291

Table 1 MapReduce algorithm of STM
Input Procedure Output
. forl <j<n .
kAL E) | L, Tt A(ik
RAGD emit (11, j110,kAGd)) T IORAGRD)
Map for 1 X
ool si1sm
k,j,B(k,j i, jt,11,k,B(k, j) |
{ s Js (y])} Pmlt<%L,]},{l,k,B(k,]);l> <%L’] ’§ ’ (9.]))>
forl <k <t
(1 ,]),%0 AQLE)) .. _ P
Reduce < {],k,B(k,]) > C(L’]) + _A(ka) B(kyj) {L,],C(l,]),

emit {i,j,C(i,7)}

2.2.2 Dynamic vector based method
when the STM on Movielens-1M data

it can’t be completed in rational time. It

However,
set is taken,
is of time consuming because the elements in the matri-
ces are read or written one by one. There are d(A) « mt
+ d(B) - tn elements to read and (d(A) + d(B)) -
min elements to write in the map procedure, where
d(+) denotes the density of the corresponding matrix.
That also means there are (d(A) +d(B)) * mtn inter-
mediate elements to sort and shuffle, which is both
CPU and I/0 consuming.

If the elements could be read or written in batch,
the CPU and 1/0 cost would decrease. Based on this
idea, a dynamic vector based method is proposed to
decrease the frequency of read and write, so as to re-
duce the CPU and /0 cost.

The elements are compressed in the same row or
column into a single vector. The vectors are stored in
different formats according to their density. Take a row

vector as an example. If the density is larger than B,

the vector is in an array format; otherwise, it is in a
key/ value format as shown in Eq. (10). B is a parame-
ter that controls the density threshold. In the following
set B = 50%.

.) denotes the compression format of row 7 in ma-

experiments , Let ¢ be the row index.

A, (i,
trix A. The second element in a vector represents the
compression type. 0 indicating the vector is in an array
format, and 1 indicates a key/value format. £,(1 < v
< w) denotes the index of nonzero elements in the
row.
A (i,:)=
{1,0,A(i,0), -,A(i n)t ,ifd (A(i
{U,l kAR

1)) >B
-, k,,A(ik,) | , otherwise
(10)
DVBM contains two MapReduce jobs as shown in
Table 2. The aim of the first MapReduce job is to com-
press the matrix from the origin three-tuple format to a
vector format. In the map procedure, each element is

Table 2 MapReduce algorithm of DVBM

Input Procedure Output
{1,k A(i,k) ! emit {{if,{k,AGLE)) (it Tk, AGLE))
Map ; 5 - ; , ;
[k, B(k)t emit ({ji,1k,B(k,j)!) (Lt HE,B(E))
A(,(i,:) =
b (il kALK) %i,o,A<i,0>,-~~,A<i,n>% if d(A(i,:)) >B A (i,2)
IstJob b iuce {{i,l,kl ALk kyyo kA k) |, otherwise
B(»(:,J.) =
Ciit Tk, B(E)) {{j,O,B(OJ),”',B(m,j)F ,if d(B(:,j)) >B B.(:.)
{ j,l,kl 7B(k1 7j)s kZ’“'s w ,B(ku,j). , otherwise
. for 1<j<n o R
A emit (|7, ,10.4,(,5) 1) 104G D
Map for | <i<m
o orIsts x)]
Bz(v./) emit<§z]},{l,B“(;,j)}> <{L,‘]},{1,B{(_,])|>
2nd Job decompress A, (i,:) to A(i,:);
bl 104Gy decompress Ble,f) 1o B e
educe <%l, , I,BP(:,]')}> [011k[Ly, (Lv.])

C(i,j) + =A(i,k)
emit |i,j,C(i,j) |

* B(k,j)

292

HIGH TECHNOLOGY LETTERSIVol. 22 No. 31Sep. 2016

emitted according to its row number or column num-
ber. In the reduce procedure, the reducer collects ele-
ments that belong to the same row or column and com-
presses them into a row or column vector based on
Eq. (10).

In the second job, the compressed vector can be
taken as input to implment the matrix multiplication.
In the map procedure, A (i,:) and B,(;,j) are read
and mapped to ({i,j{, {0,4,(i,:)}) and ({i,jf,
1B |). Each (1i 1, 10,A,(i:)}) is emit
ted n times, while ({i,j},{1,B,(:,j)}) is emitted m
times. In the reduce procedure, A,(i,:) and B,(;,j)
are decompressed to A(i,:) and B(:,j). C(i,j) is
obtained as described in Eq. (9).

2.2.3 Dynamic vector based method with block

[ALY AL2) - ALY]

In DVBM, each reducer only involves two vec-
tors. This does not make full use of the computing
power of each worker. More vectors can be allocated to
a reducer, which can help decrease the copy frequency
in the map procedure. When the copy frequency cuts
down, the CPU and 1/0 cost would both decrease.

Based on the above idea, matrix A is partitioned
into several sub-matrices by row, and matrix B is parti-
tioned into several sub-matrices by column as shown in
Fig.3. Each sub-matrix is called a block. The term
block is also used in file systems where it refers to a
unit of storage space, which is not the case in this pa-
per. We can map the rows and columns in the same
block to a single reducer, and calculate the elements of
matrix C in batch.

B -1 B(,jy,)

A(ib,.‘,l) A(ib,.l,2) A(ib,.|,t) BRI -
: : : x .’

4G Dy AG, 2 -~ Al 1)

B2.jy) -

B@w1) - B(t,jy,) -

| A(m,1) A(m,2) - A(m,p) |

Fig.3 Matrix multiplication in DVBMwB

Let S be the block size. BI denotes block index,
and NB denotes the number of blocks. Then the rela-
tions between row/column index and block index can
be expressed by Eq. (11) and Eq. (12). The number
of blocks can be calculated by Eq.(13) and
Eq. (14).

- B(Ljy) |- B(n) e
B(z’jbjs)i.“ BQ2,n)) gc(bi,:’.]bj‘)) C(lbl}:’jbjs)i
Bjy) | B { b Jn) 0 Clnody) |

NB(A) =(m+1)/8; S>1, m>0 (13)
NB(B) =(n+1)/8; S>1, n>0 (14)

The Dynamic Vector Based Method with Block
(DVBMwB) just modifies the second job of DVBM as

shown in Table 3. In the map procedure, each

A_(i,:) is emitted NB(B) times, while each B,(;,j)

BI(A,(i,:)) =i/S (11)
BI(B,(:,j)) =j/S (12)

Table 3 MapReduce algorithm of DVBMwB

is emitted NB (A) times, which reduces substantial
copy cost and 170 cost compared to the DVBM. In the

Input Procedure

Output

for1 < bj < NB(B)

i iy it 10,4,(i,:))
. . enit (| BIA(1,0)), b) , 10,4,Gi,)}) | PADV 104G
ap .
. for1 < bi < NB(A) . Y s
Br(-y.]) 61mt<1bL,BI(B‘(;,])>} , il,Bc(:,j)}> <{bl5BI(Bp(-9]))) s{lsBc(-aj)}>
foriy, <i < iy
decompress A, (i,:) to A(i,:);
for ji;, <j <Jiyq
: o . decompress B, (:,j) to B(:,7);
BI(A,(i,:)),bj1,10,4, (i, : press Bk e /
Reduce |0 (A L2001 104G) 1, CGi) |

C16i,BL(B, (s) |, 11,B.(:)}) for by SE<dug
for jy, < Jj <y,
forl <ks<zi
C(i,j) + =A(i,k) * B(k,j)
emit {i,j,C(i,j)}

HIGH TECHNOLOGY LETTERSIVol. 22 No. 3 |Sep. 2016

293

reduce procedure, A, (i,:) and B, (:,j) are decom-
pressed to A(i,:) and B(;,j) in batch, and C(i,j) is
obtained by the same way as DVBM.
2.2.4 The order of matrix multiplication

The sequence by which multiplications are done
also affects the performance of Eq. (8). An in-order
calculation sequence yields O (1 U1 111) time com-
plexity, whereas a reversed order leads to O (11U |1
[?). The decision should be based on the relative sizes
of the user set and item set. When the number of users
is larger, an O(1UI111%) result is obviously more fa-

vorable, or vice versa.
3 Experiment

3.1 Experimental environment

A Hadoop cluster with 3 PCs is constructed. Each
machine has a 4-core 2. 40GHz Xeon (R) processor,
4G memories. The Hadoop version is 1.2.1.

3.2 Data description

In this study, two representative data sets are
used, MovieLens-1M and Jester, to evaluate the pro-
posed MapReduce algorithm. MovieLens data sets are
collected from the Movielens web site. Ken Goldberg
from UC Berkeley released the Jester data set from the
Jester Joke Recommender System. The features of each
data set are shown in Table 4. It contains the user
number, item number, rating number and density of
each data set. These two data sets are of quite different
density, which can provide more comprehensive verifi-
cation to our methods.

Table 4 Features of the data sets

User [tem Rating .
Data set Density
number number number
MovieLens-1M 6040 3952 1000209 4.19%
Jester 73421 100 4136360 56.34%

3.3 Comparison and Analysis

The performance of STM, DVMB and DVMBwB is
compared and the compression ratio of the dynamic
vector is also measured. After that, the performance of
DVMBwB is evaluated with different block sizes on
MovieLens-1M and Jester data sets, and also some ex-
periments are conducted to verify that the order of ma-
trix multiplication is very important.
3.3.1 STM vs DVMB vs DVMBwB

As STM cannot complete the diffusion-based rec-
ommendation for MovieLens-1M and Jester data sets in

a reasonable time, several easier tasks of different us-
er/item dimensions and matrix densities are generated
so as to compare the performance of STM, DVMB and
DVBMwB. The user/item dimensions include 200 x
200 and 400 x400, while the matrix densities are 5%
and 10% . The results are shown in Table 5. The “in-
termediate matrix density” is the density of the matrix
that comes out after the first step of diffusion. It’ s usu-
ally of high density compared with the original input
matrix, which leads to more time consumption in the
second step of diffusion. The block size of DVBMwB is
100.

It is seen that DVMB and DVMBwB perform much
better than STM. The main factor that affects the CPU
and 170 cost is the read/write frequency. On one
hand, the decrease of the read/write frequency would
improve the 1/0 efficiency. Too many read/write oper-
ations will lead to additional communication overhead
in the MapReduce framework. On the other hand, as
the number of intermediate elements is equal to the
write frequency of the map procedure, less CPU time to
sort and shuffle is required if the write frequency goes
down. The frequency difference of STM, DVBM and
DVBMwB mainly comes from the matrix multiplication
job’ s map procedure. As analyzed in Section 2.2.1,
the read/write frequencies of the map procedure in
STM are d(A) + mt +d(B) + tn and (d(A) +d
(B)) - min respectively. In DVBM, the read and
wirte frequencies of the first job are both d(A) - mz +
d(B) - in. However, the read frequency is reduced to
m + n and the write frequency is reduced to 2mn in the
second job. The difference of DVBM and DVBMwB
only comes from the write frequency of the second
job’ s map procedure. It is reduced to NB(B) « m +
NB(A) - n. Although it takes two jobs to complete the
matrix multiplication calculation in DVBM and DVBM-
wB, the total read/write frequencies are cut down com-
pared with the STM algorithm, and the number of in-
termediate elements also decreases dramatically which
saves a large amount of CPU time. Besides, the dy-
namic vector format also eliminates some redundant in-
formation compared with the origin three-tuple format,
which can further reduce the 170 cost. So it is quite
worthwhile to take an extra step to compress the matri-
ces into vectors. The performance of STM in Table 5
confirms the above analysis. Meanwhile, DVMBwB
takes much less time than DVBM, which indicates that
block partitioning can help improve the performance ef-
fectively.

294

HIGH TECHNOLOGY LETTERSIVol. 22 No. 31Sep. 2016

Table 5 Comparison of STM, DVBM and DVBMwB

Method

Users

Items

Density

Ist step diffusion time (ms)

Matrix

Matrix

Intermediate

matrix

2nd step diffusion time (ms)

Matrix

Matrix

. . Total . . . Total
compression multiplication density compression multiplication
STM / 9239 9239 / 42288 42288
DVBM 200 200 5.00% 3230 5691 39.78% 4255 6735
—— 2461 2480
DVBMwB 1245 3706 1229 3709
ST™M / 59298 59298 / 481747 481747
DVBM 400 400 5.00% 9248 11703 63.57% 24253 27698
D — 2455 3445
DVBMwB 1234 3689 2288 5733
STM / 16251 16251 / 80359 80359
DVBM 200 200 10.00% 3294 5836 85.46% 5338 7801
D —— 2542 2463
DVBMwB 1243 3785 1237 3700
STM / 110351 110351 / 695163 695163
DVBM 400 400 10.00% 12275 14769 97.89% 30269 33756
e —— 2494 3487
DVBMwB 1224 3718 2283 5770

3.3.2 Compression ability of dynamic vector
The sizes of MovielLens-1M and Jester data sets be-
fore and after compression are illustrated in Table 6. The

compression ratio is also calculated. It is obvious that
the dynamic vector proposed in this paper can compress
the data effectively.

Table 6 Compression results on MovieLens-1M and Jester

Data size (byte)

Data Set Type - - Compression ratio
Before compression After compression
. Compress by row 8757362 65.62%
MovieLens-1M 13552277
Compress by column 8851394 65.31%
Compress by row 28444192 49.10%
Jester 57926501
Compress by column 32436092 56.00%

Compression experiments is taken on two manually
generated data sets of different densities. The dimen-
sions of the generated data sets are 1000 x 1000 and
2000 x2000. The density ranges from 10% to 100% .
The relation between the matrix density and compres-
sion ratio is illustrated in Fig.4. When the density is
more than 50% , the compression ratio gets much bet-
ter/smaller. The more density a data set has, the bet-
ter compression ratio we would have.

80.00%

——1000x1000
75.00%
—&—2000%2000

70.00%

65.00% [

60.00%

Compression Ratio

55.00%

50.00%
10% | 20% | 30% | 40% | 50% | 60% [70% | 80% | 90% | 100%

|1000><1000 77.92%|77.75%)| 77.70%)| 77.67 %| 77.40%| 70.59%| 65.06 %| 60.96%| 57.76%)| 55.20%)
|2000><2000 76.11%|76.01%| 75.98%)| 75.97%| 74.38%)| 66.32%| 61.16%| 57.28%)| 54.28%] 51.87%)
Density

Fig.4 Relation between density and compression ratio

3.3.3 Impact of block size
In DVBMwB, as the block size

copy cost and 1/0 cost would decrease.

increases, the

However, the
block size can’t be too large because of the memory
limitation of a single computer. Experiments are taken
on MovieLens-1M and Jester data sets with different
block sizes. The results are shown in Table 7. As the
user number of MovieLens-1M and Jester are both big-
ger than the item number, the last two matrices are
multiplied first so as to get a better performance.

The time used for matrix compression is the same
for all block sizes. The differences only come from the
matrix multiplication procedure. When the block size is
small, it is the copy and 170 cost that lead to the rise
of completion time. As the block size gets larger, the
calculation speed would not increase all the time. It
would slow down or get even worse because of memory
shortage. So it is necessary to determine a proper block
size based on the servers and data sets under produc-
tion workloads.

HIGH TECHNOLOGY LETTERSIVol. 22 No. 3 |Sep. 2016

295

Table 7 DVBMwB of different block size on MovieLens-1M and Jester

1st step diffusion time (ms)

2nd step diffusion time (ms)

Block - - Intermediate - -
Data set . Matrix Matrix . . Matrix Matrix
size] T Total matrix density i T Total
compression multiplication compression multiplication
25 432754 441182 1001618 1031067
50 414728 423156 692229 721678
. 100 421707 430135 571111 600560
MovieLens-1M —— 8428 72.44% 29449
200 508809 517237 581201 610650
300 520983 529411 548143 577592
400 572889 581317 611157 607041
25 14222 36787 24233 35745
50 13225 35790 14215 25727
100 14232 36797 10223 21735
Jester EEee— 22565 100% 11512
200 14222 36787 9214 20726
300 15301 37866 10245 21757
400 15313 37878 10456 21968
3.3.4 Impact of the order of matrix LTI
. . . IRT . 900000 [O reversed order
In the previous sections, the matrix multiplication
. . . . 800000 m in order
is done in reversed order. In order to display the influ- Al |
ence of the order of matrix multiplication, the order of 2 600000 |
matrix multiplication on MovieLens-1M data set is TE; 500000 -
changed. The block size used here is 100. The time B 400000 F
used for matrix compression and matrix multiplication 300000 |
would both rise if we do the diffusion computation in 200000 |
order as shown in Fig. 5 and Fig. 6. Besides, the inter- 100000
mediate matrix density would also increase from 0 15t step 2nd step
72.44% to 95.8% according to the experiment. reversed order| 421707 571111
in order 628969 939683
90000 Matrix multiplication
80000 [D reversed order Fig.6 Matrix multiplication time on MovieLens-1M
70000 | D in order
z 60000 A novel dynamic vector based matrix multiplica-
75; Zgggg | tion algorithm is designed on the MapReduce frame-
B 0000 k work , which can improve the performance effectively.
20000 It can be also applied to other matrix multiplication
10000 | scenarios. Comprehensive experiments are conducted
0 - to verify the effectiveness of our method. The block
st step 2nd step K . o .
everiod oTder 3428 29449 size and the order of matrix multiplication both have in-
TAlorder 8435 78605 fluence on the time cost of diffusion computation.

Matrix compression

Fig.5 Matrix compression time on MovieLens-1M

4 Conclusion

In this study, a parallel version of a classic diffu-
sion algorithm is proposed on MapReduce framework.
The diffusion method is transformed to the cascade ma-
trix multiplication format so as to implement it in the

MapReduce computing model.

In the future, our matrix multiplication method
will be extended on the MapReduce framework to some
other graph-based circumstances. Besides, some large-
scale computation frameworks, like GraphLab''® will
be also studied.

References

[1] Bobadilla J, Ortega F, Hemando A, et al. Recommender
systems survey. Knowledge-Based Systems, 2013, 46
(1):109-132

[2] Linden G, Smith B, York J. Amazon. com recommenda-

tions: ltem-to-item collaborative filtering. Internet Com-

296

HIGH TECHNOLOGY LETTERSIVol. 22 No. 31Sep. 2016

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

puting, 2003, 7(1): 76-90

Bennett J, Lanning S. The netflix prize. In: Proceedings
of the 2007 KDD Cup and Workshop, California, USA,
2007. 35

Shi Y, Larson M, Hanjalic A. Collaborative filtering be-
yond the user-item matrix; A survey of the art and future
challenges. ACM Computing Surveys, 2014, 47(1): 3
Huang Z, Chen H, Zeng D. Applying associative retrieval
techniques to alleviate the sparsity problem in collabora-
tive filtering. ACM Transactions on Information Systems,
2004, 22(1) : 116-142

Zhou T, Ren J, Medo M, et al. Bipartite network projec-
tion and personal recommendation. Physical Review E,
2007, 76(4) : 70-80

Zhang Y C, Medo M, Ren J, et al. Recommendation
model based on opinion diffusion. FEurophysics Letters,
2007, 80(6) : 417429

Long G, Zhang G, Lu J, et al. Scaling-up item-based
collaborative filtering recommendation algorithm based on
Hadoop. In: Proceedings of the 2011 IEEE World Con-
gress on Services, Washington, USA, 2011. 490-497
Zhao 7. D, Shang M S. User-based collaborative-filtering
recommendation algorithms on Hadoop. In: Proceedings
of the Third International Conference on Knowledge Dis-
covery and Data Mining, Phuket, Thailand, 2010. 478-
481

Shvachko K, Kuang H, Radia S, et al. The hadoop dis-
tributed file system. In: Proceedings of the 26th Symposi-
um on Mass Storage Systems and Technologies, Incline
Village, USA, 2010. 1-10

Schelter S, Boden C, Markl V. Scalable similarity-based
neighborhood methods with mapreduce. In: Proceedings
of the 6th ACM Conference on Recommender Systems,
New York, USA, 2012. 163-170

[12] Dean J, Ghemawat S. MapReduce: simplified data pro-
cessing on large clusters. Communications of the ACM,
2008, 51(1) . 107-113

[13] LiL N, Li C P, Chen H, et al. MapReduce-based sim-
rank computation and its application in social recommen-
der system. In; Proceedings of the 2013 IEEE Interna-
tional Congress on Big Data, Santa Clara, USA, 2013.
133-140

[14] Zheng J H, Zhang L J, Zhu R, et al. Parallel matrix
multiplication algorithm based on vector linear combina-
tion using MapReduce. In: Proceedings of the IEEE 9th
World Congress on Services, Santa Clara, USA, 2013.
193-200

[15] Zhang Z K, Zhou T, Zhang Y. Personalized recommen-
dation via integrated diffusion on user-item-tag tripartite
graphs. Physica A Statistical Mechanics and Its Applica-
tions, 2010, 389(1) . 179-186

[16] Kyrola A, Blelloch G, Guestrin C. GraphChi; Large-
scale graph computation on just a PC. In: Proceedings of
the 10th USENIX Symposium onOperating Systems Design
and Implementation, California, USA, 2012. 3146

Peng Fei, born in 1988. He is currently pursuing
his Ph. D. degree in the National Network New Media
Engineering Research Center, Institute of Acoustics,
Chinese Academy of Sciences and the University of
Chinese Academy of Sciences. He received his B. S.
degree from the department of Electronics and Informa-
tion Engineering in the Huazhong University of Science
and Technology in 2010. His research interests include

new media technologies and recommender systems.

