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Abstract

To adapt to the complex and changeable market environment, the cell formation problems ( CF-

Ps) and the cell layout problems ( CLPs) with fuzzy demands were optimized simultaneously. First-

ly, CFPs and CLPs were described formally. To deal with the uncertainty fuzzy parameters brought,

a chance constraint was introduced. A mathematical model was established with an objective func-

tion of minimizing intra-cell and inter-cell material handling cost. As the chance constraint of this

problem could not be converted into its crisp equivalent, a hybrid simulated annealing( HSA) based

on fuzzy simulation was put forward. Finally, simulation experiments were conducted under different

confidence levels. Results indicated that the proposed hybrid algorithm was feasible and effective.

Key words: fuzzy demand, cell formation and cell layout problem, chance constraint, fuzzy

simulation, simulated annealing algorithm

0 Introduction

As one of the first applications of group technology
(GT) to factory reconfiguration and shop floor layout
design, cellular manufacturing systems ( CMSs) can
reduce material handling cost, set-up time, manufac-
turing lead time, tooling cost, work in process, lot si-
zes, throughput times, labor cost and production
equipment cost. Also CMSs can enhance manufacturing
capability, workers’ satisfactions and flexibility along

with a lot of other advantages'"’.

Cell formation ( CF) and cell layout (CL) (in-
cluding intra-cell machine layout and inter-cell layout)
are two basic and important steps in the design of
CMSs. Over the past decades, many researchers have
predominantly focused on solving CFPs, as it is the
first stage in CMSs. Many analytical methods have
been developed as a result of this massive movement.
Ref. [2] proposed a methodology to incorporate new
parts and machines into an existing cellular manufac-
turing system. Ref. [3] introduced a newly developed
bacteria foraging algorithm based on operation se-
quences to solve CFPs. Ref. [4] solved the CFPs and
minimized the number of voids and exceptional ele-
ments in a three dimensional machine-part-worker inci-
dence matrix. Ref. [5] established a p-median model
to find the optimal number of machine cells and associ-

ated part families considering real-world operation se-
quences and production volumes for parts.

Some researchers have also surveyed both CFPs
and CLPs. Ref.[6] developed a class algorithm that
identified not only cells but also sequence of machines
in the cells in a simultaneous fashion using sequence
data. But they did not regard inter-cell movements.
Ref. [7] and Ref. [ 8] proposed a two-phase approach
to tackle the CFPs and CLPs with consideration of in-
tra-cell and inter-cell part movements. In the first
phase, a mathematical model with multi-objective func-
tion was formed to obtain the machine cells and part
families. Afterwards, in the second phase, another
mathematical model with single-objective function was
presented. The output of its first phase was employed
to the second mathematical model. Actually, this re-
search covered the CFPs and CLPs, but not in an inte-
grated mathematical model.

In recent years, some researchers investigated the
CFPs or the CLPs in dynamic environment in adapta-
tion to real-world manufacturing systems. Ref. [9] es-
tablished a multi-objective mixed-integer nonlinear pro-
gramming model and used GAMS software to solve CF-
Ps and CLPs in dynamic environment with predefined
demands in different periods. However, this method
cannot solve CFPs with uncertain demands. Ref. [10]
presented a dynamic multi-objective mixed mathemati-
cal model for CLPs with probabilistic demand and ma-
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Refs[ 11,12] established

three types of fuzzy programming models to solve the

chine reliability analysis.

capacitated CLPs with fuzzy demands. The three mod-
els are the expected cost minimization model, fuzzy
minimization model and credibility maximization model
respectively. Ref. [13] adopted a hybrid GA with
fuzzy simulation to solve CLPs in uncertain environ-
ment. Although this hybrid algorithm could handle un-
certainty fuzzy demands brought, as GA has to set a
number of uncertain parameters and it has a slow con-
vergence speed, and fuzzy simulation need lots of time
when computing due to its statistics essence, this hy-
brid algorithm would lead to much more searching time
and alternative solutions.

Among the literatures mentioned above, most
studies, however, have only addressed CFPs and CLPs
sequentially or independently, and despite that these
two decisions are interrelated and impact each other. In
this paper, integrated CFPs and CLPs are considered
simultaneously with the assumption that demands of
parts are fuzzy numbers with different member func-
tions. To solve such a problem, an integrated model is
established based on chance constraints for the objec-
tive function and a hybrid simulated annealing ( HSA)

with fuzzy simulation is proposed.
1 Problem definition and formulation

1.1 Problem definition

Considering a cellular manufacturing system which
produces P kinds of products wih M different ma-
chines, the demand volume for parts is assumed as
fuzzy numbers with different member functions. Each
part type may have a number of processing routes. Ma-
chines are located in linear arrangement within cells,
while cells themselves are located in some predeter-
mined compulsory places in a plant. The problem is to
select a processing route for each product, determine
the location of each machine, and arrange cells into the
plant in a way that total material handling cost is mini-
mized.

The problem is also formulated under the following
assumptions: (1) the member functions followed by
product demands are known; (2) all machines have
same dimensions and are placed in the locations with
same dimensions. The distance between any two adja-
cent locations is the same and the maximum and mini-
mum of the cell size are known in advance; (3) pro-
cessing routes of parts are known and parts must be
processed based on operation sequence readily availa-
ble from the route sheet of parts; (4) penalties for for-
ward and backtracking movements in cells are differ-

ent, and that for inter-cell movements is the highest;
(5) consecutive operations of one part type are not al-
lowed to be processed on the same machine.

According to assumption (2), following Eq. (1)
and constraint (2) can be inferred.

Dmi’mj =D x|l m; —m;l (1)
L M
ML = Z 2 Wlmkip = MU <2)
I=1 m=1
where m; and m, are machine numbers, m,, m, = {1,
2, M}, D, , denotes the distance between any two

y
machines in Eq. (1). D is the distance between two
adjacent locations in cells. In constraint (2), W, is
a binary variable, which will be 1 if operation i of part
p is performed on machine m which is located in loca-
tion [ of cell k, otherwise it will be 0. M, and M, are
lower and upper bounds of locations in a cell.
According to above assumption (4), Eq. (3) ~

(5) can be derived.

P K
Cr = Z Wiiip X Winnisny, X A X G,
Py ey R e
(3)
P I K
CR = Z z Z W]mkip X Wl'm'k(i+|)p X B/)ik X C[)

11
11
=
11

(4)
P oI K
Cpy = Z 2 2 Wlmkip X Wz’m’k(i+1>p xC, xD,

(5)

In Eqs(3) ~(5), C,, C,and C, respectively re-
present total forward, backtracking and inter-cell mate-
rial handling cost while C;, C, and C,, represent for-
ward, backtracking and inter-cell unit cost of material
handling respectively. A, and B, are decision varia-
-1

operation i of part p is in front of machine m

bles, A, equals to if machine m; performing

ki+1p kip

.+ perform-
ing operation i + 1 of part p, otherwise A, is 0. B,
-1

i of part p is behind machine m

equals to [ if machine m, performing operation

ki+1p kip

.11 performing operation

i +1 of part p, otherwise B, is 0. [, is the location

kip
number of machine m, performing operation i of part p.

k and k&’ are cell numbers, k. k' = {1,2,--- K|
Eqs(6) and (7) are constraints for A ;, and B

pik
Apik - Bpik = lki+117 - lkip (6 )
Apilr X Bpik = 0 <7 )

Therefore, the objective function of minimizing in-
tra-cell and inter-cell material handing cost is as

Eq. (8).
minC’ = Z{PX(CF+CB+CEX) (8)

p=1
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1.2 Chance constraints for objective function
To handle the

brought, chance constraints for objective function are

uncertainty fuzzy parameters

adopted as Ref. [11] did. Chance constrained pro-
gramming is applied to solve the practical optimization
problems with the requirement that the chance con-
straints should hold with at least some given confidence
levels provided as an appropriate safety margin by the
decision-maker.

Constraint (9) ensures the credibility of the opti-
mal solution C° must not be less than confidence level
o. Constraint (10) shows how to calculate Cr

Cr=lxeX|C(&,&, &) <C| >=a
(9)
Cr = %(Pos(f >=71) +Nec(&>=71))

Nec(§é >=71) =1 —Pos(&€ <)

(10)
where Cr is the credibility measure, « is the predeter-
mined confidence level, £, is the demand fuzzy number
of product p. Pos and Nec denote the possibility and
necessity of a fuzzy event, r is a reference value.

2 Proposed algorithm

Certain models of integrated CFP and CLP have
been proved to be NP-hard problems in Ref. [14]. Tt
should be noted that considering fuzzy data amounts for
demand does increase complexity of the problem, and
may consequently make the exact optimization methods
become very difficult and sometimes impossible.
Therefore, in the next section, a novel simulated an-
nealing algorithm with fuzzy simulation is proposed to
solve the developed model.

2.1 Hierarchical scheme for coding

In this paper, a three-layer hierarchical scheme
for encoding is proposed. Table 1 shows a general ex-
ample of the chromosome for a problem with p parts and
M machines.

The first layer, whose length equals to the number
of parts, is associated with processing routes of parts.
Allele r, of each gene is a real number randomly gener-
ated from O to 1. Supposing there are R, processing
routes for part i, interval [0 1]is divided into R, parts
LA i s 1
R bi R, "’

i i
its (r + 1)th processing route.

on average. If then part ¢ will select

The second layer relating to the cell number which
the machine belongs to consists of M genes that are real
numbers randomly generated from O to 1. Supposing
there are C cells can be chosen, interval [0 1] will be

C, +1
C b

C.
averagely divided into C parts. If El <C, <

machine i will be selected into cell C; + 1.
The last layer, which also consists of M genes, is
related to the locations which the machines are as-

signed to. Allele [, of each gene is a real number ran-
domly generated from O to 1. Supposing machines m, ,

mi2 5"

©, m, are divided into the same cell according to

the rule of the second layer. [, ,I [, will be

""i] b 'ﬂ,iz b ot b n’LJ
sorted which are codes for corresponding machines m; ,

mg,, =+ m; from small to large. Based on the sort, ma-
chines are assigned to the locations.

The encoding rule is explained with a numerical
example. Suppose that a cellular manufacturing system
consists of 3 kinds of parts and 4 machines. The three
kind types of parts have 3, 4 and 3 processing routes
respectively. According to the code shown in Table 2,
the solution of CFP and CLP is as follows: the 3 parts
select its first, third and second processing routes re-
spectively. Machine 1 and machine 3 belong to loca-
tion 2 and location 1 of cell 1. Machine 2 and 4 belong
to location 1 and 2 of cell 2.

Table 1  General encoding rule
Processing routes: 7, r, r
Cells: le sz Cmm
Locations: L, L, N

Table 2 A numerical example of encoding

Processing routes: | 0.14 0.73 0.43

Cells: 0.48 0.66 0.25 0.98

Locations: 0.80 0.32 0.37 0.64

2.2 Simulated annealing algorithm based on fuzzy

simulation

One way of solving chance constrained program-
ming with fuzzy parameters is to convert the chance
constraints to their respective crisp equivalents. This
process is usually a hard work and only successful for
some special cases. As the mathematical model of this
paper cannot meet the requirements in Ref. [11] re-
viewed, a fuzzy simulation is proposed in this paper to
chance constraints referring to

solve the above

Ref. [15].

Fuzzy simulation technique is an applicable form
of the Monte-Carlo simulation. Considering constraint
(8), whenever we need to calculate the fitness values
of chromosomes in different iterations of the simulated
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annealing algorithm, the fuzzy simulation approach will
be employed. In the following parts, the steps of SA
based on fuzzy simulation technique in estimating the
optimal solution for integrated CFP and CLP are intro-
duced.

Step 1: Produce random variables ¥, , Y, ,---,
Y, ,p = {1,2,--+,P} on the condition that v, =
m,(Y,) =& Y, is the kth selected random variable
from fuzzy number £, ( demand volume of p), & is a
very small positive real number and g, is the member-
ship function of fuzzy number £, , N is the number of
the simulation process iterations.

Step 2: For each j there would be a complete set
of certain numbers, which are presented as Y, , showing
the amount of demand.

Y, = 1Y, 11 <p<P|

Step 3. Use SA to calculate the total cost by sub-
stituting Y, with &,.

¢, = C(x.Y,) (11)

Step 4 : Calculate the possibility of V, according to
Eq. (12)

Vi =min(V, , V, -, V) (12)

Step 5. Calculate the amount of Pos(C(x,Y;) <
C.),k=1{1,2,---,K}. according to Eq. (13)

Pos(C(x, Y,) < C,) =max{V,| C; < C,}

(13)

Step 6: Calculate the credibility Cr, of total cost
of kth fuzzy simulation according to Eq. (14) converted
from Eq. (10). k=1{1,2,---,K|

Cry = 5 (max V)1 6 < G} +min{1 =V, 6 < G,1)

(14)

Step 7: Repeat the 5th and 6th steps for N times

to calculate the respective credibility of total cost when
simulation is conducted for one time,then go to step 8.
Step 8. Calculate the optimal solution that meets

chance constraints (8) and (9) by
¢’ = min{C, | Cr, = af (15)

3 Experiments and analysis

To validate the model and evaluate the perform-
ance of proposed hybrid SA, two experiments are con-
ducted: (1) a medium-scale numerical example is
solved by proposed HSA under different confidence lev-
els. Besides, the influence of different confidence lev-
els on the experimental results is analyzed; (2) HGA
proposed by Ref. [ 12] are also used to solve the above
numerical example. The obtained results are compared
with those generated by proposed HSA.

3.1 Sensitivity analysis of the confidence levels

Considering a cellular manufacturing system with
8 different kinds of products, the number of machines
is 8 which should be located in discrete candidate loca-
tions of 2 cells. Table 3 shows the available processing
routes to process the products.

The amount of demand is uncertain and stated in
fuzzy numbers. It is considered triangular fuzzy num-
bers for P, , P,, Ps, P,, Pgand normal forp,, p,, ps.
Complementary data of demand is provided in Table 4.
Suppose C;, C, and C,, are 3, 5 and 7 respectively. D
is 1 and D, . is 2.

The proposed algorithm is coded in MATLAB
R2012a and solved in PC with 2.67GHz Intel Core
processor and 2GB of RAM. The SA parameters are set
as follows: initial temperature T,, = 15,000, final tem-
perature T, =100, rate of cooling « =0.98, length of
Markov L =24, stopping criteria also as 30 iterations
without any improvement. Iteration N of fuzzy simula-
tion is 1000. The numerical example above is solved
under different confidence levels. The best chromo-
some obtained is shown in Table 5. The convergence
curves of proposed HSA under o = 0.75 and @ = 0. 70
are shown in Fig. 1.

Table 3 Processing routes of parts

Processing routes

Products Number of operations

2 3
6 1-5-4-6-7-8 3-4-5-6-7-8 1-2-5-3-7-8
6 1-2-34-7-8 1-2-34-8-7 -
4 1-3-54-6 1-2-54-6 1-2-4-7-8
6 1-2-34-5-8 1-2-34-7-8 2-3-4-5-6-7
4 3-24-6 12-34 4-6-7-8
6 1-2-3-84-5-7 1-2-3-4-6-5-8 1-2-3-4-5-7-8
4 2-5-34 1-2-3-7 1-2-34
5 3-2-84-5 - -
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Table 4 Member functions followed by parts demands

Demand volume
T(1100,1200,1700)
T(200,240,280)
N(3000,100)
N(2000,100)
T(300,350,400)
N(5000,200)
T(2100,2300,2800)
T(1500,1700,3000)

Products

From the best chromosome shown in Table 5, re-
sult of CFP and CLP are obtained: the first 6 machines
are assigned into the 6th, 5th, 4th, 3rd, 2nd, and 1st

location of cell 1 respectively. Machine 5 and machine

6 are assigned into location 2 and location 1 of cell 2.
The 8 products select their 2nd, 1st, 1st, 3rd, 2nd,
3rd, 3rd and Ist processing routes respectively. The
optimal cost obtained by coding in MATLAB is
573646.

Effects of different confidence levels on optimal
solution are depicted in Fig.2. As seen from Fig.2,
the solution quality decreases with the increase of con-
fidence level. The results can be explained with the fact
that, when confidence level increases, solutions should
have a higher ability of handling uncertainty. Accord-
ing to Eq. (9), for any solution, the corresponding
overall fitness value computed by fuzzy simulation in-
creases, leading to higher cost of the optimal solution
acquired by proposed HSA.

Table 5 Corresponding chromosome of optimum solution

. Gene No.
1items
1 2 3 4 5 6 7 8
Processing routes 0.17 0.4 0.2 0.24 0.43 0.29 0.65 0.52
Cells 0.41 0.07 0.25 0.97 0.59 0.78 0.76 0.94
Locations 0.90 0.85 0.82 0.76 0.75 0.72 0.72 0.71
9'3_105 10 times by both of the two algorithms. Detailed com-
1 . @=0.75 puting results can be seen in Table 6. Comparative re-
£ 89 ——a=0.70 sults are depicted vividly in Fig.3 and Fig. 4.
ERERIS 10°
2 71\ 6.6
I 6'2: g 641
8 5.5 T g 6.2 1 =—4—HSA
5 2 6 A HGA
1 11 21 31 41 51 61 71 81 91 g
Number of iterations g 5.81
Fig.1 Convergence of optimal solution 561
5.4 T T T . 1

5.810°
=]
2 57
=
S
= 5.6
g —.—op]timal
a tion
8 55 solu
5.4 T T T T T 1

05 06 0.7 075 0.8 0.85
Confidence level

Fig.2 Sensitive analysis of confidence level

3.2 Comparison with HGA

In this section, hybrid genetic algorithm ( HGA)
proposed in Ref. [ 12] and HSA proposed in this paper
are used to solve the above numerical example. The
parameters of HGA are considered as: population size
40, crossover rate 0.8, mutation rate 0.2, stopping
criteria as 30 iterations without any improvement, or
producing 100 generations. In order to reduce devia-
tion fuzzy parameters brought, the problem is solved for

05 06 07 075 08 0.85
Confidence level

Fig.3 The best solution of HSA and HGA algorithm

in different confidence levels

HSA ' HGA

Fig.4 Computing time of HSA and HSA

N W A W
S © o <o

Computing time (s)
s

(=}

As seen in Fig.3 and Fig. 4, no matter from the
view of material handling cost or computing time, the
solution obtained by proposed HSA in this paper is bet-
ter than that obtained by HGA. These results can be
explained with computing process of HGA. In the fuzzy
simulation part of HGA , the fitness value of one solu-
tion is calculated with demands randomly generated for
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many times according to statistical principle. It may be
exactly the calculation method that has a negative influ-
ence for retaining excellent genes of GA. This is why
the cost of the optimal solution obtained by HGA is
higher than that obtained by HSA. From Fig. 4, as the

convergence speed of GA is slower than SA, and when
calculating fitness value of one solution, every time
fuzzy simulation is used, GA should be used first as
depicted in algorithm steps of Section 2.2. That is the
reason that HSA would consume more time.

Table 6 The best solution of last instance within different confidence level

Confidence levels

algorithm
0.5 0.6 0.7 0.75 0.8 0.85

Best solution 548870 564543 569505 573646 574537 575610

HSA Worst solution 552318 567842 571854 574822 575519 583681
Average 550594 566192 570679 574234 575028 579645

Run time (min) 32.53 33.19 33.94 34.63 33.51 34.17

Best solution 582635 600839 629741 636304 643110 650241
HOA Worst solution 580892 602328 630493 639524 643263 7651189
Average 581324 602320 630590 638830 643172 650908

Run time (min) 45.61 46.28 48.23 45.24 46.92 42.56

4 Conclusions

In order to solve CFPs and CLPs with fuzzy de-
mands, HSA is proposed based on fuzzy simulation after
chance constraints for the objective function is intro-
duced to handle the uncertainty fuzzy parameters
brought. The results of numerical examples demon-
strates that the HSA could find good solutions in a rea-
sonable time, showing its good adaptation. Compared
with other algorithms for solving chance constraint pro-
gramming, the proposed HSA could find better solutions
in shorter time. Therefore, the proposed HSA based on
fuzzy simulation is feasible and effective. In the future,
CFPs and CLPs with resource assignment problems in

the fuzzy environment could be further discussed.
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