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Abstract

In order to improve the efficiency of learning the triangular membership functions ( TMFs) for
mining fuzzy association rule (FAR) in dynamic database, a single-pass fuzzy ¢ means ( SPFCM)
algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The
cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC
is generated randomly according to the cluster center and constraint conditions among TMFs. Then a
new population for incremental learning is composed of the excellent chromosomes stored in the first
genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The
experiments on real datasets show that the number of generations converging to the solution of the
proposed approach is less than that of the existing batch learning approach. The quality of TMFs
generated by the approach is comparable to that of the batch learning approach. Compared with the
existing incremental learning strategy, the proposed approach is superior in terms of the quality of

TMFs and time cost.

Key words: incremental learning, triangular membership function (TMFs) , fuzzy association

rule (FAR) , real-coded CHC

0 Introduction

Many studies have proposed the method of mining
fuzzy association rules (FAR) from quantitative data to

. The result of mining

avoid unnatural boundaries
FAR is strongly influenced by the quantitative attrib-
ute’ s membership function. The problem of learning
membership function is one of the most critical prepro-
cessing steps. Much research work has been done to
this problem. These approaches can be classified into
two categories. The first is based on clustering meth-
od"**. In Ref. [4], the method based on CLARANS
clustering algorithm was proposed to find fuzzy set for
mining fuzzy association rule. The membership func-
tions of quantitative attribute were generated according
to centroids of clusters. Ref. [2] presented a more ef-
ficient approach based on CURE cluster algorithm.
Their method used less centroids than the approach de-
scribed in Ref. [4]. Ref. [3] proposed an efficient al-
gorithm for mining FAR in high-dimensional datasets.
They used fuzzy c-means (FCM) clustering to create
fuzzy partitions for numerical attribute.

The second category employs evolutionary algo-

rithms, particularly genetic algorithms ( GAs )",

Ref. [5] presented a GAs-based clustering method to
derive membership functions. In this method, cen-
troids of clusters which were regarded as the midpoint
of TMFs were adjusted by GAs. The optimization ob-
jective was to maximize the number of large fuzzy fre-
quent itemsets. Ref. [6] proposed a GA-based frame-
work to learn membership functions. The value of fit-
ness function was calculated by the number of frequent
1-itemsets and suitability of membership functions. The
suitability measure was used to guarantee a good shape
of membership functions. In order to reduce the time
cost of calculating frequent 1-itemsets, Ref. [7] used
k-means clustering algorithm to divide the chromosomes
in a population into k clusters. The number of frequent
1-itemsets derived from the representative chromosome
in a cluster was regarded as the number of frequent 1-
itemsets resulting from each chromosome in the cluster.
In Ref. [ 8], the fitness of the chromosome was evalua-
ted by the fuzzy-supports of frequent 1-itemsets and the
suitability of derived membership functions, which
made them adopt the divide-and-conquer strategy to
derive membership functions for different quantitative
attributes. Ref. [9] also proposed the multi-level ant
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colony framework to learn suitable membership func-
tions for mining FAR. In this method, membership
functions were encoded as a binary bits string. The fit-
ness function was the same as the function used in
Refs[ 6,7 ]. Multi-level processing was used to solve
the problem in which the maximum quantities of item
values in the transactions may be large. Ref.[10]
presented an approach for genetic learning of member-
ship functions based on the 2-tuples linguistic repre-
sentation model and CHC genetic algorithm. The ad-
vantage of this method lied in the fact that the search
space is reduced with respect to the classic tuning'**'.
Recently, Ref. [11] proposed a method for genetic
learning of the membership functions from imprecise
data, which was based on the 3-tuples linguistic repre-
sentation model to reduce the search space and to learn
the adequate context for fuzzy linguistic terms.

All of the above approaches are executed in a
batch way. In a dynamic database where the new nu-
meric values are inserted into the original dataset,
these algorithms need to be executed from scratch.
This is a huge computational workload. Ref. [12] pro-
posed an approach for incremental generating member-
ship function. The approach was based on the CLUS-
TERDB” cluster algorithm. Each cluster was represen-
ted by a trapezoidal function. When a new data object
was inserted into the original dataset, the approach first
determined the cluster for the new data object accord-
ing to the clustering property of coherent partition. In
the second step, the parameters of trapezoidal function
which represented the cluster including the new data
object were updated correspondingly. If the new data
object can’ t be absorbed by any cluster, CLUSTER-
DB " algorithm must be re-applied to the whole data-
set. As far as we know, the research on incremental
learning membership functions for mining FAR is very
rare.

Inspired by Ref. [13] and Ref. [14], a new ap-
proach to incrementally learn the TMFs for mining FAR
is presented, which consists of the following two steps;

(1) First, the values of quantitative attribute in
the origin database are clustered by SPFCM'"'. The
TMFs are encoded as three real-number schema and

51 In order to

are learned by the CHC genetic model'
enhance the quality of TMFs, the cluster centers resul-
ting from SPFCM are regarded as the midpoint of
TMFs. The other two endpoints of TMFs are generated
sequentially according to its rational value range. In
every generation of CHC, the chromosome with the
best fitness value will be stored.

(2) When the new numeric values are inserted

into the original dataset, the cluster’ s centers are ad-

justed by SPFCM. The new initial population consists
of two parts. One part is randomly generated by the ad-
justed center as the first step. The other part is extrac-
ted from the excellent chromosomes maintained in the
first step. In this genetic process, only new inserted
numeric values are used to calculate the fitness value of
the chromosomes. The chromosome with the best fit-
ness value in the new population will be output as the
membership functions of updated quantitative attribute.

In order to assess the performance of the proposed
approach, an experimental study using a public data-
base, FAM95 is presented. First, the performance of
our approach is compared with other batch learning
methods in terms of the number of generation conver-
ging to a solution and the quality of TMFs. These batch
learning methods include the batch CHC model pro-
posed by Ref. [10] and the batch FCM-CHC model
whose principle is the same as the approach proposed
by Ref. [5]. Second, the proposed approach is com-
pared with CLUSTERDB* based incremental learning
approach. Finally, the influence of the number of new
inserted numeric value on the proposed incremental ge-
netic learning process is analyzed.

1 The SPFCM algorithm and the CHC ge-
netic components to incrementally learn
the membership functions

In this paper, the SPFCM algorithm and the CHC
genetic model are used to design the proposed method.
The CHC genetic algorithm is an advanced evolutionary
algorithm which has a good trade-off between explora-
tion and exploitation. It makes use of an incest preven-
tion mechanism and a restarting process to provoke di-
versity in the population. Ref.[10] verified that the
CHC genetic model was superior to usual genetic algo-
rithm in learning membership functions for mining
FAR. The SPFCM algorithm can produce data parti-
tions in a single pass through the dataset, which is
used to reduce the search space of the CHC genetic
model and enhance the quality of the TMFs. The de-
tails of the SPFCM algorithm and the components de-
signed in the CHC genetic model are described as fol-
lows.

1.1 SPFCM algorithm

SPFCM 1is an incremental clustering method de-
signed based on FCM. It processes the data chunk by
chunk. For each chunk, a set of weighted centroids
are calculated to represent the chunk with one centroid
per cluster. The weight for the centroid of each cluster
in each chunk is calculated as follows:
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ny+q
w6=2(uci)'wi,l$c$k (1)
=1
In Eq. (1), w, is the weight of centroid of the cth

cluster, n, is the number of data objects in the pth

chunk, % Iis the number of clusters, u, is the member-
ship of data object i belonging to cluster ¢, and w; is
the weight of data object i. For the first chunk of the
data object (p=1), w, is assigned to 1 for every data
object and ¢ = 0. From the second chunk of data (p
#1), g =k and the k-weighted centroids are combined
with the pth chunk of data. There union constitutes
dataset X. The n, + k data objects in X will be clus-
tered by weighted FCM (wFCM) in which the weights
of the n, objects in pth chunk are all set to 1 and the
weights of k£ centroids are calculated from previous
chunk according to Eq. (1).

The wFCM modifies the objective function of FCM
to take the effect of the weighted points into considera-
tion. The iterative clustering principle of wFCM is the
same as that of FCM. The cluster centroids and mem-
bership matrix for the wFCM are calculated as follows ;

n,+k
~ zli] wj . (uij>m . xj
- n,+k

z;il w; + (uy)"

JI<isk xeX
(2)

- |
l<i<k, 1<j<n +k (3)

In Eqs(2) and (3), m is a fuzziness coefficient.

1.2 Chromosome representation and initial popu-

lation

The triangular membership functions (TMFs) are
used in the proposed approach. It is used most widely
in the fuzzy system. Each set of TMFs of a quantitative
attribute is encoded as a chromosome and handled as
an individual with real-number string. The membership
functions for a quantitative attribute y having £ fuzzy
sets are shown in Fig. 1, where R, (1 <i<k) denotes
the membership function of the ith linguistic term for
y, L and R indicate the parameters of fuzzy region R,
and R, respectively, C; indicates the parameter of fuzzy
region R, (i =2, 3, -, k—-1;j=1,2,3), y"" and
y"™™ indicate the minimum and maximum value of quan-
titative attribute y. A chromosome representing the
membership functions for y is encoded in the following
form:

L,Cy,Cy,Cp5,05,05,Ch,+ R

Except for the left and right side of the member-
ship functions R, and R,, three integer numbers are
used to represent the R, (2<i<k -1). Each gene val-

n max

ue in the chromosome must lie between y™" and y

The inequality conditions of the value of the parameter

C,(i=2,3,k=1;j=1,2,3) are C; <C,<C;,
and yﬂlln < sz < C32 < e < C(IC_1>2 < yﬂlaX
1
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Fig.1 An example of membership functions for

quantitative attribute y

The initial set of chromosomes in an evolving pop-
ulation is randomly generated according to constraints
mentioned above. To illustrate the procedure of initial-
izing genetic population, it is assumed that the number
of the membership function for quantitative attribute y
is 4. So the length of every chromosome is 8. The size
of evolving population is denoted as N, . Then a two
dimension array a[Npop][S] is used to represent the
evolving population for generating high quality member-
ship functions. The pseudo-code of the procedure of
initializing evolving population in this study is de-
scribed as follows.

(1) Run the SPFCM clustering algorithm on the
attribute values of quantitative attribute y, the cluste-
ring number is set as 4, produce the cluster center C =
[C(1), C(2), C(3), C(4)}.

(2) Fori =1to N,

ali][3]=C(2); //ali][3] corresponds to
C,, in the chromosome.

ali][6]=C(3); //ali][6] corresponds to
C, in the chromosome.

ali][2] =randint (y™",C(2)), which means
randomly generating integer number between y™" and C
(2). // a[i][2] corresponds to C,, in the chromo-
some. The meaning of following randint is the same as
that of here.

ali][7] =randint (C(3), y"); // a[i][7]
corresponds to Cy; in the chromosome.

ali][4] =randint (C(2), ali][7]); // a
[i][4] corresponds to C,; in the chromosome.

ali][1] =randint (y"™",a[i][4]); //ali]
[1] corresponds to L in the chromosome.

ali][5] =randint (a[i][2], C(3)); // a
[i][5] corresponds to C,; in the chromosome.

a[i][8] =randint (a[Z][5], y™); // ali]
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[8] corresponds to R in the chromosome.

End for

It must be pointed out that the principle of initial-
izing evolving population is the same as the procedure
mentioned above when the number of quantitative at-
tribute’ s fuzzy set is not 4.

1.3 Chromosome evaluation

In this study, the fitness function defined in
Ref. [ 8] is used to evaluate a chromosome. The fitness
value of chromosome C, is defined as

z | Juzzy support(x)
xXe 1

4
suitability (C,) (4)
Where L, is the set of fuzzy frequent 1-itemsets ob-

fitness(C,) =

tained by using the membership functions which are re-
presented by the chromosome C , fuzzy _ support (x)
is the fuzzy support of fuzzy frequent 1-itemset x for the
given transaction database, and suitability (C,) repre-
sents the shape suitability of the membership functions.
The suitability of the set of membership functions in the
chromosome C, is defined as
suitability(C,) = overlap _ factor(C,)

+ coverage _ factor(C,) (5)
where overlap _ factor (C ,) and coverage _ factor (C .)
represent the overlap factor and the coverage factor of
the membership functions represented by C, respective-
ly.

The overlap factor of the membership functions in
C, is defined as
overlap _ factor(C,) =
S [max( 'overlap(Ri, R._.\) 1)_ 1]
= min(C; - C,, C, = C,)’

(6)
where overlap(R;, R;_;.,) is the overlap length of ad-

jacent membership function R; and R;, k is the number
of membership function for quantitative attribute y. Ac-
cording to the encoding style, if i =1, then C; =L
and C, =y™. If j=k, then C,=y""and C; =R.

The coverage factor of the membership function in
the chromosome C, is defined as

max (y)
range(R,,---,R,) (7

where max(y) is the maximum quantity of quantitative

coverage _ factor(C,) =

attribute y, range (R,,-:+,R,) is the coverage range of

the membership functions.

1.4 Crossover operator

The Parent Centric BLX operator ( PCBLX) 160 s
used, which allows the offspring genes to be around the
genes of one parent or around a wide zone determined

by both parent genes. The PCBLX operator is de-
scribed as follows. Assume that X = (x,,--,x,) and Y
=,y (4, yiela, B]JCR, i=1,--,n)
are two real-coded chromosomes going to be crossed.
The two following offsprings are generated ;

(1) P=(p,, ,p,) , where p. is a uniformly dis-
tributed random number from the interval [, u],
with I} = max(a, », =1, * ), ul = min(b, x, +1, -
a),and I, =1 x, —y, |.

(2) 0 =(q,,

distributed random number from the interval [ [, u} ],

,q,), where g, is a uniformly

with 2 = max(a, y, =1, »a), u. = min(b, y, + 1, -
a). (In this paper, « = 0.5).

The new generated offspring chromosome may not
meet the inequality condition described in subsection
1.2. So the gene value of the new chromosome must be
sorted. Assume that the number of membership func-
tion is 4. The new generated chromosome is denoted as
a[i][1:8]. The pseudo-code of the procedure of sor-
ting the chromosome is described as follows.

ali][2:4] =sort (a[i][2:4]); //sort the
gene value of a[i][2], a[i][3] and a[i][4]in as-
cending order;

ali][5:7] =sort (a[i][5:7]); //sort the
gene value of a[i][5], a[i][6] and a[i][7]in as-
cending order;

While (al[i][3] >ali][6])

swap (ali][3], al[i][6]); //swapping
the gene value of a[i][3] and a[i][6].
ali][2:4] =sort (a[i][2:4]);
ali][5:7] =sort (al7][5:7]);

end

1.5 Restart approach

The CHC genetic model makes use of an incest
prevention mechanism and a restarting process to pro-
voke diversity in the population. During the reproduc-
tion step, two parents are crossed if their Hamming
distance divided by 2 is over predefined threshold M.
In order to calculate the Hamming distance of the two
chromosomes, each gene value is transformed into a bi-
nary string. The length of each binary string is denoted
as Bitlengene, which is the number of bit corresponding
to the maximum value of the quantitative attribute y.
The number of genes in the chromosome is denoted as
Num,,.. The threshold value M is defined as

M = (Num,,, - Bitlengene)/4 (8)

If no offspring is obtained in one generation of
CHC scheme, the threshold value M will be decremen-

ted by a 10% of its initial value in the approach.

genes

When M is below zero, the restart procedure is per-
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formed. The evolving population is reinitialized by con-
sidering the best individual as the first chromosome of
the new population and generating the remaining N,
1 by randomly flipping 35% of their bits. When the
new individual generated by the restart procedure does
not meet the inequality constraint condition, it must
execute the sorting procedure described in subsection

1.4.

2 The proposed incremental learning algo-
rithm

The proposed learning approach consists of two
phases. In phase 1, the best chromosomes during the
execution of the CHC algorithm on the original dataset
are collected. In phase 2, the incremental CHC algo-
rithm on the new inserted dataset is executed. The ini-
tial population is composed of the chromosomes saved
in phase 1 and the randomly generated chromosomes.
The detailed steps of our approach are described be-
low.

Input: y = {y,, y,,
for quantitative attribute y, new inserted dataset

{yn+] s Yus2s ™"
function k, fuzzy support threshold 8, and population

, v, | the original dataset
s ¥uem| , the number of membership

size N,

Output ; the best chromosome which represents the
membership functions on the updated dataset {y,, -,
Yuris 70 yn+m}

Phase 1; genetic learning of the membership func-
tions on {y,, y,, =+, ¥, 1|

Step 1.1: Run the SPFCM clustering algorithm on
{¥1s ¥2s =+, ¥, , the number of cluster is &, gener-
ate N, chromosomes according to the principle de-
scribed in subsection 1. 2.

Step 1. 2; Evaluate the population. For each
chromosome C, :

1.2.1

transferred into a fuzzy set f, represented as f; =

{f” + oo ¥ Jl} using the membership functions repre-

R, R,

sented by the chromosome C

Each quantitative value y, (1 <i<n) is

,» Where R, is the kth lin-
guistic term of y, f is the fuzzy membership value in
region R,.

1.2.2  For each linguistic term R, (1<j<k),

calculate its count as follows: count; = ;.ﬁ‘j’ check

whether count; is larger than or equal to 8+ n. If R;(1
<j<k) satisfies the condition, put it in the set of
fuzzy frequent 1-itemsets L.

1.2.3 Calculate the fitness value of chromosome

C, using the fitness function described in subsection
1.3.
Step 1.3 Generate the next population Pop ., :
1.3.1

mosomes two by two, crossover operator described in

Shuffle the population, select the chro-

subsection 1.4 is executed if the Hamming distance be-
tween the selected chromosomes divided by 2 is over
threshold value M.

1.3.2 Evaluate the generated offspring, join the
parents with their offspring and select the best N,
chromosomes as the next population Pop,,,

Step 1.4 If the fitness value of the chromosome
C
larger than all the fitness value of chromosome in feasi-

ble chromosome list (FCL), C is added to FCL.

(The initial number of chromosome in FCL is 0. )

which has the highest fitness value in Pop,, is

feasible

feasible

Step 1.5 If there are no new generated offspring
in Step 1. 3.1, the threshold value M is decremented
by 10% of its initial value.

Step 1.6 If M <0, restart procedure described in
subsection 1.5 is executed.

Step 1.7 If the maximum number of iteration is
not reached, go to Step 1.3.

Phase 2.

functions on %yl TN PRSP R

incremental learning of membership

> ynﬁ»m%
Step 2. 1: Generate the new initial population

Pn(‘f\V:

2.1.1: Run the SPFCM clustering algorithm on
{ Y uts Yuazs s ¥Yuum| and derive the new cluster
center.

2.1.2. The number of chromosome in FCL is de-
noted as Nyg . If Ny <N
are added to P, .

— Ny, chromosomes according to the principle de-

wp” 2, all the chromosomes

After that, randomly generate N,

scribed in subsection 1. 2.
2.1.3 1f Ny = N, /2, select the best N, /2
chromosomes from FCL and add them to P

Ran-
domly generate N, /2 chromosomes according to the

new *

pop
principle described in subsection 1. 2.

Step 2. 2: Evaluate the new initial population
Pne\\"

to the method described in step 1.2. But only the new

Calculate the fitness value of C, in P according

new

inserted dataset {yn+l s Yne2s ™' yn+m} is llSCd. EaCh

quantitative value y,,,;(1<i<<m) is transferred into a

fuzzy set f; represented as f; = {JI;‘—I 4o 4 ]];”—"} accord-
1 k

ing to corresponding chromosome, and the count of the
linguistic term R;(1<j<k), is calculated as follows:

count; = Z Sy
Step 2. 3. Execute the CHC genetic process de-
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scribed in Step 1.3, Step 1.5 to Step 1.7.
Step 2.4 Output the best chromosome in the final

generation.
3 Experimental results

A real dataset called FAM95 (hitp://www. ics.
uci. edu/ ~ mlearn/) is used to assess the performance
of the proposed incremental learning approach. There
are 63,756 transactions in the dataset. Of the 23 at-
tributes in the dataset, 3 quantitative attributes are
chosen. They are age, head’ s personal income and
family income. The experiments are performed on a
computer with 3. 1GHz processor and 4GB main memo-
ry and running the Microsoft Windows 7 operating sys-
tem. The proposed incremental learning approach and

the relevant algorithm are all implemented by Matlab
7.0.

3.1 Comparison of the proposed approach with
the related batch approach

In the experiment, the proposed approach is com-
pared with the batch CHC model proposed by
Ref. [ 10] and the batch FCM-CHC model whose prin-
ciple is the same as the approach proposed by
Ref. [5]. The proposed incremental approach, the
batch CHC model and the batch FCM-CHC model is
abbreviated to Inc-CHC, B-CHC and B-FCM-CHC re-
spectively. In B-FCM-CHC, FCM algorithm is used to
cluster the quantitative values and CHC genetic proce-
dure is used to adjust the cluster center which is regar-
ded as the midpoint of the TMFs. For the convenience
of comparison, the coding method and the genetic op-
erator of the B-CHC and the B-FCM-CHC are the same
as the Inc-CHC. In the Inc-CHC, the first 33, 756
quantitative values are extracted from FAMO95 dataset
as original database. The rest of 30,000 quantitative
values are inserted into the original database for the ex-
periment. The other two approaches are executed on
the 63,756 quantitative values directly. The parameter
values of each CHC model are described as follows;
the number of membership function for the quantitative
attribute 4, the size of evolving population 50, the
maximum iteration number 500, and the fuzzy support
threshold value 0. 1.

The three approaches are compared in terms of the
number of generations converging to a solution and the
quality of the solutions. Every approach is executed six
times. The following experiment results are the average
of six outcomes of the experiments. Figs 2 —4 shows
the average fitness values of the chromosomes in the

population along with different number of generation of
the Inc-CHC, B-CHC, and B-FCM-CHC for the quan-
titative attribute age, head’ s personal income and fam-
ily income respectively. The variation trend for the Inc-
CHC in Figs 2 — 4 represents genetic process of Phase
2 described in Section 3. Table 1 presents the number
of generations converging to a solution and the maxi-
mum fitness value obtained by the three CHC model.
Analyzing these experiment results, the following con-
clusions can be got; (1) For the quantitative age and
family income, the maximum fitness value obtained by
the B-FCM-CHC is higher than the value obtained by
the B-CHC. The converging speed of the B-FCM-CHC
is slightly faster than that of the B-CHC. So FCM algo-
rithm plays an important role in the genetic process of
learning the TMFs and it contributes to obtain high
quality membership functions and decrease the size of
the tuning search space. However, for the head’ s per-
sonal income, the difference between B-CHC and B-
FCM-CHC is not very obvious. This is because that the
midpoints of TMFs generated by the B-CHC and B-
FCM-CHC are very close to the center generated by the
FCM algorithm. (2) The Inc-CHC is superior to the
B-CHC and the B-FCM-CHC in term of the number of
generations converging to a solution. The maximum fit-
ness value of the Inc-CHC is higher than that of B-
CHC and is comparable to that of B-FCM-CHC even if
the number of the converging generation is significantly
less. The proposed incremental learning strategy is ef-
fective.

1.6 T T

Average fitness values

—©e—BCHC
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Number of generation

Fig.2 The average fitness values along with numbers

of generation for age
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Table 1  Number of converging generations and the maximum fitness value obtained by the three CHC model
Age Head’ s person income Family income
Method Number of Max fitness Number of Max fitness Number of Max fitness
generations value generations value generations value
B-CHC 274.5 1.46 233.75 1.46 234.25 1.45
B-FCM-CHC 248 1.51 228.5 1.47 200.75 1.51
Inc-CHC 1 1.51 26.5 1.47 77.5 1.49

3.2 Comparison of Inc-CHC with the incremental
approach based on CLUSTERDB *

The proposed approach Inc-CHC is compared with
the incremental learning membership function approach
based on CLUSTERDB ™ in Ref. [12]. It is abbrevia-
ted to Inc-CLUSTERDB™.

quantitative attribute values of head’ s personal income

In the experiment, the

and family income are used. As before, the first 33,
756 quantitative values are regarded as original data-
set. The rest of 30,000 quantitative values are inserted
into the original dataset. The triangular membership
functions (TMFs) is used in Inc-CLUSTERDB *. The
parameter values of Inc-CHC are the same as the val-
ues determined in subsection 3. 1. So the cluster num-

ber is set as 4 in Inc-CLUSTERDB *.

the third cluster center, the minimum and the maxi-

The second and

mum quantitative attribute value are used as parameters
value of TMFs. The fitness function defined in subsec-
tion 1.3 is used to assess the quality of TMFs generated
by two methods. Table 2 shows the experiment results
which include fitness values and time cost of the two
methods. Then it is easy to draw the conclusions;

(1) The quality of TMFs generated by Inc-CHC is
better than that of Inc-CLUSTERDB . This is because
that Inc-CHC can dynamically adjust and optimize
TMFs by CHC genetic process. Inc-CLUSTERDB”
generates TMFs just according to data distribution of
quantitative values.

Table 2 The comparison of Inc-CHC with Inc-CLUSTERDB *

Head’ s person income

Family income

Method Fitness Time cost Fitness Time cost
value (s) value (s)
Inc-CLUSTERDB * 0.78 32.09 1.17 38.3
Inc-CHC 1.47 18.96 1.49 20.61
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(2) Time cost of Inc-CHC is less than that of the
Inc-CLUSTERDB “. In order to obtain consistent parti-
tion, CLUSTERDB® algorithm must be re-applied to
the whole dataset many times when the new inserted
value is not between lower and upper bound of a cluster
in Inc-CLUSTERDB . So the higher time cost is re-
quired by Inc-CLUSTERDB " .

3.3 The effect of the number of the inserted quan-
titative values on the proposed approach
In this experiment, the effect of the number of the
inserted quantitative values on the Inc-CHC is ana-
lyzed. The first 33,756 quantitative values are extrac-
ted from FAMO95 dataset as original dataset. The insert-
ed dataset is generated by sequentially selecting 7500,

15000, 22500 quantitative values from the remainder
dataset respectively. The rest parameters values of the
Inc-CHC are the same as that of the experiment de-
scribed in subsection 4. 1. Every experiment is also ex-
ecuted six times repeatedly. Average results of the ex-
periments are presented in Tables 3 —5. Tables 3 -5
show the maximum fitness value obtained by the Inc-
CHC and the number of iterative evaluation converging
to a solution with different number of the inserted quan-
titative values for the three quantitative attribute re-
spectively. It also shows the experiment results of B-
FCM-CHC which executes on the 41256 ( 33756 +
7500), 48756 (33756 + 15000), 56256 (33756 +
22500) selected quantitative values directly for the
three quantitative attributes respectively.

Table 3 The comparison of B-FCM-CHC and Inc-CHC with different

number of inserted values for age

Maximum fitness value Number of converging generation

Method

7500 15000 22500 7500 15000 22500
Inc-CHC 1.5 1.5 1.5 1 1 1
B-FCM-CHC 1.52 1.52 1.52 266.5 241 272
Table 4 The comparison of B-FCM-CHC and Inc-CHC with different number of
inserted values for Head’ s person income
Method Maximum fitness value Number of converging generation
7500 15000 22500 7500 15000 22500
Ine-CHC 1.46 1.47 1.47 1 174 1
B-FCM-CHC 1.47 1.47 1.47 258.5 332 279.5
Table 5 The comparison of B-FCM-CHC and Inc-CHC with different number of
inserted values for Family income
Method Maximum fitness value Number of converging generation
7500 15000 22500 7500 15000 22500
Inc-CHC 1.41 1.5 168 99.75 188.75
B-FCM-CHC 1.46 1.47 188 278 248

From these experiment results, it can be easily
observed to the following phenomenon;

(1) For each quantitative attribute, in the case of
different number of inserted quantitative values, the
maximum fitness values of the Inc-CHC are comparable
to that of the B-FCM-CHC. But the number of the gen-
eration converging to a solution is less than that of the
B-FCM-CHC.

(2) The number of iterative evaluation converging
to the maximum fitness value is very different when dif-
ferent number of inserted quantitative values is used for
the quantitative attribute head’ s personal income and
family income. However, for the attribute age, it just
needs one generation to converge to the solution for all

the different number of inserted values.

The main reason is analyzed as follows. When the
distribution of new inserted quantitative values is the
same as that of the original dataset, the chromosomes
saved in the Phase 1 of the Inc-CHC are useful for the
incrementally learning the membership functions. So a
few number of generations converging to the solution is
required by the Inc-CHC. Otherwise, when the distri-
bution of the new inserted quantitative vales is very dif-
ferent from that of the original dataset, the optimal so-
lution is shifted too much in the search space. A lot of
number of generations converging to a solution is re-
quired. So it is concluded that the Inc-CHC is not sen-
sitive to the number of the inserted values in terms of
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learning the high quality of membership functions.
However, the number of the inserted quantitative val-
ues is very crucial factor in order to decrease the num-
ber of iterative generations.

4 Conclusions

In this paper, an incremental approach of learning
the TMFs for mining fuzzy association rule is proposed.
In the process of genetic learning of TMFs, cluster cen-
ters resulting from single-pass fuzzy ¢ means (SPFCM)
algorithm give the CHC genetic model heuristic infor-
mation, which contributes to enhance the quality of
TMFs. Compared with the existing incremental ap-
proach, the proposed method is superior in terms of the
quality of the generated TMFs and the time cost. The
number of iterative generations converging to a solution
of our approach is less than that of the batch learning
approach. The number of the inserted quantitative val-
ues is a crucial factor in terms of decreasing the num-
ber of iterative converging generations. In future, how
to determine the appropriate number of inserted numer-
ic values will be studied for the proposed approach.
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