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Abstract

Airborne light detection and ranging ( LIDAR) has revolutionized conventional methods for dig-
ital terrain models ( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps
taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN ( triangu-
lated irregular network ) densification (SPTD) filter that can automatically separate ground points
from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation
and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of
seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classi-
fied iteratively. Finally, the datasets provided by ISPRS are utilized to test the filtering performance.
In comparison with the commercial software TerraSolid, the experimental results show that the SPTD
method in this paper can avoid single threshold restrictions. The expected accuracy of ground point

determination is capable of producing reliable DTMs in the discontinuous areas.
Key words: airborne light detection and ranging (LIDAR) , point cloud, ground filtering, tri-

angulated irregular network (TIN) , digital terrain models ( DTMs)

0 Introduction

Airborne light detection and ranging ( LIDAR)
technology makes it possible to acquire the Earth’ s 3D
surface information more directly and conveniently.
Compared with photogrammetric systems and field sur-
veys, a LIDAR system provides an accurate and fast
alternation for obtaining information over large areas at
high resolution and is more and more popular in gener-
ating digital terrain models ( DTMs)'"'. So far, the
applications of airborne LIDAR mainly include 3D re-

construction of a digital city'?’, building reconstruc-
[3]

(5]

t. 1 . . [4] 1 ,
lon~"" , coastline monitoring -, power line reconstruc-

tion'’!, forest inventorying'® , and so on. Among
them, the extraction of accurate ground points, that is,
ground filtering, is a key step of this process for the
generation of the DTM. Airborne LIDAR technology is
now used to produce regional and national DEM prod-
ucts in USA and European countries'”’.

So far, many ground filtering approaches to air-

borne LIDAR data have been proposed in the existing

literature®’ .

Generally speaking, the ground filtering
methods can be divided into four categories. For a
slope-based filter, it is assumed that slopes between
terrain and objects in a landscape are distinctively dif-
ferent. If the difference in elevation exceeds the preset
threshold, the point with the lower elevation will be
recognized as the terrain in generating the DTM™’. In
the interpolation-based approach, the best-fitting sur-
face of the ground is generated by linear regression. It-
erative computation can restrain high frequency data,
nevertheless it may give rise to excessive erosion of ter-
(10,11

rain ' The morphology-based approach is based on
a series of morphological operations to obtain the ap-
proximate terrain surface, such as openings and clos-
ings. Different window sizes provide a method of choo-
sing these parameters when considering height differ-
ences. In general, a suitable structuring element plays
an important role when considering filtering accura-
cy "' In the clustering-based approach, the struc-
tural differences between two points will not be the only
criterion of terrain structure. This approach involves

the relations among the set of points in the same
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class'™'. Thus it can be seen that the clustering seg-
mentation-based approach is more suitable for distin-
guishing ground and non-ground points.

A segmentation method with local characteristics
of point clouds is put forward by Sithole George, and
later another method based on scan line segmentation is

12160 Under the assumption

presented, respectively
that the non-ground segments are higher than the
ground segments, the clustering is implemented on the
basis of the heights between different neighboring seg-
ments. In general, if only the topological relationship
of the segments and the height information are consid-
ered in the process of clustering, unreasonable cluste-
ring results may be obtained or the loss of effective in-
formation may occur, so it is more reasonable to in-
volve the characteristic information for clustering.

To generate high quality DTMs in complex ter-
rain, this article develops a segments-based progressive
TIN densification (SPTD) filtering algorithm by combi-
ning it with a clustering method. The SPTD method
first analyses raw LIDAR data by removing outliers and
multiple echo analysis. Ground seed segments are ac-
quired through a clustering method considering the spa-
tial attribute and the non-spatial attribute. The remai-
ning segments are selected as the basic processing unit
for the progressive TIN densification. The reliability
and effectiveness of the algorithm proposed in this pa-
per are verified by the corresponding experiments.

1 Segments-based progressive TIN densifi-
cation filter

In this section, SPTD filter for distinguishing
ground points and non-ground points for the generation
of DTM from airborne LIDAR data is proposed. First-
ly, point cloud data are described as an octree index
structure and then segmented based on plane fitting.
Secondly, a coarse spatial clustering process is imple-
mented to obtain a set of seed points. Thirdly, instead
of a single point, the segment region is selected as the
basic processing unit for the densification of the terrain
segments.

1.1 Obtaining the seed segments
1.1.1 Point cloud segmentation

The purpose of point cloud segmentation is to di-
vide the input data into several clusters with the char-
acteristics of connection and coherence. The segmenta-
tion method in this paper is based on the octree, and
the concrete steps are described as follows ;

a) A point cloud index vector is set up to store
the point clouds index information; that is, every de-

tected point cloud cluster will be preserved here.

b) In the process of segmentation, discrete points
will be divided continuously until all subsets contain a
plane only. That is to say, the segment points extrac-
ted from the whole point cloud data belong to the plane
corresponding to the estimated parameters or the planar
distance does not exceed a preset threshold. The esti-
mation of the plane characteristic is finished by plane
fitting, and PCA ( principal component analysis) is
used for plane fitting.

c) At last, it is necessary to generate connected
graphs which are used to describe the adjacency rela-
tions between segment regions.

1.1.2

Point cloud clustering is to combine different

Integrative clustering

groups on the basis of segmentation. The similarity of
point data should be kept as weak as possible for differ-
ent groups and as high as possible for the same group.
As inherent dual attributes of spatial data, the spatial
attribute requires a spatial adjacency for the similar el-
ements, and the non-spatial attribute requires that the
greatest similarity is maintained between the elements.
When both of these attributes are considered, the ap-
proach is called integrative clustering. The normal vec-
tor, Gaussian curvature, and mean curvature, which
indirectly reflect the non-spatial attribute characteristics
of the points, are the geometric representation of the
surface shape, so they can be accepted as the feature
vector in the clustering process.

In this paper, let P be the set of 3D spatial ele-
ments denoted as p,(x,, y,, z,) and let P = {p,, p,,
-+, p, I (n = 2); the dimension of non-space is m.
According to the characteristics of the airborne LIDAR
point cloud, the eigenvector r; = (x,, y,, z;, a,, b

, K;, H,) obtained by PCA estimation is adopted,

where (a;, b,, ¢;), K;, H; are normal vectors, and as

i [

the Gaussian curvature and mean curvature parameter
of the point. Then, for1 < i, j < n, the distance be-
tween p, and p; is expressed in

(i, j) =
I, =p, 12+ g, =pu 12+ 0L =pill°
(1)

where | + | represents the two-norm, p, is the coordi-

nate value of all points, p, is the normal vector of the
corresponding points, and p, is the curvature of the cor-
responding points.

The detection of seed segments based on the inte-
grative clustering is specified as follows

(1) According to the results of octree segmenta-
tion, the initial & categories are obtained, and then the
clustering centres are calculated and denoted as
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my(0), my(0) -+, my (0).

(2) The distance between each category and the
adjacent categories is calculated on the basis of
Eq. (1). If the distance is less than a certain thresh-
old, the category and its adjacent category are merged;
else, the process proceeds to the next step.

(3) In the light of step 1, the centres of each cat-
egory are updated, and then the updated clustering
centres denoted as m,(t), m,(t),---,m,(t) are ob-
tained.

(4) Step 2 is repeated until the values of the cat-
egory remain unchanged.

1.2 Densification of the terrain based on segments

For the rough classification, this paper proposes
an iterative refinement judgment methodology with
ground triangulation densification based on segment
blocks. The progressive TIN densification proposed by
Axelsson gradually generates triangulations with the
original LIDAR point clouds data, preserving the cor-
rective points as ground points in accordance with cer-
tain conditions and removing the other non-ground

97 This method has been successfully applied

points
to the commercial software TerraSolid. However, the
deficiency of the classic filtering algorithm inevitably
leads to the misclassification of ground points and non-
ground points. In order to overcome this shortcoming,
this article generates a TIN with segment regions in-
stead of single points. The ground clusters are selected
on the basis of larger clusters.

1.3 Process of DTM generation

A flow chart of the main steps of the SPTD method
is shown in Fig. 1.

Firstly, the outliers of the LIDAR point clouds are
removed by statistical analysis techniques. Secondly,
the single and the last echo signals are selected as the
experimental data based on multiple-echo information

analysis''”'. Then the selected points are processed by

the SPTD method. The advantage of this method is that
the TIN generation uses segment regions instead of sin-
gle points.

2 Experiments and analysis of results

2.1 Test data

The test data and reference data were acquired
with an Optech ALTM scanner over the Vaihingen/Enz
test field and Stuttgart city centre as part of the second
phase of the OEEPE project'®’. These data from IS-
PRS Commission III, Working Group IlI, are em-
ployed to test the filtering effect of the SPTD method

LIDAR point cloud PCA plane fitting
Outliers removal Labeled segments

‘Multiple echo analysis ‘ | Integrative clustering ‘

Larger ground cluster

Construction of TIN

Judgement based
on parameters

Threshold setting

Octree structure

Rest segments

Adding the newly
segments

Are there newly detected
ground segmen

Ground points

Fig.1 Flow chart of DTM generation by the SPTD method

and to compare the DTMs with the classic filtering
method in the meantime. In this paper, CSite2, sam-
ple 23, and sample 24, which include discontinuous
terrain, are selected as the test data. The reference da-
ta generated by manually filtering the datasets contain
some discontinuous terrain for testing the filtering accu-
racy, such as steep slopes and ridges, high frequency
of relief, discontinuous ditches, and so on. In the
datasets, all points are labelled as “ground points” or
“non-ground points ”. Detailed descriptions of the

landscape features included are given in Ref. [ 18].

2.2 Filtering
CSite2 is located in an urban area. Fig.2(a) -

(d) shows the filtering procedure of the proposed filte-
ring method. The LIDAR data are preprocessed before
SPTD. In this process, the outliers are removed by the
statistical analysis technique, as they are one of the
circumstances that restrict the SPTD accuracy, and as
the last and the first echoes are collected in the experi-
mental data, the paper selects the last echoes for the
next step by analysing the multiple echo informa-
tion'"").

Fig.2(a) shows the pre-processing results. A
rough classification identified as ground points is ob-
tained as shown in Fig.2(b) in the filtering process of
the SPTD method. The construction of TIN by the
points in Fig.2(b) is shown in Fig.2(c). Finally,
through the densification of the terrain based on seg-
ments, the airborne LIDAR point clouds classification
is finished, as shown in Fig.2(d). The result of the
filter on CSite2 suggests that the SPTD method is capa-
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ble of removing a large proportion of object measure-
ments. Obviously, the ground area consists of many

+346.29
+326.99

(a) point cloud after datapreprocessing

+H3HU
433241

(c) construction of TIN by the points

major clusters, while the distribution of other points is
scattered.

+348.29
+326.99

+289.96
+248.41

+33030
431271

+28952
+204.52

(d) result by the SPTD method

Fig.2 Filtering process for CSite2

2.3 DTM production

The terrain point clouds are obtained according to
the point clouds classification. Three DTMs are compu-
ted: one with reference data, the second using the pro-
posed method, and the last using the commercial soft-
ware Terrasolid. Fig.3 and Fig. 4 show the digital sur-
face model (DSM) and the DTMs obtained by several
filters of sample 23 and sample 24 respectively. From
the difference between Fig.3(c¢) and Fig.3(d), it is
obvious that the advantage of the SPTD method is that
it can preserve the ground characteristics in areas with
discontinuous terrain compared with Fig.3(b), as
shown in the ellipse regions.

DTM of sample 23 generated by SPTD is closer to
reference DTM than that obtained by the software. At
the same time, Fig.4 reveals that there is less differ-
ence between the DTMs produced by the reference data
and the Terrasolid method. The DTM generated by

Terrasolid expresses a small difference in the discontin-
ued areas, as shown in the black ellipse regions.

2.4 Performance analysis

The above qualitative assessments are carried out
by visually comparing the SPTD results and the DTMs.
The quantitative assessment of the filtering results is of
the greatest importance for the generation of a high
quality DTM. As described in the literature, the error
is divided into three types, respectively: type I error
(classify ground points as object points) , type Il error
(classify non-ground points as ground points) , and the
total error is the percentage of any misclassified
points' ', The three types of errors of the SPTD meth-
od for all the samples from ISPRS benchmark dataset
are listed in Table 1. Three kinds of errors can be ob-
tained using Eq. (2) .
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(c) DTM obtained by SPTD

b
type I error = v+ x 100%
c
type Il error = 2 a 100%
total error = b+c x 100% (2)

a+b+c+d
Fig. 3 and Fig. 4 show the qualitative assessments

(b) reference DTM

(d) DTM obtained by Terrasolid
Fig.4 Difference between reference DTM and generated DTM for sample 24

for sample 23 and sample 24. In order to obtain the fil-
tering results of quantitative assessment, Table 2 and
Table 3 show the comparison of three errors of SPTD
and the eight classical filtering for sample 23 and sam-
ple 24. The total errors of SPTD and the well-known
filters (including MHC method) for the 15 reference
samples are listed in Fig. 5.
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Table 1  Quantitative evaluation of filtering effect
Data Results Type 1 Type 11 Total
a b ¢ d error( % ) error( % ) error( % )
Samplel 1 19593 1793 2168 14056 8.23 13.36 10.42
Samplel2 25797 894 1243 24185 3.35 4.89 4.10
Sample21 9933 152 120 2755 1.51 4.17 2.10
Sample22 22009 495 1075 9127 2.20 10.54 4.80
Sample23 11367 619 1755 10117 4.68 14.74 9.46
Sample24 4971 463 550 1508 8.52 26.72 13.52
Sample31 15250 306 329 12977 1.97 2.47 2.20
Sample41 5482 120 366 5263 2.14 6.50 4.33
Sample42 12217 226 798 29229 1.82 2.65 2.41
Sample51 13542 408 163 3732 2.92 4.18 3.20
Sample52 19670 442 809 1553 2.09 34.25 5.57
Sample53 31503 1486 654 735 4.50 47.08 6.22
Sample54 3885 98 169 4456 2.46 3.65 3.10
Sample61 33539 315 355 851 0.93 29.44 1.91
Sample71 13447 428 166 1604 3.08 9.38 3.80
Table 2 Comparison of three errors of SPTD and the eight classical filtering for sample 23
Error( % ) Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole SPTD
Type I error 18.74 7.25 3.69 12.08 50.25 41.88 18.40 40.92 5.58
Type II error 3.99 12.79 4.34 3.81 2.38 1.94 2.58 2.09 1.72
Total error 8.76 9.84 4.00 8.22 27.80 23.20 10.97 22.71 5.58
Table 3 Comparison of three errors of SPTD and the eight classical filtering for sample 24
Error( % ) Elmqvist Sohn Axelsson Pfeifer Brovelli Roggero Wack Sithole SPTD
Type I error 31.80 13.17 3.38 8.54 47.63 30.43 14.41 32.79 8.52
Type II error 2.98 13.81 7.45 8.95 2.87 1.70 3.26 3.48 26.72
Total error 13.83 13.33 4.42 8.64 36.06 23.25 11.53 25.28 13.52

70 —— Elmgqvist
60 - —#— Sohn
50 —&— Axelsson
] —%— Pfeifer
5 40 ;
= —#— Brovelli
)
ﬁ 30 —®— Roggero
20 4 —+— Wack
10 - Sithole
0 : MHC
sl s12 21 22 23 24 31 s4l s42 sS1 s52 s53 sS4 s61 s71 @ SPTD

Fig.5 Total error (% ) of the filtering results compared with the data of 15 ISPRS samples

SPTD errors are shown in Table 1. Table 2 and
Table 3 show the comparison of three errors of SPTD
and the eight classical filtering. The results show that
SPTD has the best classification results for sample 23
in terms of type II error, the type I error and total error
are slightly higher than that of Axelsson, but much low-
er than those of the other seven methods (Table 2). In
terms of total error, SPTD has the best classification re-

sults in most test sites (Fig.5). The suggested method
can achieve high accuracies and the total errors are less
than that obtained by the classical algorithm and the
MHC ( multiresolution hierarchical classification) algo-
rithm proposed by Ref. [ 18] in most cases. SPTD has
a heavy bias towards type Il errors for sample 24 ( Ta-
ble 3), it still needs to be improved in areas of sparse
vegetation. Therefore, the SPTD method is more suit-
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able for high quality DTM generation.
3 Conclusions

In automatic DTM generation, many ground filte-
ring methods have been developed to tackle the diffi-
culty of separating terrain from non-terrain points,
which is one of the important issues in LIDAR applica-
tions. The paper introduces a segments-based filtering
algorithm dedicated to DTM generation in disconnected
terrain. The filtering procedure is carried out using IS-
PRS CSite2. The resulting DTM is evaluated using the
reference DTM and compared with the software DTM.
A further performance evaluation is carried out using
three types of errors. According to the study of the
SPTD method, the improvement of integrative cluste-
ring and segments-based iteration can reduce the type 1
error, such result appears promising for computing
high-quality DTMs in complex environments. Further
researches will focus on the efficiency and robustness of
SPTD based on the combination of GPU and image to
complex landscapes.
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