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Abstract

Minimizing network coding resources of multicast networks, such as the number of coding nodes

or links, has been proved to be NP-hard, and taking propagation delay into account makes the prob-

lem more complicated. To resolve this optimal problem, an integer encoding routing-based genetic

algorithm (REGA) is presented to map the optimization problem into a genetic algorithm ( GA)

framework. Moreover, to speed up the search process of the algorithm, an efficient local search pro-

cedure which can reduce the searching space size is designed for searching the feasible solution.

Compared with the binary link state encoding representation genetic algorithm ( BLSGA) , the chro-

mosome length of REGA is shorter and just depends on the number of sinks. Simulation results show

the advantages of the algorithm in terms of getting the optimal solution and algorithmic convergence

speed.
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0 Introduction

Network coding provides numerous advantages

I

over store-and-forward based routing solution
network coding research community, the network cod-
ing operations are always assumed that it has to be con-
ducted in all coding-possible nodes to achieve the re-
quired throughput. However, it is usually the case that
network coding is required only at a subset of the cod-

2
2] For example, a source node s

ing-possible nodes
wishes to transmit multicast messages to all of the desti-
nations at the multicast rate of two. In order to guaran-
tee the required multicast rate, a multicast tree may
contains one to three coding nodes according to differ-
ent multicast tree establishing algorithm. The problem
of determining such a minimum coding nodes subset
has been proved to be NP-hard"*’.

Many scholars have concentrated on this problem
and worked for minimizing the number of coding nodes
or links. For example, Wang, et al. ") modified the
ant colony algorithm to optimize network coding re-
sources, and Xing, et al. "7/ proposed some evolution-

ary algorithms. Qu, et al.'® proposed an adaptive
quantum-inspired evolutionary algorithm based on
Hamming distance to optimize the network coding re-
sources in multicast networks. However, their work did
not take delay or delay difference constraints into ac-
count.

Obviously, network coding will lead to increase
the transmission delay and the computational overhead
when combining packets in intermediate nodes’. To
solve this problem, Wu, et al. """’ developed a joint
coding and feedback scheme to improve the throughput
and reliability in wireless multicast. The results showed
that the delay, encoding, and decoding complexities
were low even for a large number of receivers. To re-
duce the packets delay and minimize packet dropping
probability, Yu, et al. """ considered multiple trans-
mission methods and integrated packet scheduling with
adaptive network coding method selection, and presen-
ted a dynamic coding-aware routing metric, which
could increase potential coding opportunities. Those
literatures above show the necessity of researching on
network coding with delay needs.

In real-time interactive applications, the efficien-
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cy of the message transmission and the fairness among
receivers should be considered as a must one. The net-
work coding resource optimization problems under the
restriction of the end-to-end delay and the delay differ-
ence among the source-destination paths ( see
Ref. [ 12] for details) will be considered. The investi-
gation of combining network coding resource optimiza-
tion with delay needs can render realistic significance.

1 Problem formulation

The illustration of transmission delay constraints in
network coding based multicast network is shown as
follows; Considering the same network scenarios in
Fig.1(a), where each link has a unit capacity and

(c) Multicast tree with 1 coding nodes c1

source s expects to send data at rate of 2 units to the
sink ¢,, ¢,, t;, and t,, respectively. The transmission
delay for each link is labeled in Fig.1 and both the
coding and decoding time is assumed to be 1. Note that
the coding-waited time and decoding-waited time
should also be highly considered.

Figsl(a), (b), (¢), and (d) are 4 kinds of
data transmission schemes with different amount of cod-
ing nodes. Note that the delay from source s to the
sinks just depends on the path with maximum delay
among all the source-destination paths. Namely, the
original information cannot be recovered until all neces-
sary messages received by a sink are collected. For ex-
ample, the delays of two paths from s to sink ¢, are 3
and 1 0 , respectively in Fig. 1. Hence , the practical

(d) Multicast tree with 1 coding nodes c2

Fig.1 Network coding sub-graph with different coding nodes and path delay property
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delay between s and sink ¢, is 10 and the inter-destina-
tion delay difference is 20 which is the difference be-
tween 30 and 10. Here,
ence is defined as follows:

Delay Difference; The maximum sink delay sub-
tracts the minimum sink delay.

the concept of delay differ-

For example, in Table 1, the maximum sink delay
is 30 (¢;),

the delay difference of the multicast scenario is 20. So

the minimum sink delay is 10 (¢,), thus
a triple (1, 30, 20) is got, here the first represents
the coding node number, the second represents the
maximum sink delay, and the third represents the de-

lay difference of the given multicast scenario.

Table 1 ~ The path from s to each sink with end-to-end delay and
inter-destination delay difference for Fig. 1(b)
Source  Sink Paths Path delay .Delay
difference

s-1-3-1, 5 3

. s-2-4-¢,-10-1, 10
$-1-3-¢,-7-t, 6

2 s-2-4-¢,-8-1, 15

’ s-1-5-c,-8-1, 20 20

b §-2-6-c,-9-t, 30
s-1-5-¢;-9-¢, 25

fa §-2-6-1, 3

The triples of Figsl(b) ~ (d) are (1, 30, 20),
(1,24,14), and (1, 24, 15).

stand that, even though the number of coding nodes is

It is easy to under-

the same, the performance of delay is quite different in
different transmission scenarios. If the maximum end-
to-end delay and delay difference bounds are con-
firmed, the feasible transmission scenarios will be de-
termined. This is a very important problem, but the al-
gorithm proposed by Kim, et al. and Xing, et al. just
dedicated their efforts to minimize coding nodes/links
So their
coding sub-graph may contain paths severely violating

without considering the delay requirements.
the delay constraints, which deteriorates the benefits
that network coding is characterized to a certain extent.

2 Mathematic model

The problem is to find the minimal set of coding
links where the network coding scenario is required to
1) achieve multicast rate r, 2) meet the end-to-end
delay requirements, and 3) meet the inter-destination
delay difference constraints. The given multicast net-
work is represented by a directed acyclic graph G =
(V, E), where V denotes the set of vertices and E is

the set of edges. The capacity of each edge e € F is

unit, and if there has an edge exceeding unit capacity,
it is represented by multiple unit edges. The multicast
problem is considered with one source s € Vand a sink
set T C V- {s}, alink delay functiond:E —R", de-
lay tolerance @, delay difference 2 , and the rate r.
Here rate r is an integer and it can be achievable if a
transmission scheme can guarantee all | T'| sinks re-
ceiving packets from the source at least rate r. More
specifically, to achieve rate r, there should be at least
r link-disjoint paths to each sink subject to:

P.(s,v,) N P(s,v,) =0

Vo, e T5Vis#jsi,j=1,2,,r; (1)

k=1,2,-,1TI;

where P, (s,v,) denotes the i-th path from source s to
the k-th sink v,. This multicast problem can be conver-
ted into a multi-objective optimization problem, and
stated mathematically as

Minimize :

c= 3" x (2)

where ¢ represents the amount of coding links employed
in network coding.
Subject to:

min{R(s,v,) v, e T,i =12, 1 Tl}| =r
(3)

Elepjw)d(l) <0

Vo, e Ty;j=1,2,,r;0=1,2,--,1TI
(4)

max%éﬂi} —min{ka} = (5)

Vi, bk=12,-,1Tl;v,0, €T;

¥, € {0,111 =1,2,---,n (6)

where symbol x including n elements, denotes the out-
put links of an intermediate node with multiple input
links. Ifx;, = 1, it means that the i-th output link must
be linearly coded; otherwise, it means that no coding
operation is required over this link. Here the concept
of merging node is presented.

Merging Node .

have multiple input links are called merging nodes.

The intermediate nodes which

All the output links of a merging node are named
as potential coding links.

u U, u __—3‘|
| ;LS \Q< |
—_—
I
I
XX X Link states for x, _1 —_— 3J

Lmk states for x. | Lmk Stites for

Fig.2 An example of determining the output link states

of a merging node
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Fig. 2 gives an illustration for Eq. (2). Node v is
an intermediate node which has 3 input links and 3
output links x,, x,, and x;. The state of each output
link depends on whether this link has to carry the co-
ded message. Here, the link states of x,, x,, and x,
are ‘101’

sing that the number of merging nodes in a multicast

according to their own transmission. Suppo-

. m .
network is m, hence, n = Z Wi where n is the
iz

summation of output degree of all m merging nodes and
w, denotes that the i-th node has w, output streams. If a
multicast tree is established, set X(x; € X) will be de-
termined. Correspondingly, coding operations ¢ will be
obtained by counting the number of ‘1’ in set X.

In Eq. (3), R(s,»,) represents the rate from
source s to sink v; under the current multicast tree. To
achieve the desired multicast rate r, the minimum R(s,
v;) among all the sinks should observe Eq. (3).
Namely, for each sink, at least r link-disjoint paths
from source to each one must be guaranteed. Eqs(4)
and (5) are referred to as source-destination delay
constraint and inter-destination delay difference con-
straint, respectively. The end-to-end delay for sink v,
actually depends on the one that has the maximum de-
lay among r link-disjoint paths and is calculated by
8,(i =1,2,-+,1 DI ;v; € D) for each sink v;, which
is defined as

5, = max | zzerv)d(l) lj=1,2,-,r}
Vv, e Ty =1,2,---,1 Tl

i

(7)
here P,(s,v;) means the j-th path from s to sink v,. Af-
ter computing the end-to-end delay of each sink, the
inter-destination delay variation can be obtained by
Eq. (5). Therefore, the objective is to minimize
Eq. (2) subjected to Eqs(3), (4), (5) and (6).
Note that in Eqs(4) and (5), the coding-waited time
is not considered, which will be explained and calcu-

lated in the following REGA.
3 Solutions

A routing-based encoding representation ap-
proach' ™" is employed to map the optimization problem
to a GA framework. The given multicast topology is de-
composed to a secondary graph (see more details in the
Ref. [8]), and then the path array P,(i = 1,2,---, |
T1) which contains all paths from s to each sink ¢, sub-
ject to Eq. (4) is gotten. For the i-th path array P, all
possible combinations are selected each of which con-
sists of r link-disjoint paths. If the number of the se-
lected combinations is m,, the combinations are num-

bered sequentially from 1 to m;, and then P, is updated
by m,combinations. Therefore, array P, consists of r +
m; paths. Table 2 shows all possible r link-disjoint
paths in array P,.

Table 2 Array P, includes all possible r link-disjoint paths

Number Corresponding paths

1 r link-disjoint paths combination 1
2 r link-disjoint paths combination 2
m, r link-disjoint paths combination m;,
Length=|D|
IR N IS N R
A A A A
1,2,0,m| [1,2,...,m, 1,200 m, 1,2,...,m,

Fig.3 Integer encoding representation

A clear integer encoding representation is depicted
in Fig. 3. The length of integer encoding string is equal
to the number of sinks. Each chromosome has | T |
genes and the value of the i-th position in the string va-
ries from 1 tom;. This encoding approach is called rou-
ting-based encoding (RE). According to this integer
encoding representation, the search space size is

I . . .
H e The solution space will grow with the num-

ber of sinks and the number of r link-disjoint paths
combinations in each P,. Therefore, the RE-based
computational complexity could still be increased expo-
nentially if the number of them keeps rising.

An integer encoding routing-based genetic algo-
rithm (REGA) is presented to search the optimal solu-
tion. The flowchart of REGA is shown in Fig. 4.

The algorithm starts from an initial population Q,,
containing k£ chromosomes. The fitness function is giv-
en in Eq. (8), where  is the number of coding links,
A and B are constants, d, is the number of source-desti-
nation paths, d, denotes the maximum inter-destination
delay variation and p(d,, (2) is a penalty function
which is defined in Eq. (9).

_ A
S = v d, v pp(d, ) +1 ®)
d -0 if d >0
pd, @ = {700 (9)
0 otherwise

When performing the algorithm, the fittest chromosome
is directly copied into the new population. This elitism
strategy shows great improvement for the algorithmic
performance in our simulation. Roulette selection and
single crossover are carried out and followed by a ran-
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dom mutation which helps escaping from the local opti-
mal. Moreover, it is widely demonstrated that the in-
feasible chromosomes also help population evolve rap-
idly. Hence, according to the level of violation, differ-
ent scale penalties are imposed on the infeasible solu-
tions while determining their fitness, which speed up
search from not only feasible domain but also infeasible

domain.

[Merging nodes with at least three inputs
or outputs transformation using the
decomposition methods of Langberg

Merging nodes transformation using
the decomposition methods of Kim

v
Making p, by using
first-depth algorithm

'+1

¥
Making r-disjoint path

combinations in each p, Tournament selection in integer

encoding chromosome domain

t=0

Uniform crossover in integer
Initializing O (#) using integer encoding chromosome domain

(a) The original network

(b) A 3-copy network

Fig.5 [llustration the n-copy network

The parameters of the 3 test networks shown in

Table 3.

Table 3 Network parameters

Networks Nodes Links Sinks Rate
3-copy 19 30 4 2
7-copy 43 70 8 2
random 40 85 10 4

encoding representation v
¥ Random mutation in integer
Chromosome transformation encoding chromosome domain
into binary link state encoding

representation Chromosome transformatiion
¥ into binary link state encoding
| Local search procedure | representation
Store the best individual in B(7) [[_Local search procedure |
among O, (¢) and its fitness
Store the best individual in
Yes i No B(t+1) among O, (++1) and B()
Termination and its fitness

3

Output the optimal solution and
its fitness

End
Fig.4 The flowchart of REGA

4 Simulation and analysis

To evaluate the performance of REGA, compari-
sons have been carried out with BLSGA"' over the 2
fixed multicast networks and 1 random multicast net-
work. The 2 fixed networks are 3-copy and 7-copy net-
Fig. 5 illus-

trates an example of n-copy network, where Fig.5(a)

works which have been used in Ref. [3].

is the original network and Fig.5(b) is a 3-copy net-
work constructed by cascading 3 copies of the original
network. For the n-copy network, the source node is at
the top, and the sinks are at the bottom. According to
Fig.5, it is known that the n-copy network contains
n +1 sinks.

The parameters for REGA are set as following:
delay € (0,1] with arbitrary unit which is uniformly
distributed, crossover operator p, = 0. 8, mutation op-
eratorp, = 0.1, and A = 10, 8 = 100. In addition,
the size of population ( Popsize) and the number of it-
eration (N/) shown in following result tables vary with
the size of solution space. Moreover, all simulations
are run on a Windows XP computer with Intel(R) Core
(TM) 2 Quad CPU, 2.40GHz, 3.25G RAM

With regard to BLSGA, note that it is developed
for a non-delay-constrained network coding resource
optimization problem. Hence to provide an apple-to-
apple comparison, some adjustments for BLSGA should
be enforced to introduce link delay. For each individu-
al in the population, it represents a multicast tree
which is checked whether the current transmission
scheme can guarantee the given multicast rate achieva-
ble. If the rate can be achieved, Ford-Fulkson algo-
rithm is used to compute the end-to-end paths for each
sink, and then the end-to-end delay for each source-
destination path can be calculated. Correspondingly,
the inter-destination delay variation is obtained. Due to
the introduction of delay requirements, fitness function
has to be adjusted and re-defined as
number of blocks with two or more ones

if y is feasible;
n.+d, +B8xp(d, Q)

max

F(y) =

if y is infeasible;

(10)
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where n_,_is the number of potential coding links. The

definition of d, and p(d,, (2) is identical with that of
REGA and 8 = 100. If anyone of the constraints
Eqs(3), (4), and (5) is violated, chromosome y is
infeasible and corresponding penalty is added in the
process of fitness evaluation.

Before comparing the searching result under the
delay restriction, the convergence speed of the 2 algo-
rithms are tested firstly. Table 4 and Table 5 list the
algorithmic parameters used in this test. Fig.6 and
Fig.7 show the convergence speed over 15-copy and
31-copy networks. The index called mean network cod-
ing operation times ( MNCO) is employed in the simu-
lation, and it is defined as Eq. (11). Here n
cates the times of algorithmic trial and ¢ is the number

trials indi_
of evolutionary generation. b(¢,i) denotes the best fit-
ness (namely, the number of minimal coding links) so
far when the population evolves to the ¢-th generation in
= 30.

the i-th trial. In the simulation n

trials

Table 4  Algorithmic parameters of REGA

Algorithmic parameter Value
Population size 20
Tournament size 6

Maximum generation 20

Run times 30
Mutation probability 0.1
Crossover probability 0.8

Table 5 Algorithmic parameters of BLSGA

Algorithmic parameter Value
Population size 150
Tournament size 10

Maximum generation 1000

Run times 30
Mutation probability 0. 006
Crossover probability 0.8

3 (1,i)
MNCO = ==L~

n

t=1,2,--,m; (11)
trials

In Fig. 6 only 13 generation evolutions are re-
quired to hit the best solution. However, in order to
get a best solution, BLSGA needs a huge population
150 and a big evolutionary generation 1000. From
Fig.7, it can be seen that even using such prominent
parameters, however, the performance is still worse
than that of REGA. Tt is clear that the convergence
speed of REGA is better, especially in the larger multi-
cast networks (such as 31-copy network ). The result
provides a solid demonstration about the efficiency of

REGA.
4~
REGA
—&— 15-copy networks
34 —8— 31-copy networks

Mean number of coding operations

2 4 6 8 10 12 14 16 18 20
Number of evolution generations

Fig.6 Convergence speed of REGA

907

807 BLSGA

70 —&— 15-copy networks
1 —e— 31-copy networks

60

50
40
30

20

Mean number of coding operations

101

0 T v T v 1 v 1

—— —T— .
100 200 300 400 500 600 700 800
Number of evolution generations

Fig.7 Convergence speed of BLSGA

1 v 1
900 1000

Moreover, the simulation results about searching
for the best solution under the delay restriction are
shown in Table 6, Table 7, Table 8. The numeric re-
sults in a row in parentheses indicate coding number
(CN), maximum end-to-end delay (MD) , maximum
delay difference ( MDD ), computational time ( CT,
the unit is second ), Popsize, and NI, respectively.
Therefor the numbers in the brackets from Table 6 to
Table 8 indicate the numerical result of (CN, MD,
MDD, CT, Popsize, NI) respectively. Actually, each
algorithm in tables has been run for 30 times, and the
best result among those 30 trials is chosen.

From the numerical results it can be known that
BLSGA even cannot find a satisfied solution. Several
reasons may be responsible for this. First, due to the
binary link state representation in BLSGA, the size of
solution space is too large to handle, especially in such
strict constraints. Thereby an increment for BLSGA on
both Popsize and NI has to be imposed to promote the
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search ability, which extremely enhance CT. Besides,
according to the chromosome encoding principle, the
length of the string in REGA just depends on the num-
ber of sinks and is evidently much shorter than that of
BLSGA, which can reduce the computing complexity

and speed up the algorithm operation. On the other
hand, compared with the constitution of solution space
of REGA, BLSGA search space has too many infeasi-
ble solutions while in REGA only the solutions subject
to Eqs(3) and (4) can be covered.

Table 6 Numerical results of 3-copy network

3-copy network ( 19nodes, 30links, 4sinks, 2rate)

Algorithms
0=3,0=0.3 0=3.3,0=0.08 0=3,0=0.1 0=2.7,0=1
REGA (0, 2.75, 0.25, (2,3.21,0.07, (3,2.63,0.09, (1,2.63,0.13,
6.78, 50, 100) 11.67, 50, 150) 6.75, 50, 100) 2.91, 50, 50)
(0,2.75,0.25, (1,2.63,0.65,
BLSCA 244.51, 150, 200) 244.34 150, 200)
Table 7 Numerical results 7 copy network
) 7-copy network (43nodes, 70links, 8sinks, 2rate)
Algorithms
0=10, Q=2 ®=8,0=1.5 0=8,0=1 0=8,0=0.4
REGA (0, 8.99, 1.66, (2,7.85,1.28, (4,7.70, 0.86, (5,7.70, 0.39,
315.06, 150, 250) 125.03, 100, 200) 131.69, 100, 200) 135.81,100,200)
BLSGA (0, 8.37, 1.81, _ _

2389.6, 200, 1000)

Table 8 Numerical results of random network

Random network

Algorithms (40nodes, 85links, 10sinks, 4rate)
0=8,0=3

REGA (0,4.22,2.84, 4.27. 20, 50)

BLSGA (0,4.22,2.84, 28.5, 20, 50)

Moreover, the simulation results also indicate that
the coding numbers will be influenced by different de-
lay constraints in a same multicast network. When the
QoS level becomes severer, the encoding cost will in-
crease, hence it should play a trade-off between the
encoding cost and delay constraints. As for the per-
formance of the algorithms, thanks to the RE and some
excellent evolutionary schemes, such as fitness penalty
and elitism strategy, REGA outperforms significantly o-
ver the BLSGA in terms of the ability to get a satisfied
solution and the computational time.

5 Conclusions

In this study, the problem of minimizing the cod-
ing cost with required data rate and delay constraints in
network coding based multicast networks is studied.
An algorithm named REGA | has been proposed to ad-
dress this problem. In REGA, an efficient and prob-
lem-specific local search scheme is designed to help
the algorithm to obtain the optimality more quickly.

Then it is demonstrated that even under the severe de-
lay constraints, the proposed REGA can still render a
feasible solution for real application in such coding re-
sources optimization area. The distinguished subopti-
mal solutions obtained by REGA prove the capability
and efficiency of the utility in this field.

References

[ 1] Ahlswede R, Cai N, Li S, et al. Network information
flow. IEEE Transactions on Information Theory, 2000,
46(4) . 1204-1216

[ 2] Minkyu K, Varun A, Una-May O, et al. Genetic repre-
sentations for evolutionary minimization of network coding
resources. Computer Science, 2007, 4448 .21-31

[ 3] Minkyu K, Médard, Aggarwal V, et al. Evolutionary ap-
proaches to minimize network coding resources. In: Pro-
ceedings of the 26th IEEE International Conference on
Computer Communications, Anchorage, USA, 2007.
1991-1999

[ 4] Wang Z, Xing H, Li T, et al. A modified ant colony op-
timization algorithm for network coding resource minimi-
zation. [EEE Transactions on Evolutionary Computation
2016, 20(3) : 325-342

[ 5] Xing H, QuR, Bai L, et al. On minimizing coding oper-
ations in network coding based multicast: an evolutionary
algorithm. Applied Intelligence, 2014, 41(3) . 820-836

[ 6] Xing H, Qu R. A nondominated sorting genetic algorithm
for bi-objective network coding based multicast routing
problems. Information Sciences, 2013, 233(6) ; 36-53

[ 7] Xing H, Qu R, Kendall G, et al. A path-oriented enco-
ding evolutionary algorithm for network coding resource



HIGH TECHNOLOGY LETTERSIVol.23 No. 1IMar. 2017

37

[ 8]

[ 9]

[10]

(11]

minimization. Journal of the Operational Research Socie-
ty, 2014, 65(8) ; 1261-1277

Qu Z, Liu X, Zhang X, et al. Hamming-distance-based
adaptive quantum-inspired evolutionary algorithm for net-
work coding resources optimization. The Journal of China
Universities of Posts and Telecommunications, 2015, 22
(3):92:99

Keshavarz-Haddad A, Riedi R. Bounds on the benefit of
network coding for wireless multicast and unicast. [EEE
Transactions on Mobile Computing, 2014, 13(1), 102-
115

Wu F, Sun Y, Yang Y, et al. Constant-delay and con-
stant-feedback moving window network coding for wireless
multicast: design and asymptotic analysis. IEEE Journal
on Selected Areas in Communications, 2015, 33 (2).
127-140

Yu Y, Peng Y, Li X, et al. Distributed packet-aware
routing scheme based on dynamic network coding. China

Communications, 2016, 13(10) . 20-28

(12]

[13]

Rouskas G, Baldine I. Multicasting routing with end-to-
end delay and delay variation constraints. In: Proceed-
ings of the 15th Annual Joint Conference of the IEEE
Computer Societies, Networking the Next Generation,
San Francisco, USA, 1996. 353-360

Hadj-Alouane A, Bean J. A genetic algorithm for the
multiple-choice integer program. Operations Research,

1997, 45(1) : 92-101

Qu Zhijian, born in 1980. He received his

Ph. D degrees in Information and Communication Engi-

neering Department of Beijing University of Posts and

Telecommunications in 2011. He is currently an asso-

ciate professor in the School of Computer Science and

Technology, Shandong University of Technology. His

research interests include network coding, intelligence

algorithm, and optical multicast.



