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Abstract
As a new variant of vehicle routing problem ( VRP), a finished vehicle routing problem with

time windows in finished vehicle logistics (FVRPTW) is modeled and solved. An optimization mod-

el for FVRPTW is presented with the objective of scheduling multiple transport routes considering

loading constraints along with time penalty function to minimize the total cost. Then a genetic algo-
rithm (GA) is developed. The specific encoding and genetic operators for FVRPTW are devised.

Especially, in order to accelerate its convergence, an improved termination condition is given. Fi-

nally, a case study is used to evaluate the effectiveness of the proposed algorithm and a series of ex-

periments are conducted over a set of finished vehicle routing problems. The results demonstrate that

the proposed approach has superior performance and satisfies users in practice. Contributions of the

study are the modeling and solving of a complex FVRPTW in logistics industry.
Key words: finished vehicle logistics (FVL) , vehicle routing problem ( VRP) , genetic algo-

rithm (GA) , time windows

0 Introduction

The automobile industry plays an important role in
the world economy. According to statistical data from
the Chinese Association of Automobile Manufacturers
(http://www. caam. org. cn), 24.5 million vehicles
were produced and 24.6 million vehicles were sold in
China in 2015. Every year finished vehicles are trans-
ported from manufacturers to dealers in China. Fin-
ished vehicle logistics (FVL) has become a key com-
ponent of the automobile industry, which can be char-
acterized as follows: the dealers’ orders of finished ve-
hicles are from manufacturers, and then some finished
vehicle logistics companies are assigned to transport
these finished vehicles. Vehicle loading and routing
schedules consider packing feasibility and routing cost.
As a variant of the vehicle routing problem ( VRP),
the finished vehicle routing problem ( FVRP) is a
practical routing problem with some constraints. Differ-
ent from the traditional VRP, both the finished vehicles
and transport vehicles are irregular three-dimensional
shapes considered as geometry constraints. Especially,
dealers pay more attention to knowing if the ordered ve-
hicles would be arrived in time, which leads to that

time window constraint with penalty function becomes
an important factor in FVRP. To the best of our knowl-
edge there are considerable researches reported on
VRP. However there is a little published research on
FVRP. In practice, FVRP is done by a scheduler’ s
experience or through simple heuristics. However,
some factors involved make it difficult to be achieved
by personal experience or simple heuristics. Mean-
while, increasing industry competition makes the prob-
lem more challenging. This research contributes to this
complex problem by a practical solution in FVL.

1 Problem overview

The basic FVRP consists of known customers that
require a number of finished vehicles to be delivered.
Transport vehicles dispatched from a main depot must
deliver all the ordered finished vehicles, and then re-
turn to the original depot. Each transport vehicle can
carry a limited weight, and be only allowed to visit
each customer one time. The objective is to find a set
of vehicle routes satisfying these demands with minimal
total cost. In practice, this is often taken to be equiva-
lent to minimizing both the number of transport vehicles
and their total distance.
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Here the optimized solution is to select ordered
finished vehicles to load and the transport vehicles into
which to load them, and determine a set of routes satis-
fying all customers within given time. Otherwise, there
will be a penalty, such as delay fee. The problem is
called finished vehicle routing problems with time win-
dows constraint (FVRPTW).

min Y, (C, + T)) (1)
=
s. t.
where m; The number of transport vehicles
C;: Transport cost of transport vehicle j
T;: Time cost of transport vehicle j

(1) Weight limitation; It is assumed that any
type of finished vehicles can be loaded in any type of
transport vehicles. For the same reason, any type of
transport vehicles can transport any kind of finished ve-
hicles. However, the loading weight capacity of each
fleet vehicle is limited. The total loaded weight of all
finished vehicles must not exceed an upper limit of the
loading weight capacity of the selected transport vehi-
cles.

(2) Volume limitation: The same with the weight
constraint above, the total volume of all the loaded fin-
ished vehicles cannot exceed the total allowed volume
of the transport vehicles. Different from the traditional
VRP, both the shape of the finished vehicles and the
loading space of the transport vehicle are irregular, the
volume constraint is specified as a 3D constraint, in-
cluding length constraint, width constraint and height
constraint.

(3) Order splitting rule; Small scale orders must
not be split and only be serviced by one transport vehi-
cle in order to minimize the routing cost. However,
large scale orders can be split among multiple transport
vehicles if their transport tasks exceed the limit of any
transport vehicle. After fully loaded by several trans-
port vehicles, the remained small tasks of the large
scale orders are still required to be delivered by only
one vehicle.

(4) Time windows; It is assumed that each trans-
port vehicle moves at a constant speed, and each cus-
tomer has a requirement to delivery time. If the trans-
port vehicle arrives early, it must wait or may incur an
early fee. Conversely, if the transport vehicle arrives
late, it will incur a delay fee.

(5) Loading sequence: When a customer is visi-
ted, it should be possibly easy to unload. The finished
vehicles of customers earlier on the route should be
placed close to the rear of the transport vehicle. This is

similar to LIFO.

2 Literature review

2.1 VRP problem

As a variant of VRP, when the loaded finished ve-
hicle is the same style, that is the length is equal or al-
most equal, it can be determined by bin packing ap-
proaches ( Hopper & Turton'''; Lesh, et al. *'; Fuel-
lerer, et al. "*'; Leung, et al. . Hu, et al. ).
When the sizes of the finished vehicles vary widely but
the loading spaces of transport vehicles are regular, 3D
bin packing algorithms can be applied ( Pisinger & Sig-
urd"®; Tarantilis, et al. "”'; Bortfeldt"* ). When both
the shape of finished vehicles and the spaces of trans-
port vehicles are regular, many useful research results

10]
b

Moura and Oliveira''"; Zachariadis, et al. "*'; Lai,
et al. ' Vidal, et al. "),

Different from traditional VRP, both the shape of
the finished vehicles and loading space of the transport

are available (Tori, et al.'”'; Gendreau, et al.'
[11

vehicles are irregular, which leads to more complex
constraints in FVRPTW.

2.2 FVRP problem

As a pioneering study on operations optimization
and management of FVL, Holweg and Miemczyk' "’ as-
sessed whether an FVL system could support a “build-
to order” business. Mattfeld & Kopfer''® developed an
automated planning and scheduling system to support
operations to transport finished vehicles from a trans-
shipment hub by integrating the manpower planning
and inventory control using a hierarchical approach.
Wu'"" analyzed the development trend of FVL in Chi-
na and a strategy of resource integration was put for-

%) analyzed why the finished vehicle logis-

ward. Jing
tics costs in China were high and discussed how to low-
er the costs. Kim, et al. "' presented an approach for
RFID-enabled finished vehicle deployment planning at
a shipping yard. Hu'*’ addressed the finished vehicle
transporter routing problem and designed an evolution-
ary algorithm to solve medium and large scale prob-
lems. However the time window constraint was not con-
sidered.

In conclusion, there are not existing methodolo-
gies that can be directly used to solve the problem
without substantial modification. To the best of our
knowledge, this is exploratory research work to consid-
er both time windows and penalty factors in FVRP.
Furthermore, FVRPTW is NP-hard since it can be re-
duced to the general VRP which is a well-known NP-
hard problem ( Tasan & Gen'™ ), and a small
FVRPTW could create significant complexity, calling
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for substantial amount of time to solve. Therefore, an
enhanced genetic algorithm is developed to solve the
problem.

3 Solution modeling

In the model, all known customers are supplied
from a main depot. Only one transport vehicle is al-
lowed to supply each customer in the time windows
[et, lt]. Moreover, any transport vehicle is subject to
a loading weight limit G, , loading length L, , and height
H.. The optimization is to determine a set of routes sat-
isfying all customer orders at minimal cost by a fleet of
transport vehicles for a given time interval. Here as-
sumptions are as follows;

(1) Every customer can be serviced only one time
by one transport vehicle, and then the transport vehicle
will return to the original depot.

(2) A linear relationship exists between vehicle
travel cost and distance.

(3) Each customer’ s order must be delivered by
only one vehicle.

(4) In order to minimize the inconvenience of
goods receipts and customers’ service cost, no custom-
er’ s order can be split.

(5) There are enough available transport vehi-
cles. The number of transport vehicles is expected to
be minimized since the upfront cost of a transport vehi-
cle is assumed to be very large.

(6) All customers should be served within given
time, otherwise, an early/delay fee is imposed.

Let customer ¢, be supplied with different types of
finished vehicles with quantity, weight, length, width
and so on. The optimization model of the FVRPTW is

proposed as follows

F =min(F, +F, +F;) (2)

Fyo= 3 % X ey xdy Xy (3)
i=1 j=1 k=1

F, = ZPW) Xmax(tj -, 0) (4)
k=1

F, = ZP(,“) Xmin(tj —et;, 0) (5)
k=1

s. t.

Zgiyik <G, Yi, k (6)
=y
Zliyik <Lk7 vl,k (7>
=y
Zyik=17 Vlvk (8>
f=t
injk :yjk’ VL,],k <9)
=0

injk = Yiks vl,]’k (10)
j=0
et, < t, <, (11)
Noxy =1, ¥j, k (12)
j=0
inok :1’ VL’k (13>
i=0

1, the transport vehicle £ drives
Xy, = { from node i to node j (14)

0, otherwise

1, node i is provided service by

Y = { the transport vehicle & (15)

0, otherwise
Notation :
M ; The number of transport vehicles
¢ The cost from customer i to customer j
P, : Early penalty factor
P, : Late penalty factor
t;: The actual time of the transport vehicle arriving
to node j

[etj , ltj] : The time windows of the transport vehi-

cle arriving to node j

g, : The total weight of finished vehicle at the node
i

G, : Standard loading weight of vehicle &

[;: The total length of finished vehicle at the node
l

L, : Standard loading length of vehicle &

Objective Eq. (2) minimizes the total cost. Con-
straint (6) is the weight limitation of the transport ve-
hicle. Constraint (7) is the length limitation of the
transport vehicle. Constraint (8) ensures that only one
transport vehicle is allowed to supply each customer.
Constraint (9) limits that only one transport vehicle is
allowed to visit one customer. Constraint (10) limits
that only one transport vehicle is allowed to leave one
customer. Constraint (11) enforces every customer’ s
order must be serviced in given time. Constraint (12)
and Constraint (13) ensure the transport vehicle starts
and returns to the main depot. Constraint (14 ) and
Constraint (15) limit the value range.

4 Proposed algorithm

Genetic algorithms ( GA) have been used for VRP
incorporating time windows ( Baker & Ayechew'*).
In this work, a GA algorithm is devised for this com-
plex problem.

1) Encoding

Encoding is to convert the vehicle routes into the
chromosome. In detail, the string of the customers in N
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= (1, 2,---, n) is used as chromosome for encoding,
in which each gene represents a customer and their se-
quence represents the vehicle routing. Because there
exist some constraints of the transport vehicle, such as
total loading weight limit, 3D size limit, time windows
and so on, and the transport vehicles must return back
to the main depot, it is needed to insert ‘0’ into the
customer’ s sequence when the fitness value is evalua-
ted and ‘0’ represents the main depot. For example,
the sequence (0,1,2,3,0) means that the transport
vehicle starts from the main depot and visits
customer 1, customer 2, and customer 3 sequentially
and then returns back to the main depot. So each ‘0’
in the string shows there are multiple transport vehicles
and routes. For example, the chromosome
“012308760” represents two routing. The first routing
is 0-1-2-3-0, and the second routing is 0-8-7-6-0.

2) Initialization

Initial population is the origin of genetic algo-
rithm, and its composition structure has a great impact
on the consequence of its evolution. All finished vehi-
cles in each customer’ s order are assigned to the first
transport vehicle according to chromosome sequence.
When the maximum loading weight is greater than the
sum weight of @, , a,, - , a;, and less than the sum
the substring “a, , a,,

weight of @, , a,, =+, a,;, a

i i+l

-+, a;” is attained to represent the customers served by
the first transport vehicle. The customers (a,, a,, -,
a;) served by the first vehicle will no longer be consid-

ered. Start with the No.

., customer. Repeating as

above, the No.2 substring (a,,,, a;,,, ***, a,,,) can
also be attained for the second vehicle. Finally, all
finished vehicles are loaded into the transport vehicles.
By the way the initial chromosome can be gained con-
tinually until the number of chromosome equals to the
scale s of initial population.

3) Fitness function

The objective is to minimize the total cost over
multiple routes. So the total cost is directly taken as
the fitness function. Because there are additional con-
straints, including time windows, loading weight and
penalty factors, the fitness function is adjusted.

For the time windows constraint, if it is a hard
time window problem, when arrival time is not in the
given time window, the value of fitness function is set
as © (death penalty). If it is a soft time windows
problem, the delay is allowed and penalized.

4) Selection operator

The top twenty percent of the population is double
duplicated to the next generation. The middle sixty
percent of the population is copied to the next genera-

tion. And the last twenty percent is abandoned.

5) Crossover operator

Offspring is produced from the parent solutions
using a standard crossover procedure with point cross-
over, in which one point in the chromosome is chosen
randomly. One offspring consists of the gene values
from the second parent gene which are to the right of
the point along with the gene values from the first par-
ent gene. And then the duplicated existing members of
the population are discarded. The crossover method is

as follows
A=1 2 3 4 5 6 718 9 10 11 12
13 14 15
B=15 14 13 12 11 10 918 7 6 5
4 3 2 1

First, move all the number after the crossover
number ‘8’ in B to the front of A, and then A is;
A=8 7 6 5 4 3 2 1 1 2 3 4
56 7 8 9 10 11 12 13 14 15
Second, because one customer can only be served
by one transport vehicle, the gene number must not be
repeated in chromosome coding. Then the repetition
number in A should be discarded, thatis ‘1 2 3
4 5 6 7 8’ ,and then A is;
A=8 7 6 5 4 3 2 1 9 10 11
12 13 14 15
The same with A, B is;
B=8 9 10 11 12 13 14
4 3 2 1

6) Mutation operator

I5 7 6 5

Mutation operator is realized by swapping position
randomly. For example, 10 and 4 are swapped :

A=1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

Then it will turn to be as follows after random ex-
changing position.

A=1 2 3 10 5 6 7 8 9 4 11

12 13 14 15

7) Improved termination condition

In general, the termination condition is the maxi-
mum iteration time. Here a new termination is provid-
ed, that is the algorithm will be terminated after the
same optimization result is repeated twenty times. To
prevent the next generation being worse than parent
generation, the optimal individual strategy can be
adopted, which is to keep the parent generation with
the best value of fitness function to the next generation.
By the way the search process is on the way to the opti-
mal solution. Moreover, two convergence rules are
adopted, total evolutionary times and the optimization
results are the same for many times. When each con-
vergence rule is satisfied, it will be thought conver-
gence. It will save much calculation time by two con-
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vergence rules.
5 Computational experience

The presented algorithm is coded in Matlab
R2010b and tested on a PC with an Intel 3.7 GHz pro-

be 50km/h. Let the main depot be located at the coor-
dinate point (92, 51). Fourteen orders from the depot
to dealers are listed in Table 3. Each order includes
ordered finished vehicles, the customer’s coordinates,

and time windows.

cessor, 4.00 GB RAM, and the Microsoft Windows 7 Table 1 Finished vehicle information
operating system. To our knowledge, there are no in- Finished Length ~ Width  Height ~ Weight
stances publicly available, and therefore a real situa- vehicle type (mm) (mm) (mm) (kg)
tion in China is given to illustrate the approach. A 3050 1830 1730 1600
The finished vehicles and available transport vehi- B 3000 1700 1485 1200
cle are listed in Tables 1 and 2. Here, let the loading C 3200 1974 1900 1800
weight of the transport vehicles be 30t, and the trans-
port cost be SRMB/km, and the transport velocity ()
Table 2 Transport vehicle information
Lower floor Floor Floor Loading Transport Transport
height (m) length (m) number weight (t) cost( RMB/km) velocity (km/h)
2 29 2 30 2 50

Table 3  Customer orders information

X-axis Y-axis

Customers Orders (k) (km) Et(h) Lt(h)
D1 3xA 50 110 3 5
D2 4xA+B 70 16 2 4
D3 3xA 145 75 2 4
D4 3xA+B+C 4 40 1 4
D5 6xA 89 105 0 3
D6 A+6xB 14 70 1 5
D7 3xB+3xC 140 4 0 3
D8 B+5xC 184 43 0 3
D9 3xB+2xC 120 115 3 5
D10 3xA+B+C 152 31 2 5
D11 2xA+2xB+C 22 18 3 6
D12 4xA+B+C 50 83 1 5
D13 A+6xB 105 18 0 4
D14 2xB+C 105 91 0 4

If an early or delay arrival is allowed ( soft time
windows) and Constraint (11) is inactive, an addi-
tional penalty fee will be created, which will be calcu-
lated into the total cost. In this case, penalty factors
(P, , Py, ) both are 400 RMB/h. Here initial popu-
lation size is 100, the iteration time is 300, crossover
rate is 0. 7 and the mutation rate is 0. 1. Then the total
minimum routing cost is 4665 RMB and total run time
is about 2s. There are four routing schedules, which
are shown in Table 4.

If all transport vehicles must arrive in time ( hard

time windows ), no delay is allowed. Then there are
still four routing schedules, while the total minimum
routing cost is 4750 RMB. Compared with soft time
window, the No. 1 route, No. 3 route and No. 4 route
are the same; however the difference is No. 2 route,
shown in Table 5.

In Table 4, there is a penalty cost of the No. 2
route. In order to avoid the penalty, the No. 2 route
changes its routing schedule in Table 5 (hard time
windows ). It is clear that this is early penalty, so the
improved routing schedule in hard time windows has
more distance to avoid early arrival penalty. In this
early arrival case, the number of transport vehicle is
the same between soft time windows and hard time win-
dows. But, if it is a delay penalty, maybe another
transport vehicle should be added to avoid delay penal-
ty and minimize the total cost in hard time times. In
the case above, it seems there is only a little cost
difference between soft time windows and hard time
windows. In fact the cost difference depends on many
factors, such as C,, P, , Py, , vand so on. It will
vary with the values of these factors. It is possible that
there are a large difference between hard time windows
and soft time windows. If the penalty cost turns larger,
it will be considered to add another transport vehicle to
avoid the large penalty cost. Every finished vehicle lo-
gistics company can set these factors according to their
practice and decide which solution is better.
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Table 4 The optimization vehicle routing results ( soft time windows)

. Total Loading Arriving Arriving time Early/delay
Vehicle . Total . . .
outing N distance time(h) weight sequence of of each penalty
routme o- (km) tme (t) each customer customer (h) fee(RMB)
5 1.08 0
14 1.51 0
1 230.34 4.61 28
12 2.62 0
1 3.16 0
6 1.61 0
2 217.72 4.35 24 4 2.24 0
11 2.81 76
7 1.34 0
3 181.27 3.63 25.4 13 2.09 0
2 2.79 0
8 1.85 0
10 2.53 0
4 288.10 5.76 30
3 3.42 0
9 4.36 0
Table 5  The optimization vehicle routing results (hard time windows)
) Total Loading Arriving Arriving time Early/ delay
Vehicle . Total .
tine N distance time(h) weight sequence of of each penalty fee
routing 0. (km) tme (1) each customer customer (h) (RMB)
4 1.77 0
6 2.40 0
2 250.31 5.01 24
11 3.45 0
9 4.36 0
In order to fully evaluate the proposed algorithm, size is 100, crossover probability is 0.7, and mutation
more experiments are conducted. As the problem size probability is 0. 2. After 1000 iteration times, the com-
increases, the computational time of the GA algorithm putation results with soft time windows are shown as
is modest and can work well in practice. In Table 6, Fig. 1. There are 18 routes and the total minimum rou-

there are 100 orders. After a series of tests, the control ting cost is 20120RMB, shown as follows.
parameters for the algorithm are set. The population

Table 6 Customer orders information

Customers  Orders )((:zl)s fz?)s Et(h)  Lit(h)  Customers  Orders )((Z:)S fij::)s Et(h)  Li(h)
D, 3A 33 105 3 5 Dy, 3xB 107 113 3 5
D, 4B 63 29 2 4 D, 3xA 113 43 2 5
D, 3A 145 75 2 4 Dy, 2 xB 40 17 3 6
D, 3C 8 49 1 4 D, 4 xC 55 96 1 5
D, 6A 89 105 0 3 Dy A 105 2 0 4
Dy 6 xB 13 63 5 Dy 2xB 88 90 0 4
D, 3xC 133 26 0 3 Dy, 3xA 44 97 3 5
Dy B 169 38 0 3 Dy, 4xB 74 29 2 4
D, 2xC 120 115 3 5 Dy, 3xA 149 87 2 4
Dy, 3xA 145 34 2 5 Dgo 3C 36 41 1 4
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Fig.1 The optimization routes of soft time windows with penalty

The No. 1 Route: 0—70—40—88—67—30—83
-0

The No. 2 Route: 0—27—13—55—95—18—74
—68—29—0

The No. 3 Route;: 0—46—16—2—58 —86—72
-0

The No. 4 Route; 0—7—36—22—50—66—0

The No. 5 Route;: 0—19—42—28 —14—17—3

&

The No. 6 Route: 0—47—26—12—51—93—9

&

The No. 7 Route: 0—82—90—76—39—11—53

&

The No. 8 Route: 0—48—34—6—25—81—0

The No. 9 Route: 0—33—78—31—37—23—0

The No. 10 Route: 0—5—73—38—-80—52—0

The No. 11 Route: 0—20—32—4—62—60—44
50

The No. 12 Route: 0—41—49—35—77—69—
100—0

The No. 13 Route: 0—98—61—59—65—79—0

The No. 14 Route: 0—89—84—57—1—-96—0

The No. 15 Route: 0—91—45-—87—43-—99 —
85—0

The No. 16 Route: 0—97—63—21—94—10—0

The No. 17 Route: 0—54—56—75—71—15—0

The No. 18 Route: 0—92—64—8—24—0

6 Conclusion

This study addresses a real transportation problem
in finished vehicle logistics, and develops a finished

vehicle routing model by considering not only the mini-
mum routing cost but also the time windows with penal-
ty function. To test the validity of the proposed genetic
algorithm, an example is conducted. From the view of
a practical contribution, a method with high perform-
ance is developed to simultaneously consider total rou-
ting cost of the vehicle fleet, specified geometry restric-
tions on transport vehicle availability, time windows
and penalty function. Moreover, the cost difference de-
pending on penalty factors, transport cost, and trans-
port velocity is compared. In fact maybe there are rela-
tive relationships among these parameters. In the future
building experience formulation based on these factors
will be focused in the finished vehicle routing problem,
and schedulers will benefit from it. Other optimization
algorithms will be exploved to solve the FVLTW prob-
lem, meanwhile the random traffic jam will be consid-
ered.
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