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Abstract

In order to smooth the trajectory of a robot and reduce dwell time, a transition curve is intro-
duced between two adjacent curves in three-dimensional space. G2 continuity is guaranteed to transit
smoothly. To minimize the amount of calculation, cubic and quartic Bezier curves are both ana-
lyzed. Furthermore, the contour curve is characterized by a transition parameter which defines the
distance to the corner of the deviation. How to define the transition points for different curves is
presented. A general move command interface is defined for receiving the curve limitations and tran-
sition parameters. Then, how to calculate the control points of the cubic and quartic Bezier curves is
analyzed and given. Different situations are discussed separately, including transition between two
lines, transition between a line and a circle, and transition between two circles. Finally, the experi-
ments are carried out on a six degree of freedom ( DOF) industrial robot to validate the proposed
method. Results of single transition and multiple transitions are presented. The trajectories in the
joint space are also analyzed. The results indicate that the method achieves G2 continuity within the

transition constraint and has good efficiency and adaptability.
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0 Introduction

A robot program consists of several motion com-
The most

common curves are lines and circles, which are con-

mands and each command defines a curve.

nected head-to-tail in sequence. However, two adja-
cent curves may be not smooth at the intersection. The
robot has to halt at the terminal of a curve to avoid ve-
locity fluctuation. So, it is necessary to introduce a
transition part between two curves to smooth the trajec-
tory and reduce the dwell time.

In PLCopen Motion Control Specifications''?'
the way of connecting two curves without halt is called
blending mode. In this mode, a transition curve is in-
serted between two adjacent curves. In order to transit
smoothly, the transition curve needs to satisfy some
smoothness criteria. G2 continuity*' is usually adopted
as the criterion. Furthermore, the transition curve
should be characterized to adapt to different applica-

tions. For example, smoothness is more important for a

transportation robot, and accuracy is more important
for a welding robot. So, the smoothness and accuracy
should be able to be adjusted for different applications.

There are already many investigations about tran-
sition curves, especially in the field of transition be-

10]

tween lines'* Sencer, et al. "*) proposed a method

to transit between adjacent lines with quintic
B-splines. G2 continuity was guaranteed and the cor-
nering tolerance could be set by the user. Bi, et al. "’
utilized cubic Bezier curve to transit between adjacent
lines. Also, G2 continuity was guaranteed, and the
curvature of the transition curve was analyzed. Zhao,
et al. " utilized a curvature-continuous B-spline with
five control points for transition. Hota, et al.'”’ pro-
posed a path named 7 -trajectory for transition. Their
studies showed that various methods could be used to
transit between lines. But they did not illustrate how to
determine the order of the transition curve.

The transition including circles has also been in-

"4 Habib, et al. ' de-

scribed a method based on a single cubic Bezier curve

vestigated in some fields'

@ Supported by the National Natural Science Foundation of China ( No. 61573358) and Research and Development of Large Multi-function Demo-

lition Equipment in Disaster Site( No. 2015BAKO06B00 ) .

2 To whom correspondence should be addressed. E-mail; shuo. wang@ ia. ac. cn

Received on May 17, 2016



142

HIGH TECHNOLOGY LETTERSIVol. 23 No. 21| June 2017

to join two circles. The transition curve was S-shaped
or C-shaped, and of G2 continuity. This method was
applied to highway and railway route design. A similar

1. "2} but quartic

work was done by Ahmad A et a
Bezier spiral was used for transition instead. Rashid,
et al. "' proposed an S-shaped transition curve to join
two tangent circles of the same diameter, which was
used to design a Spur Gear Tooth. Most of the studies
focused on planar transition in different applications.
However, few studies have been done on transition be-
tween adjacent lines and circles with shape control, es-
pecially in three-dimensional space.

In this paper, a transition method is developed
based on Bezier curve to achieve G2 continuity. For ef-
ficiency of the algorithm, a single curve is adopted for
transition. Cubic Bezier curve is tried first because it is
of low degree and easily calculated. If cubic Bezier
curve does not meet the smoothness constraint, quartic
Bezier curve will be used. Different situations are dis-
cussed separately, including transition between two
lines, transition between a line and a circle and transi-
tion between two circles. The lines and circles are sup-
posed to be in three-dimensional space without any lim-
itations for the circle radii, and the length of line and
circle. Furthermore, to characterize the contour curve,
a transition parameter( TP) which defines the distance
to the corner of the deviation is adopted. If a robot is
moving along a curve, the transition will start when the
remaining length is shorter than TP.

The remaining part of this paper is organized as
follows. Section 1 introduces a general transition inter-
face and a planning procedure. How to transit between
two adjacent curves is presented in Section 2. The
transition method is demonstrated with experiments in
Section 3. Finally, conclusions are given in Section 4.

1 Transition interface and planning proce-
dure

Transition curve is inserted between two adjacent
curves and the speed is re-planned, as shown in
Fig. 1. Transition planning is a part of trajectory plan-
ning. Transition planning reads motion commands from
program, and prepares the curves for interpolation. For
example , there are three move line (MovL) commands
in a robot program. The transition interface for program
is shown in Fig.2, the desired trajectory is shown in
Fig.3, and the general transition planning procedure is
shown in Fig. 4.
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Fig.4 A flow chart for transition planning procedure

Firstly, the transition planning task reads transi-
tion commands. If the “TransitionMode” parameter of
the MovL (line AB) command is “blending” , a transi-
tion curve will be inserted between line AB and line
BC. Transition P, P, starts at point P, and ends at point
P,. The length of line P, B and line BP, are defined as
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Algorithm 1. TP, here is short for “Transition Parame-
ter” parameter of the MovL, (line AB) command. The
lengths of line P, C and line CP, are calculated similar-
ly.

If the length of line AB and line BC are both lar-
ger than2 - TP, , the length of line P, B and line BP,
are equal to TP ;. Otherwise, they are defined in terms
of the length of line AB and line BC. So, line BC may
have two different transition points or two overlapping
points. More examples are shown in Fig. 5.

Algorithm 1  Calculation of Length (P,B) and Length (BP,)

Input: Length(AB), Length(BC), TP,
Output; Length (P,B), Length (BP,)
1. if
Length(AB) > 2+ TP,
Length(BC) > 2 - TP,
then

2. Length(P,B) = TP,
3. else
4. Length(P,B) = min(Length(AB) ,Length(BC))/2
5. end if
6. Length(BP,) = Length(P,B)
P, B
4 P, P, p
- . 2

A
(a) a line with two transition points  (b) a circle with two transition points

P B

Pl 1
4 P, B P, //
—_—
A
(c) a line with two overlapping points  (d) a circle with two overlapping points

Fig.5 The transition points of lines and circles

After getting the information of the transition
points , the transition curve could be calculated, as will
be introduced in Section 2. Then, it is ready for inter-
polation.

2 A transition method based on a single
Bezier curve

2.1 Preliminaries
Given spatial control points P, (i = 0,1,2,---,
n) , the interpolation for each point on the Bezier curve

18

Cw>=2&&xw,uemJJ (1)

where

B.,(u) = Cou'(1 —u)"™, i =0,1,,n (2)

i,n

The Bezier curve is a weighted average of each
control point. It begins at P, and ends at P,. The Bezi-
er curve has the convex hull property, which means
that the curve does not “undulate” more than the poly-
gon of its control points. For cubic Bezier curve (n =
3), four control points are needed. For higher-order
curves, the amount of computation will be larger and
more intermediate points are needed.

The derivatives for a Bezier curve at C(0) and
C(1) are

C'(0) =n(P, -Py)

¢'(1) =n(P, -P,_)

The second derivatives are

C"(0) =n(n-1)(P, -2P, + P,)

C"(1) =n(n-1)(P, -2P, , +P,,)

For G2 continuity, the adjacent curves share a

(3)

(4)

common tangent direction and a common center of cur-
vature at the join point’'. The curvature at C(0) and
C(1) should be

1L C(w) xC"(w) |

- | C"(u) 1’ ’

Substituting Eq. (3) and Eq. (4) into Eq. (5)

yields

_ (n=1)1 (P, =Py) x (P, =P) |

= 10,1} (5)

3 ,u=0
nl (P, =Py) |
(6)
(n-1)1 (P, -P,) x(P,-P, )|
K = 3 ,
nl (P, -P,_ )|
u=1 (7)

2.2 Transition between two lines

Fig. 6 shows a case of a cubic Bezier curve (n = 3)
transiting from line AB to line BC. Point P, and point P,
are the transition points set by Algorithm 1.

c

B 3

-~

P, P(P,)

Fig.6 The transition between two lines

1) The transition curve should be tangent with
line AB and line BC.

From Eq. (3), control point P, should be on line
AB, and control point P, should be on line BC.

_— —

P,P, x P,B =0

—_ —

BP, x P,P, = 0

2) The transition curve should have the same cur-
vature with line AB and line BC.

(8)
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k=0,u=0 (9)

E=0,u=1

From Eqs(6) ~(9), point P, and point P, should
overlap at point B. Then, the transition Bezier curve is
given by point P, point P, , point P, , and point P;.

2.3 Transition between a line and a circle

Fig. 7 shows a case of a cubic Bezier curve (n =
3) transiting from line AB to circle BC. Point P, and
point P are the transition points set by Algorithm 1.

Fig.7 The transition between a line and a circle

(cubic Bezier curve)

1) The transition curve should be tangent with
line AB and circle BC.

From Eq. (3), control point P, should be on line
AB, and control point P, should be on the tangent line
of circle BC at point P;.

_ —

P,B x P,P, =0 (10)

— ——

OP, - P,P, =0

G S (11)

OP, - (OB x0P;) =0

2) The transition curve should have the same cur-
vature with line AB and circle BC.

k=0,u=0 (12)

E=1/r,u=1
where r is the radius of circle BC.

From Eqs(6),(7) and Eqs(10) ~ (12), point
P, and point P, are defined. If pointA, point B, point C
and point O are coplanar, the solution is given as fol-
lows. Otherwise, there is no solution.

1) Point P, is the intersection of line P,P, and
line P, P,.

2) From Eq. (7) and Eq. (12), Eq. (13) is got.
Then, point P, is given by Eq. (10) and Eq. (13).

IPl—P2I=.$IP3—P2I2 (13)
2rsin( )
where o = £ P1P2P3.
Quartic Bezier curve (n = 4) could meet the

smoothness constraints here ( see Fig.8). Point P, and

point P, are the transition points set by Algorithm 1.

Point P, , point P, and point P, are given as follows:

™

P

Fig.8 The transition between a line and a circle

(quartic Bezier curve)

1) Point P,

Intuitively, in order to track the given trajectory,
point P, should be around line AB or circle BC. For the
simplicity of calculation, point P, is set at point B.

2) Point P,

S_in_li)lartLE)q. (11), there exists;

OP, - P,P, =0

R SN (14)

OP, - (OB x OP,) =0

From Eq. (7) and Eq. (12),

| P, —P, 1% = %rl P, - P, | sin(a)
=%r2(1 — cos(9)) (15)

where « = £ P2P3P4, 9 = L P20P4,0 < 0 < 2pi.

From Eq. (14) and Eq. (15), point P, is ob-
tained.

3) Point P,

From Eq. (6), Eq.(10) and Eq. (12), there
are multiple solutions for point P,. An optimization in-
dex can be added to obtain the optimal solution. One
answer is to add a constraint as Eq. (16). Approxi-
mately, £ means a measure of curvature. Thus to get
the minimum of & makes the transition curve bend at

least' ™.

£ = LIC"(u) C"(u)du (16)

Letdesdl, = 0,1, =1 P, — P, 1.
Eq. (1) into Eq. (16) yields
b= e +1b? oy (daid + 4bid
+4cd + da,a,l, +4b,b,l, + de cyl,
-3a,xy + 3a,x, —3b,y, +3b,y, -3¢,z
+3¢,2,) (17)

Substituting

where
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L, =1 P, - P, 1,

PO = (x()’y()sz())9

P4 = (x4’y4’z4)a
P,P

ol

= b

|P0P2| (al, 1961)’
P,P

4+ 3 _
| P,P, | = (a2,b2,cz),

d = TP.

From Eq. (10) and Eq. (17), point P, is ob-
tained.

Then, the transition Bezier curve is given by point
P,, point P, , point P, , point P, and point P,.

2.4 Transition between two circles

Fig. 9 shows a case of a cubic Bezier curve (n =
3) transiting from circle AB to circle BC. Point P, and
point P are the transition points set by Algorithm 1.

Fig.9 The transition between two circles

(cubic Bezier curve)

1) The transition curve should be tangent with
circle AB and circle BC.

From Eq. (3), control point P, should be on the
tangent line of circle AB at point P, and control point
P, should be on the tangent line of circle BC at point
P..

_— ——
O1P0O - POP1 =0 (18)
O1P, - (O1B x 01P0) =0
O2P3 - P3P2 =0

- (19)

O2P, - (02B x 02P3) =0

2) The transition curve should have the same cur-
vature with circle AB and circle BC.

kl =1/r1,u =0

B =1/2,u=1
where r| is the radius of circle AB, and r, is the radius
of circle BC.

From Eqs(6),(7) and Eqs(18) ~(20), point
P, and point P, are defined. However, it is difficult to

(20)

obtain the analytical solutions here. Numerical method

can be used to solve these functions, but with a large
amount of computation.

Quartic Bezier curve (n = 4) could meet the
smoothness constraints here, see Fig. 10. Point P, and
point P, are the transition points set by Algorithm 1.
Point P, , point P, and point P, are given as follows;

Fig.10 The transition between two circles

(quartic Bezier curve)

1) Point P,
Similar to Section 2.3, point P, is set at point B.

2) Point P,
Similar to Eq. (19), there exists:

O2P4 - PAP3 =0

(21)
02P, - (O2B x 02P4) =0
From Eq. (7) and Eq. (20),
[P =P 1% = 2 Py = Pl sin(ay)
=%r§(1 - cos(62)) (22)
where @, = £ P2P3P4, 02 = £ P202P4,0 < 02 <

2pi.

From Eq. (21) and Eq. (22), point P, is ob-
tained.

3) Point P,

Similar to Eq. (21) and Eq. (22), there exist:

—_— —
O1P0O - POP1 =0

(23)
O1P, - (O1B x 01P0) =0
|R—P“2=%ﬂ|&—PHﬁMM)
3,
= Zrl(l - cos(0l)) (24)
where «, = 2PP,P,, 6, = £P,0,P,, 0 <0, <

2pi.

From Eq. (23) and Eq. (24), point P, is ob-
tained.

Then, the transition Bezier curve is given by point
P,, point P, , point P, , point P, and point P,.

Mark 1 Although Figs6 ~ 10 illustrate conditions
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for planning on plane, the transition method is also fea-
sible for spatial planning, as will be shown in Section

3.
3 Experiments

The transition method is evaluated by several ex-
periments on a six DOF robot—ER20-C10. The control
system is shown in Fig. 11. The original motion con-
troller is replaced by an industrial computer CX5130
made by Beckhoff company. In addition to the transi-
tion method, some other components are also realized
for the experiment, such as robot program interpreter,
trajectory planning method for line and circle com-
mands, and forward and inverse kinematics.

Fig.11 The control system of a six DOF robot

To verify the feasibility of the transition method,
experiments are organized as follows.

3.1 Transition between two adjacent curves

A program with two move commands is tested.
Each command may be a line or a circle. The first
command is set to blending mode with an appropriate
TP. In order to guarantee G2 continuity and minimize
the amount of calculation, a cubic Bezier curve is used
for transition between two lines and a quartic Bezier
curve is used for transition involving one or two circles.
The sample tests are shown in Figs12 ~14. The TP pa-
rameters are all set to 5. The transition curve with a
smaller TP stays closer to the original trajectory which
leads to a smaller transition error and a limited smooth-
ness, and vice versa. The method shows good adapta-
bility no matter where the end point of the second com-
mand is set.

3.2 Velocity and acceleration analysis

Multiple lines and circles are tested in this experi-
ment, as shown in Fig. 15. A transition curve is insert-
ed between each pair of adjacent curves. The velocity
and acceleration of the trajectory are shown in Fig. 16.

4 . : . .
35 7
3 5 o
25F / .
F1s Vi g
y.
//
15 4
/('f
1 g
S
"
o5 p _
z /
— J"
e e v i
1000 001 1002 1002 1004 1905 1006 1007 1008
Fig. 12 The transition between two lines ( cubic Bezier curve)
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Fig.17 The velocity and acceleration of the trajectory

without transition

S-curve-type acceleration profile is adopted for the ve-
locity and acceleration planning. The maximum veloci-
ty for each curve is 50 mm/s, max acceleration is 100
mm/s” and maximum jerk is set to 200 mm/s’. The
whole trajectory takes about 3.57s. The velocity and
acceleration of the original trajectory without transition
are shown in Fig. 17. It is tested with the same veloci-
ty, acceleration and jerk constraints, and takes about
5.48s. Obviously, the velocity of the trajectory with

transition is smoother and takes less time.

3.3 Velocities in the joint space

Since the trajectory of a robot is finally realized in
the joint space, the position and velocity of each joint
are tested. When the robot moves along the trajectory
shown in Fig. 15, the position of each joint can be got
by inverse kinematics, and the velocity is the differen-
tial of position. Figsl8 ~19 show the joint angle and
velocity when transition mode is set to blending, and
Figs20 ~21 show those without transition. The same
result can be got that the trajectory with transition

moves smoother and takes less time.

Fig.19 The joint angle velocity corresponding to the trajectory
with transition in Fig. 15 (axis 1; axis 2; axis 3; axis

4; axis 5; axis 6)
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Fig.20 The joint angle corresponding to the trajectory without

transition in Fig. 15 (axis 1; axis 2; axis 3; axis 4;
axis 5; axis 6)

4 Conclusions

It has been demonstrated that a single Bezier
curve can be utilized to transit between lines and cir-
cles in three-dimensional space. In the transition be-
tween two lines, a cubic Bezier curve could satisfy the
G2 continuity. In the transition between a line and a
circle, if the line is coplanar with the circle, a cubic
Bezier curve is able to transit smoothly. Otherwise, a
quartic Bezier curve is needed. A curvature constraint
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Joint angle velocity(degreefs)

ts)

Fig.21 The joint angle velocity corresponding to the trajectory
without transition in Fig. 15 (axis 1; axis 2; axis 3;

axis 4; axis 5; axis 6)

is added to obtain the optimal solution in this case. In
the transition between two circles, a cubic curve is
hard to get the analytical solutions. So, a quartic Bezi-
er curve is used instead. All the three situations guar-
antee G2 continuity with transition curve adjustable.
The amount of calculation is taken into consideration in
the algorithms. This method is applicable to different
situations of transition between lines and circles. The
velocity and acceleration of the trajectory with transi-
tion is smoother and takes less time. The same result
can be got from the experiments of joint angle and joint
angle velocity. Finally, future work will take more fac-
tors into consideration to get the optimal solutions for
the three transition cases.
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