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Abstract
The selection and optimization of model filters affect the precision of motion pattern identifica-
tion and state estimation in maneuvering target tracking directly. Aiming at improving performance of
model filters, a novel maneuvering target tracking algorithm based on central difference Kalman filter
in observation bootstrapping strategy is proposed. The framework of interactive multiple model
(IMM) is used to realize identification of motion pattern, and a central difference Kalman filter
(CDKF) is selected as the model filter of IMM. Considering the advantage of multi-sensor fusion
method in improving the stability and reliability of observation information, the hardware cost of the
observation system for multiple sensors is adopted, meanwhile, according to the data assimilation
technique in Ensemble Kalman filter( EnKF) , a bootstrapping observation set is constructed by in-
tegrating the latest observation and the prior information of observation noise. On that basis, these
bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by
means of weight fusion way. The object of new algorithm is to improve the tracking precision of ob-
served target by the multi-sensor fusion method without increasing the number of physical sensors.
The theoretical analysis and experimental results show the feasibility and efficiency of the proposed
algorithm.
Key words: maneuvering target tracking, interacting multiple model (IMM), central differ-
ence Kalman filter (CDKF) , bootstrapping observation

0 Introduction

The key of target tracking is to estimate its motion
state by using the priori pattern information of target
motion and the latest observation. The availability and
reliability of an algorithm depend on two aspects inclu-
ding the matching level between motion model and real
motion pattern, and the performance of model filter.
According to the pattern and strength of target motion,
it is usually divided into non-maneuvering target track-
When an ob-

served target moves in the non-maneuvering pattern, it

ing and maneuvering target trackingm.

can be described by single model. At this point, it is
not related to the model matching problem, and the
precision of state estimation mainly relies on the per-
formance of the used filter. When the observed target
moves in maneuvering pattern, the structure of multiple
models needs to be generally adopted because of the

uncertainty of the motion model. For such problem, a
group of models usually needs to be designed to de-
scribe the different motion behavior. In the model set,
each model matches a specific behavior pattern, and
the estimation results of more than one parallel filters
are organically integrated to constitute state estimation.
According to the differences of model switching princi-
ple, the structure of multiple models is divided into
static multiple models estimation"*’ and dynamic multi-
ple models estimation"*’. The hard decision mechanism
of binary decision is adopted in the static multiple mod-
els estimation, and target motion model is identified by
the accumulative result of estimation error. Its weak-
ness is that the threshold value of model decision relies
heavily on expert knowledge. Besides, the accumula-
tive process of estimation error results in the delay of
model switching time. The typical realization of dynam-
ic multiple models estimation is IMM"*/. A kind of soft
decision mechanism of model selection is used in IMM ,
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which adopts the balance strategy between the precision
of model identification and the precision of state esti-
mation. So it avoids the dependence for expert knowl-
edge. At present, IMM is considered as the main-
stream approach to solve the maneuvering target track-
ing problem.

When state model and observation model are line-
ar or weak nonlinear, in order to obtain better perform-
ance in the process of model identification and state es-
timation, Kalman filter (KF)"' or extended Kalman
filter (EKF)'®’ are used as a model filter in IMM.
However, when they are strong nonlinear, KF and
EKF are no longer applicable. Considering that it is
much easier to approximate probability density distribu-
tion of nonlinear function than nonlinear function itself,
meanwhile, accompanied by rapid development of com-
puter performance, the filter design according to sam-
pling strategy becomes the most active research hotspot

. . . . [7,8]
in nonlinear estimation .

Recently, some domestic
and foreign scholars put forward a series of solutions for
the design and optimization of nonlinear filters. Those
realizing principles can roughly be divided into deter-
ministic sampling and random sampling. The typical
method of deterministic sampling is unscented Kalman
filter (UKF)"’. Tts basic idea is that a set of carefully
chosen sigma points are used to deliver the statistic
characteristics of random variables by UT transform,
and then the mean and the covariance can be estimated
by the weighted statistical linear regression way. lts ad-
vantages are that UKF is insensitive to system nonlinear
degree, meanwhile, it avoids the calculation process of
Jacobian matrix appearing in EKF. However, the filte-
ring precision of UKF is limited by parameter selection
of sigma point and weight, and the non-positive defi-
nite problem of estimation error covariance appears eas-
ily in filtering iteration. Similar to the implementation
of UKF, there are some solutions such as Gauss-Her-
mite filter( GHF) "'’ adopting the numerical integration
principle of Gaussian-Hermite, cubature Kalman filte-
ring( CKF) """ adopting the third-order volume integral
principle and so on. The typical methods of random
sampling are particle filter( PF)""*' and Ensemble Kal-
man filter (EnKF) ' and their common disadvanta-
ges are that the filtering precision and computation
complexity are limited by the dimension of estimated
state and the number of samples. Considering the par-
allel filtering way used in IMM, many PFs or EnKFs
need to be run at the same time. Therefore, the calcu-
lation amount will be increased sharply along with the
number of target motion models, and real-time is dam-
aged. Aiming at solving the problem, combining with
the Stirling interpolation principle, the central differ-

ence Kalman filter ( CDKF ) gives a novel realizing

U4 and it will deals

structure of deterministic sampling
with the contradiction between the estimation precision
of nonlinear state and the computational complexity.
According to above analysis, through the dynamic com-
bination of IMM and CDKF in observation bootstrap
strategy, a novel maneuvering target tracking algorithm
is designed in the paper, and the feasibility and effi-
ciency of the algorithm are verified by emulation exper-

iment.

1 The central difference Kalman filter in
observation bootstrapping strategy

1.1 Central difference Kalman filter

CDKF is considered as a classic nonlinear filter
based on the Stirling interpolation principle. In realiza-
tion of CDKF, sigma points are sampled according to
state prior distribution of observed system, and its pos-
terior distribution is expressed by sigma points using

51 Let L denote the
state dimension of the observed system, the number of

linear regression transformation

sigma points is 2L + 1. In order to make sigma points
have the same mean value, variance and higher-order
center distance with real state, sigma points and their
corresponding weight are expressed as

fi—llk—l = 'fk—llk—l =0
gi—llk—] =X, 0 +A( m)z
l=1,2,-,L (1)

§§r—l|k—l =% - A( /Pk—llk—l)l

l=L+1,L+2, 2L

{w’ = (AP =L)/A* 1=0 (2)
0 =1/2)° l=1,2,--2L

X, 114 denotes the state estimation at time k — 1, and
P,_,,,_, denotes error covariance matrix of X,_;;,_;. A

denotes the half-step length in central difference princi-

ple, its optimum value is /3 in Gaussian distribution.

( /P,_,,.,), deontes the [th column of square-rooting

matrix of P,_;,,_;. The concrete realization of CDKF is

as follows.
1) Initialization
£, = E[x,] (3)
P, =E[(x0_on)<xo_on>T} (4)

x, and X, denote the real state and the state estimation
in initial time, and P, denotes the error covariance ma-
trix of £,

2) Time update

According to Eq. (1), sigma point &, ,,,_, is sam-
pled, and then &}, , (the spread value of £, ,,, ,) is
calculated in line with the state transition function
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£,

G = f(Enn) 1=0,1,2,02L  (5)
2 j:owlgiclk—l (6)
ijowl(gilk—l _fk\k—l)(fiﬂk—l _flslk—l>T
+Fk—10-ik(rkf]>T (7)

X,,_, denotes the one-step state prediction, and P, ,

o
X ko1

Pk\ k-1

denotes the error covariance matrix of £,,_,. I_, and
o'ik denote the process noise matrix and the process
noise variance, respectively.

3) Observation update

Combining with the construction of observation
prediction £},,_, , one-step observation prediction Z,,, |,
state estimation ¥, and estimation error covariance ma-
trix P, can be obtained.

.dflk-l = h(gilk—l) (8)

Ly = zhowlé’i-lk—l (9)
2L . , .
P, = Zhowl(filk—l _Zk\k—l)(giclk—l —Zuia)
(10)
2L . .
P, = 21:0w[(§i\1¢-1 _zls\k—l)<£f’dk—l _zk\k—l)T +0'ik
(11)

K, =P_(P,)" (12)
B0 =X + K (zp - 2,,.0) (13)
P, =Py, _Kszz<Kl:)l (14)

where A( +) and 0'31 denote the observation function and

the observation noise variance, respectively. P_and P,
denote the observation error covariance matrix and the
interactive error covariance matrix between state and
observation, respectively. K, denotes the gain matrix.

1.2 CDKF in observation bootstrapping strategy

According to the multi-source information fusion
theory, the uncertainty of observation information can
be weakened by the rational utilization of multi-sensor
observation information. However, if multiple sensors
are adopted, hardware cost of observation system will
be increased inevitably. In addition, the selection of
sensor accuracy, the position configuration and the ran-
dom fault of sensor need to also be taken into account.
Referencing the data assimilation method in EnKF, the
bootstrapping observation set is structured by using the
latest observation and the statistical information of ob-
servation noise. On this basis, combining with the
weighted fusion approach, the central difference Kal-
man filter based on observation bootstrapping strategy

(CDKF-0OBS) is proposed. Let z} is the nth bootstrap-
ping observation, the sampling mechanism of Z; is ex-
pressed by

Zy =2, +v, = h(x,) +v, +v,
n=1,2,-,N (15)
It is known that Z] only relies on the existing infor-
mation including z, and a'ik. v; and v, denote zero-mean
Gaussian noise, and Cov[ v}, v,] = 0, Cov[v,, v]]
2
= {O-V'f e , m = 1,2« N. N denotes the
0 n#nq
number of bootstrapping observations. According to the
properties of the Gaussian distribution, v, + v} is sub-
ject to the zero-mean observation noise with covariance
20'3/; In order to represent all observation information
in observation bootstrapping strategy, let @), denote the
observation set consisting of the real observation and all
bootstrapping observations.
O, & lz, 2,208 (16)
In order to unify the element expression in @), let
Z, = z,. So @) is rewritten as
AR AR R (17)
According to the sampling mechanism of boot-
strapping observation, the variance of z} is twice as
large as the variance of z,. Thus, instead of Eq. (11),
observation error covariance matrix P” is calculated as

Pn —

2z

z jiowl(gilk—l - 2k\k—l ) (fi\k—l - zklk—l )T + Uik
n=20
2 jiowl<£fflk—1 = Zi) Qi = B+ (20'%)2
n=12,- N
(18)
The design idea of CDKF-OBS is to replace gz,
used in CDKF with @]. And then combining with the
realization step of standard CDKF, gain matrix Kj,
state estimation X}, and estimation error covariance ma-

trix P}, are calculated on the basis of @}, respectively.

£, =%, +K(0; -%,,._,) (19)
PZM = Pklk—l _KZPZZ(KDT (2())
K, =P_(P.)" (21)

Finally, using the way of weight distribution given
in Eq. (22), £,,, and P,,, are solved by

@i =Y (PP (22)

£y = anowzfzm (23)
N N
Py, = [zn:o(P“k l] l (24)

w, denotes the weight coefficient in fusion process

An
of X},
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2 Maneuvering target tracking algorithm
based on central difference Kalman fil-
ter in observation bootstrapping strategy

2.1 Interacting multiple model

The key of IMM is that multiple models working in
parallel are respectively used to match different modes
of maneuvering target. Among models, they are trans-
ferred according to probability matrix. Based on cutting
and merging the hypothesis of each model, the estima-
tion of multiple parallel filters is synthesized. IMM
overcomes the influence of error caused by the mis-
match between motion state and model when single
model is used to describe the estimated system. Con-
sidering the following multi-model system with model
switching characteristics

x, = f(x 0, v, uy) (25)
z, = h(x,, v,) (26)
Ye ~ (vl i) (27)

where u,_, and v, denote the process noise and the ob-
servation noise, which meet zero-mean Gaussian distri-
bution with variance a'ik and a'ik , respectively. y, de-
notes the target motion model at time %k, and it is sub-
ject to first-order Markov chain with the characteristic
of discrete time and finite state. uy = P, {y, = i} de-
=P y { Yi-1
=jly, =i and II = [, ,772,"',7TJJT denote the

notes the initial probability distribution. r;

state transition probability of priori model and the tran-
sition probability matrix, respectively, and 7, = [ 7

d
771'2"“’771']'] ’ zj:lﬂ.l:f =

the number of elements in model set. IMM adopts the

il

1,i,j,d e J. ] denotes

recursive form. The recursive process at each time
mainly includes four steps: input interaction, model
filtering, model probability updating and output inter-
action. In the input interaction stage, the prediction
probability of each model u; , and the model mixed
probability uy_,,,_, are firstly calculated, and on this
basis the state mixed estimation X} ,,,_, and the mixed
estimation error covariance matrix P, ,, , can be
solved. In the model filtering stage, by selecting suit-
able model filters, the state estimation £},, and the esti-
mation error covariance matrix Pj, are solved in paral-
lel filtering mechanism for each model. In the model
probability updating stage, it needs to calculate the
model likelihood [, and the model updating probability
i , respectively. In the output interaction stage, com-
bining with u; , £},, and P,,, obtained above three sta-
ges, X,,, and P,;, can be obtained by the following ex-

pressions.

A N
Xpw = Zi:lxk\k,U«m 0=1,2,---,J (28)
J i a Al a Al i
P, = Z_IEPM + (R = %) (B, -8, "
(29)

2.2 Interacting multiple model based on
cubature Kalman filter with observa-
tion iterated update

Considering that CDKF-OBS has high estimation
precision, CDKF-OBS is selected as the model filter in
IMM. The objective is to improve the overall perform-
ance of IMM by promoting the state estimation of each
pattern. On the basis of that, the IMM algorithm based
on CDKF in observation bootstrapping strategy ( IMMC-
DKF- OBS) is proposed. In order to facilitate under-
standing the concrete implementation of IMMCDKF-
OBS, the form of pseudo code is given.

. " ; i
Initialization:; £, = x,,Py, = P, ST = T, Mo = Mo

1) Input interaction

—i i i B 1.
Mict s Mitihet s Xpoppor and Py, are calculated by
L J i
M1 = i1 i M-
i — J i
Mi-11k-1 = Ty M1 /M-y
_ _J g i
Xt = i
i . ) )
i _ i ai <
Py = 2 o (P + (Bl = X))
i = T i
(B e = X)) I

;. denotes the model probability of model j at time k — 1,
and 77; denotes the transition probability from model i to model
;

2) Model filtering

Taking X;_,,,_, and P,_,,_, as £, and P, in
Eq. (1), calculate £,,_, and P,,_, can be calculated in ac-
cordance with Eq. (2) to Eq. (7). Combining with the boot-
strapping observation, £};; and P};i on the basis of @} , model
i can be solved by Eq. (8) to Eq. (10) and Eq. (18) to
Eq. (21). Then, according to Eq. (22) to Eq. (24), £,
and P}, can be obtained for each model.
3) Model probability updating

L. is firstly calculated by following equations.
: oL
L=l (2m)Pr'l 2
expl - [ (@ =2, (P2) (O -%,,.,)]/2}

=X, 0w

And then model probability u; after updating is expressed

as
weo= ol Y )

4) Output interaction

Combining with Eq. (28) and Eq. (29), £, and P,
can be calculated.
5) Letk = k + 1, return to step 1).
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3 Simulation result and analysis

To verify the feasibility and availability of the pro-
posed algorithm, the simulation scenario is set as the
maneuvering target tracking by using the observations
of two-coordinate radar. The sampling interval 7 is 1s
and the sampling steps are 35. The number of Monte
Carlo simulation is 100. The experiment platform
adopts PC, Pentium4 (CPU), 3.26GHz dominant fre-
quency, 2G memory, Windows 7, and the program-
ming language is Matlab2012b. The mode of target mo-
tion in radar scanning area is as follows. The estimated
target move in uniform circular mode in the first 10
sampling periods, and its turning angular velocity is
+0.3rad/s. In the sampling periods from 10 to 25 and
from 11 to 35, its turning angular velocities are
—-0.15rad/s and +0.3rad/s, respectively, where

“ ”

+7 and

173

-7 denote that the estimated target move
the direction of anticlockwise and clockwise, respec-
tively. Combining with the dynamic characteristics of
maneuvering target motion and the physical characteris-
tic of radar sensors, the system state equation and the
observation equation of estimated target are as follows.

Fx,_, +Tu ,, 1<k<]10
X, =<(F,x,_, +Tu,,, 11 <k<?25
Fx,, +Tu ,, 26<k<35
y Xy oy
7, = [ k] _ | +[ m]
0, arctan — Yo,
k
where x, = [x,, %,, v,, 7, ] is the system state vec-

tor, [x,, y,]" and [%,, y,]" are position component

and velocity component of x,, respectively. F, =

1 sin(w,7)/w, 0 (1-cos(w,r))/w,
0 cos(w, ) 0 - sin(w, 1)

0 (1-cos(w,7))/w, 1 sin(w,,7)/w,,

0 sin(w,,7) 0 cos(w,T)

is the system state transition matrix, and m = 1,2. w,
= +0.3rad/s and w, = —0.15rad/s denote the turn-
ing angular velocity in F, and F,, respectively. The

transition  probability matrix II of models is
0.95 0. 05]. The system noise u, , and u, , are sub-
0.05 0.95 ' ’

ject to zero-mean Gaussian distribution with the vari-

: are 0. 21 and 0. 41,

ancesor, andor, . o and o,
respectively, and I denotes an unit matrix with suitable

Uy p uy ° Uy p uy i

dimension. The observation noise O'ik is subject to zero-

mean Gaussian distribution with the standard deviation

0.1km 0 0 0 7/2
l-r={, ;7

T
71 .
0 0 1° 2 e 0 0] is the sys-

tem noise matrix. Number N of bootstrapping observa-
tions is 2. The initial state is x, = [8 0.4 6
0.2]". In this case, five algorithms including IM-
MUKF, IMMEKF, IMMCKF, IMMCDKF and IMMC-
DKF-OBS are compared in the simulations, among
them, the top four types of algorithms use UKF, EKF,
CKF and CDKF as the model filter in IMM.

Results from Fig. 1 to Fig. 5 show the model matc-
hing probability of five algorithms. In total, it is easy
to see the model matching probability of IMMCDKF
and IMMCDKF-OBS are superior to IMMUKF, IM-
MEKF and IMMCKF, furthermore, IMMCDKF-OBS is
better than IMMCDKEF. The reason is that the pros and
cons of model filter selection directly effect the reliabil-
ity of model identification in IMM. Because of introdu-
cing observation bootstrapping strategy in IMMCDKF-
OBS, the performance of CDKF-OBS is superior to
CDKF. When the feature is introduced into IMM, it
reflects the improvement of real-time, precision and
Fig.6 and Fig.7
show the RMSE comparison of five algorithms. It is
clear that the RMSE of IMMCDKF-OBS is less than
other four algorithms, that is, the precision of IMMCD-
KF-OBS is the highest. From the figures one can also
know that RMSE of IMMCDKF-OBS always keeps at
low level and relatively stabilized. Table 1 quantita-

stability of models identification.

tively gives the mean of RMSE and the average time
over 100 independent runs. It can be clearly found that
the data of mean of RMSE describing algorithm filtering
precision verifies the above analyzed results. The time
cost is used to assess the computational complexity of
these algorithms. The above results are conducive to
reasonable selection of filters in practical engineering
applications. It can be seen that the run time of IM-
MEKF is minimum, but its precision is also the lowest.
The run time of IMMCDKF-OBS is slightly increased rel-
ative to IMMCDKEF. However, its precision is certainly

—=— model 1
—e— model 2

1.0 |

0.8 A

0.6

0.4 4

0.2 4

The probability of model

0 5 10 15 20 25 30 35
Sampling steps

Fig.1 IMMUKF
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Tablel The comparison for the mean of RMSE and the average time over 100 independent runs
Algorithm Horizontal direction (km) Vertical direction (km) Time cost (s)
IMMUKF 0.0648 0.1165 0. 0096
IMMEKF 0.0615 0.1118 0.0025
IMMCKF 0. 0605 0.1123 0.0138
IMMCDKF 0.0433 0.0721 0.0096
IMMCDKF-OBS 0.0289 0.0379 0.0352

superior to the other algorithms.

According to the

above results shown in this paper, the five types of ma-

neuvering target tracking algorithms provide guidance

significance in the practical engineering application.
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The significance of above results gives the reasonable
selection direction of model filter in the maneuvering
target tracking system.

4 Conclusions

The method of interactive multiple model solves
the model matching problem by sacrificing filtering pre-
cision, a maneuvering target tracking algorithm based
on CDKF in observation bootstrapping strategy is pro-
posed. In process of IMMCDKF-OBS, through the dy-
namic connection among observation bootstrapping
strategy, central difference Kalman filter and interac-
ting multiple model, the valid identification and esti-
mation of the mode and state for maneuvering target
tracking are realized. Compared with the existing pro-
cessing method, the advantages of the new algorithm
are as follows: Firstly, based on the method of interac-
ting multiple model, the problem of state estimation in
multi-model system is solved in the process of IMMCD-
KF-OBS. Secondly, observation bootstrapping strategy
is used to simulate observation information of multiple
sensors and the information will be extracted and uti-
lized by weight fusion strategy. New algorithm improves
filtering precision on condition that hardware cost of the

system is of no growth.
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