HIGH TECHNOLOGY LETTERSIVol. 23 No.2|June 2017 I pp. 185 ~ 190

doi:10.3772/j. issn. 1006-6748.2017.02. 010

A case study of 3D RTM-TTI algorithm on multicore

and many-core platforms

)

Zhang Xiuxia (7KFEEE) @™ | Tan Guangming* , Chen Mingyu®, Yao Erlin*
( " State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, P. R. China)

( ™ University of Chinese Academy of Sciences, Beijing 100049, P. R. China)

Abstract
3D reverse time migration in tiled transversly isotropic (3D RTM-TTI) is the most precise mod-

el for complex seismic imaging. However, vast computing time of 3D RTM-TTI prevents it from be-

ing widely used, which is addressed by providing parallel solutions for 3D RTM-TTI on multicores

and many-cores. After data parallelism and memory optimization, the hot spot function of 3D RTM-
TTI gains 35. 99X speedup on two Intel Xeon CPUs, 89. 75X speedup on one Intel Xeon Phi,
89.92X speedup on one NVIDIA K20 GPU compared with serial CPU baseline. This study makes
RTM-TTTI practical in industry. Since the computation pattern in RTM is stencil, the approaches also

benefit a wide range of stencil-based applications.

Key words: 3D RTM-TTI, Intel Xeon Phi, NVIDIA K20 GPU, stencil computing, many-

core, multicore, seismic imaging

0 Introduction

3D reverse time migration in tiled transverse isot-
ropy (3D RTM-TTI) is the most precise model used in
complex seismic imaging, which remains challenging
due to technology complexity, stability, computational
cost and difficulty in estimating anisotropic parameters
for TTI media''?'.
model was first introduced in the 1983"°" by Baysal.
However, the 3D RTM-TTI model is more re-

[1,2,4
cent ’ 4]

Reverse time migration ( RTM )

, which is much more precise and intricate in
complex seismic imaging. Normally, RTM-TTI needs
thousands of iterations to get image data in particular
precision. In our practical medium-scale data set, it
takes around 606 minutes to iterate 1024 times with
five processes on Intel Xeon processors. It will cost
more when dealing with larger dataset or iterating more
times in order to get more accurate result in future ex-
periments. Enormous computing time prevents 3D
RTM-TTI from being widely used in industry.

The limitations of current VLSI technology resul-
ting in memory wall, power wall, ILP wall and the de-
sire to transform the ever increasing number of tran-
sistors on a chip dictated by Moore’ s Law into faster
computers have led most hardware manufacturers to de-

sign multicore processors and specialized hardware ac-
celerators. In the last few years, specialized hardware

accelerators such as the Cell B. E. accelerators™’

- ( GPG-
PUs) '°! have attracted the interest of the developers of

general-purpose graphics processing units

scientific computing libraries. Besides, more recent In-
tel Xeon Phi'”' also emerges in GraphS00 rankings.
High performance energy efficiency and high perform-
ance price ratio feature these accelerators. Our work is
trying to address the enormous computing time of 3D
RTM-TTI by utilizing them.

The core computation of RTM model is a combina-
tion of three basic stencil calculations; x-stencil, y-
stencil and z-stencil as explained later. Although the
existing stencil optimization methods could be adopted
on GPU and CPU, it’ s more compelling than ever to
design a more efficient parallel RTM-TTI by consider-
ing the relationship among these stencils. Besides,
there is not much performance optimization research on
Intel Xeon Phi. Fundamental research work on Intel
Xeon Phi is needed to find their similarity and differ-
ence of the three platforms.

In this paper, implementation and optimization of
3D RTM-TTI algorithms on CPUs, Intel Xeon Phi and
GPU are presented considering both architectural fea-
tures and algorithm characteristics. By taking the algo-

(@D Supported by the National Natural Science Foundation of China (No. 61432018).

@2 To whom correspondence should be addressed. E-mail; zhangxiuxia@ ict. ac. cn

Received on Apr. 16, 2016



186

HIGH TECHNOLOGY LETTERSIVol. 23 No. 21| June 2017

rithm characteristics into account, a proper low data
coupling task partitioning method is designed. Consid-
ering architecture features, a series of optimization
methods is adopted explicitly or implicitly to reduce
high latency memory access and the number of memory
accesses. On CPU and Xeon Phi, we start from paral-
lelization in multi-threading and vectorization, kernel
memory access is optimized by cache blocking, huge
page and loop splitting. On GPU, considering GPU
memory hierarchy, a new 1-pass algorithm is devised to
reduce computations and global memory access. The
main contributions of this paper can be summarized as
follows ;

1. Complex 3D RTM-TTI algorithm is systemati-
cally implemented and evaluated on three different
platforms; CPU, GPU, and Xeon Phi, which is the
first time to implement and evaluate 3D RTM-TTI on
these three platforms at the same time.

2. With deliberate optimizations, the 3D RTM-
TTI obtains considerable performance speedup which
makes RTM-TTI practical in industry.

3. Optimization methods are quantitatively evalua-
ted which may guide other developers and give us some
insight about architecture in software aspect. By analy-
zing the process of designing parallel codes, some gen-
eral guides and advice in writing and optimizing paral-
lel program on Xeon Phi, GPUs and CPUs are given.

The rest of the paper is organized as follows: An
overview of algorithm and platform is given in Section 1.
Section 2 and 3 highlight optimization strategies used in
the experiments on CPU, Xeon Phi and GPU respec-
tively. In Section 4, the experimental results and anal-
ysis of the results are presented. Related work is dis-
cussed in Section 5. At last, conclusion is done in
Section 6.

1 Background

To make this paper self-contained, a brief intro-
duction is given to 3D RTM-TTI algorithm, then the ar-
chitecture of Intel MIC and NVIDIA GPU K20 and pro-

gramming models of them are described respectively.

1.1 Sequential algorithm

RTM model is a reverse engineering process. The
main technique for seismic imaging is to generate
acoustic waves and record the earth’ s response at some
distance from the source. It tries to model propagation
of waves in the earth in two-way wave equation, once
from source and once from receiver. The acoustic iso-
tropic wave can be written as partial differential func-

tions'®. Fig. 1 shows the overall 3D RTM-TTI algo-

rithm, which is composed of shots loop, nested itera-
tion loop and nested grid loop. Inside iteration, it com-
putes front and back propagation wave field, boundary
processing and cross correlation. In timing profile,
most of the computation time of 3D RTM-TTI algorithm
is occupied by the wave field computing step. Fig.?2
shows the main wave updating operations within RTM
after discretization of partial differential equations.
Wave updating function is composed of derivative com-
puting, like most finite differential computing, they be-
long to stencil computing. Three base stencils are com-
bined to form xy, yz, xz stencils, as Fig.3 shows.
Each cell in wave field needs a cubic of 9 x9 x9 to
update as Fig.4 shows. All these three stencils have
overlapped memory access.

1. function 3D-RTM-TTI
2. /% Input:shots */
3./ # Ouput: image * /

4. Read parameters, compute parameters

5. for All shot points do

6 for All iterations do

7. for All main grids do

8 call Tstep-2DC //update wave P,Q
9 end for

10 for Boundry area do

11; Spong boundray absorbing for P, Q
12; end for

13, Update P and Q

14 Cross-correlation and update image
15: end for

16: end for

Fig.1 Overall 3D-RTM-TTT algorithm

: function Tstep-2DC

: /% Input:p, q*/

: /% Ouput:pp, qq(new p and q) */

: for All main grids do

compute dpx, dpy

compute dgx, dqy

compute dpx2, dpy2, dpxy, dpyz, dpxz
compute dqx2, dqy2, dqxy, dqyz, dgxz

O 00 NN R W=

:  combine them to get pp, qq
10: end for

Fig.2 Wave updating function

1.2 Architecture of Xeon Phi

Xeon Phi (also called MIC)'" is a brand name
given to a series of manycore architecture. Knight Cor-
ner is the codename of Intel’ s second generation many-
core architecture, which comprises up to sixty-one pro-
cessor cores connected by a high performance on-die
bidirectional interconnect. Each core supports 4 hard-
ware threadings. Each thread replicates some of the ar-
chitectural states, including registers, which makes it
very fast to switch between hardware threads. In addi-



HIGH TECHNOLOGY LETTERSIVol. 23 No. 2| June 2017

187

tion to the IA cores, there are 8 memory controllers
supporting up to 16 GDDRS channels delivering up to
5.5GT/s. In each MIC core, there are two in-order
pipelines: scalar pipeline and vector pipeline. Each
core has 32 registers of 512 bits width. Programming
on Phi can be run both natively like CPU and in offload
mode like GPU.

1.3 Kepler GPU architecture

NVIDIA GPU'® is presented as a set of multipro-
cessors. Each one is equipped with its own CUDA
cores and shared memory ( user-managed cache ).
Kepler is the codename for a GPU microarchitecture
developed by NVIDIA as the successor to the Fermi. Tt
has 13 to 15 SMX units, as for K20, the number of
SMX units is 13. All multiprocessors have access to
global device memory. Memory latency is hidden by
execuling thousands of threads concurrently. Registers
and shared memory resources are partitioned among the
currently executing threads, context switching between
threads is free.

z i. ,,,,,, Q.. @ Center point
@

Ooo.f ® .. 0 dx,dx2
%éol """ o o © 0 o
® L gdzdz2
K B At

'0® 8000 0% 0w

¢¢ o 0 o 0 @ dxz
v/ @ dyz

@ Center point

p Neighbors
area

O Point in
neighbor
area

Fig.4 Stencil in a cubic

2 Implementation and optimization on In-
tel Xeon Phi and CPU

Optimizing RTM on Intel Xeon Phi and CPU is
similar due to similar programming model, the optimi-
zation methods of these two platforms are proposed in
detail in this section.

2.1 Parallelization
2.1.1 Multi-threading

Intel threading building blocks (TBB) thread li-
brary is used to parallelize 3D RTM-TTI codes on CPU
and Xeon Phi. Since grid size is much larger than the
thread size, the task is partitioned in 3D dimension
sub-cubic. Fig.5 demonstrates TBB template for 3D
task partition, and the task size is (bx, by, bz). On
CPU and Xeon Phi platforms, each thread computes
deviations in the sub-cubic. An automatic tuning tech-
nique is used to search the best number of threads. For
RTM application, the optimal number of threads on
Xeon Phi is 120, the best threads number of Intel Xeon
CPU NUMA-core is 12 threads.

parallel for( blocked range3dhinti(0, (nz-9)/bz+1, 1,0, (ny-
9)/by+1,1,0, (nx-9)/bx+1,1),
[ =] (const blocked range3dhintir)
for intk = r. pages().begin(); k! =r.pages().end(); + +kdo
for int j=r. rows( ). begin(); j! =r.rows().end(); + +jdo
for int i =r. cols( ). begin(); ¢! =r.cols().end(); + +ido
int i =(kxbz+4) X ny xnx + (j xby +4) Xnx +i X bx +4;
intni =(k x((ny=9)/by+1) x((nx=9)/bx +1) +j x (( nx
-9)/bx +1) +i) x (bz x by X bx)
//stencil computing
end for
end for
end for

)

Fig.5 Parallel template of stencil function using TBB

2.1.2

One of the most remarkable features of Xeon Phi
is its vector computing unit. Vector length is 512 bits,
which is larger than CPU’ s vector 256 bits AVX vec-
tor. One Xeon Phi vector instruction can be used to
compute 512/8/4 = 16 single float type data at once.
Vector instruction is used by unrolling the innermost

Instruction level parallel; SIMDization

loop and using #pragma simd intrinsic.

2.2 Memory optimization
2.2.1 Cache blocking

Cache blocking is a standard technique for impro-
ving cache reuse, because it reduces the memory band-
width requirement of an algorithm. The data set in a
single computing node in our application is 4.6GB,
whereas cache size for the processors in CPU and Xeon
Phi is limited to a few MBs. The fact that higher per-
formance can be achieved for smaller data sets fitting
into cache memory suggests a divide-and-conquer strat-
egy for larger problems. Cache blocking is an effect
way to improve locality. Cache blocking is used to in-
crease spatial locality, i. e. referencing nearby memory
addresses consecutively, and reduce effective memory
access time of the application by keeping blocks of fu-
ture array references at the cache for reuse. Since the



188

HIGH TECHNOLOGY LETTERSIVol. 23 No. 21| June 2017

data total used is far beyond cache capacity and non-
continuous memory access, a cache miss is unavoida-
ble. It’ s easier to implement cache blocking on the
basis of our previous parallel TBB implementation, be-
cause TBB is a task based thread library, each thread
can do several tasks, so a parallel program can have
more tasks than threads. The task size (bx, by, bz) is
adjusted to small cubic that could be covered by L2
cache.
2.2.2  Loop splitting

Loop splitting or loop fission is a simple approach
that breaks a loop into two or more smaller loops. It is
especially useful for reducing the cache pressure of a
kernel, which can be translated to better occupancy
and overall performance improvement. If multiple oper-
ations inside a loop body reply on different inputs and
these operations are independent, then, the loop split-
ting can be applied. The splitting leads to smaller loop
bodies and hence reduces the loop register pressure.
The data flow of P and Q are quite decoupled. It’ s bet-
ter to split them to reduce the stress of cache. Iterate
on dataset P and () respectively.
2.2.3 Huge page table

Since TLB misses are expensive, TLB hits can be
improved by mapping large contiguous physical memory
regions by a small number of pages. So fewer TLB en-
tries are required to cover larger virtual address ranges.
A reduced page table size also means a reduction mem-
ory management overhead. To use larger page sizes for
shared memory, huge pages must be enabled which al-
so locks these pages in physical memory. The total
memory used is 4. 67GB, and more than 1M pages of
4kB size will be used, which exceeds what L1 and L2
TLB can hold. By observation of the algorithm, it is
found that P and Q are used many times, huge pages
are allocated for them. Regular 4kB page and huge
page are mixedly used together. The using method is
simple. First, interact with OS by writing our input in-
to the proc directory, and reserve enough huge pages.
Then use mmap function to map huge page files into
process memory.

3 Implementation and optimizations on GPU

3.1 GPU implementation

The progress of RTM is to compute a serials of de-
rivatives and combine them to update wave field P and
Q. In GPU implementation, there are several separate
kernels to compute each derivative. Without losing
generality, we give an example how to compute dxy in
parallel. The output of this progress is a 3D grid of
dxy. Task partition is based on result dxy. Each thread

compute nz points, each block compute bx + by panel,

and lots of blocks will cover the total grid.

3.2 Computing reduction and 1-pass algorithm
optimization

Fig. 3 shows several kinds of derivatives. The tra-
ditional 2-pass computation is to compute 1-order de-
rivative dx, dy, dz, and then compute dxy, dyz, dxz
based on it. This method will bring additional global
reads , global writes and storage space. A method to
reduce global memory access is devised by using
shared memory and registers: 1-pass algorithm. Similar
to 2-pass algorithm, each thread computes a z-direction
result of dxy. The 1-order result xy-panel is stored in
shared memory, and register double buffering is used
to reduce shared memory reading. Fig. 6 shows a snap-
shot of register buffering.

: @ Current computing
| cell

. [ Register window

- (7)) Cell just done

P @ Cell to read next

- [ Current computing
panel

P o e e o e e

1 Current shared
memory window

Fig. 6

1-pass computing window snapshot
4 Evaluation

4.1 Experiment setup

The experiment is conducted on three platforms.
The main parameters are listed in Table 1. The input
of RTM is single pulse data with grid dimension of 512
x312 x301. The algorithm iterates 1000 times. The

time in this section is the average time of one iteration.

Table 1  Architecture parameters
Item Xeon Xeon Phi TESLA
E5-2670 7120P K20
# of cores 8 61 2496
Hardware Threads 16 240 2496
Clock Frequency 2.6GHz 1.238GHz 706 MHz
Bandwidth (GB/s) 51.2 352 208
Peakflops 31.4 1010(225w) 1170

(Single, Gflops)

4.2 Opverall performance

Fig. 7 shows performance comparison of three plat-
forms. Our optimized 3D RTM-TTI gains considerable
performance speedup. The hotspot function of 3D RT-
MTTI gains 35.99X speedup on two Intel Xeon CPUs,



HIGH TECHNOLOGY LETTERSIVol. 23 No. 2| June 2017

189

89.75X speedup on one Intel Xeon Phi, 89. 92X
speedup on one NVDIA K20 GPU compared with serial
CPU baselines. Our work makes RTM-TTI practical in
industry. The result also shows obviously that accelera-
tors are better at 3D RTM-TTI algorithm than tradition-
al CPUs. The hotspot function gains around 2.5X
speedup on GPU and Xeon Phi than that on two CPUs.
On one hand, because the data dependency in RTM al-
gorithm is decoupled, plenty of parallelism could be
threads, and
For example, Xeon Phi has

Besides that, it has 512-bit width
Tesla K20 GPU has 2496 cores.

accelerators are good at data parallelism com-

applied. Accelerators have more cores,
wider vector instructions.
60 computing cores.
vector instruction.
Hence,
puting. RTM algorithm is a memory bounded applica-
tion. Accelerators like Xeon Phi and GPU have 7X and
5X more theoretical memory bandwidth than CPU as
shown in Table 1.

14000 , 13249.46
12000
10000
8000
6000
4000

Execution time (ms)

2000 368.17
0 I

CPUBase line 2CPU-Node IMIC-KNC 1K20-GPU

Fig.7 Performance evaluations of three platforms

147.63  147.35

4.3 Performance analysis

On CPU, the wave updating function gains
35.99X speedup compared with single thread CPU
baseline. 20.12X speedup comes from parallelism of
multi-threading and vector instruction as 1. 96X comes
from memory optimization, such as cache blocking,
loop splitting and huge page configuring, as Figs 8 and
9 show.

Fig. 10 and Fig. 11 show the parallelism and mem-
ory optimization performance of Xeon Phi respectively.
RTM gains 13. 81X for using 512-bit vector instruction
14000 | 13249.46
12000
10000
8000
6000

4000
2000 1192.79

Execution time (ms)

658.43

0 Serial MT MT-Veo

Fig.8 Parallelism evaluation on CPU
(MT ;multi-threading, Vec: vectorization )

700+ 658.43
600+
500
4001 343.07 336.4
3004
2004
100

0-

Execution time (ms)

MT-Vec MT-Vec-Ca MT-Vec-Ca-Sp

Fig.9 Memory optimization on CPU
(Ca; cache blocking, Sp:splitting)

on Phi. From Table 1, it is seen that the ideal speedup
for single float SIMD on Xeon Phi is 16X. SIMD is
near to the ideal limit. Tt’ s due to cache miss which
will make the pipeline stalled. The multi-threading on
Xeon Phi gains 40. 13X speedup, there are 60 cores on
Xeon Phi. Xeon Phi has very good scalability in multi-
RTM gains
2.08X speedup due to cache blocking, because cache
blocking reduces cache miss rate and provides good
memory locality which will benefits SIMD and multi-
threading. RTM gains 1.44X by using huge page for
reducing L2 TLB miss rate. Loop splitting gains 1. 69X
When
compared on the same platform, 2806. 13X speedup is
gained compared with the single thread Xeon Phi base-
line. Of this, 554.53X is from parallelism of multi-
threading and vector instruction, 5.06X is achieved
from memory optimization. Here Intel Phi is more sen-

threading and wide vector instruction.

speedup to reduce cache pressure in advance.

sitive to data locality according to more speedup gains
from explicit memory optimization.

As Fig. 12 shows, RTM gains 1.23X speedup by
using 1-pass algorithm on GPU, and 1.20X speedup

by using texture memory in 1-pass algorithm. In total,
450000 | 414269.57

400000
350000
300000
250000
200000
150000
100000
50000

Execution time (ms)

29977.97 747.07
. ’

Serial Vec MT
Fig. 10 Parallelization on Phi

800, 747.07
700
600

500
400 35833

300 249 69

200 147 63

100
0

Execution time (ms)

MT-Ca MT- Ca-HP MT- Ca-HP-Sp

Fig. 11 Memory optimization on Phi (HP:huge page)



190

HIGH TECHNOLOGY LETTERSIVol. 23 No. 21| June 2017

4001 14378
~ 350 :
£ 300
g 250 215.81
= 175.78
g 200 147.35
g 150
Q
2 100
[sa)

50

0

2Baseline 2Shared  1Shared 1SharedTex
Fig.12 Memory optimization on GPU evaluation

(2:2-pass, 1:1-pass, shared:using shared

memory, Tex: using texture memory )

the hot spot function gains 2.33X speedup compared
with  the parallel GPU

Threads block and grid selection are very important to

baseline implementation.
the performance of application. Making full use of fast
memory, such as shared memory and texture memory,
will benefit application a lot. Explicit data locality plays
an important role in application performance on GPU.

5 Related work

Araya-Polo'®’ assessed RTM algorithm in three
kinds of accelerators;: IBM Cell/B. E. , GPU, and FP-
GA, and suggested a wish list from programming mod-
el, architecture design. However they only listed some
optimization methods, and didn’ t evaluate the impact
quantitatively on RTM performance. Their paper was
published earlier than Intel Xeon Phi, so performance
about Xeon Phi is not included in that paper. In this
paper, we choose much more popular platforms, and
we evaluated each optimization method quantitatively.
Heinecke'"! discussed performance of regression and
classification algorithms in data mining problems on In-
tel Xeon Phi and GPGPU, and demonstrated that Intel
Xeon Phi was better at sparse problem than GPU with
less optimizations and porting efforts. Micikevicius'""
optimized RTM on GPU and demonstrated considerable
speedups. Our work differs from his in that the model
in his paper is average derivative method, our’ s model

is 3D RTM-TTI, which is more compelling.
6 Conclusion and Future work

In this paper, we discussed the enormously time-
consuming but important seismic imaging application
3D RTM-TTI by parallel solution, and presented our
optimization experience on three platforms; CPU, GPU,
and Xeon Phi. To the best of our knowledge this is the
first simultaneous implementation and evalution of 3D
RTM-TTT on these three new platforms. Our optimized
3D RTM-TTI gains considerable performance speedup.

Optimization on the Intel Xeon Phi architecture is si-

miliar to CPU due to similar x86 architecture and pro-
gramming model. Thread parallelization, vectorization
and explicit memory locality are particularly critical for
this architecture to achieve high performance. Vector
instruction plays an important role in Xeon Phi, and
loop dependence should be dismissed in order to use
them, otherwise, performance will be punished. In
general, memory optimizations should be explicaed
such as using shared memory, constant memory etc.
To benefit GPU applications a lot, bank conflicts
should be avoided to get higher practical bandwidth. In
future, we will evaluate our distributed 3D RTM-TTI

algorithm and analysis communications.

References

[ 1] Alkhalifah T. An acoustic wave equation for anisotropic
media. Geophysics, 2000, 65(4) :1239-1250

[ 2] Zhang H, Zhang Y. Reverse time migration in 3D hetero-
geneous TTI media. In: Proceedings of the 78th Society
of Exploration Geophysicists Annual International Meet-
ing, Las Vegas, USA, 2008. 2196-2200

[ 3] Baysal E, Kosloff D D, Sherwood ] W. Reverse time mi-
gration. Geophysics, 1983, 48(11) :1514-1524

[ 4] Zhou H, Zhang G, Bloor B. An anisotropic acoustic wave
equation for modeling and migration in 2D TTI media.
In: Proceedings of the 76th Society of Exploration Geo-
physicists Annual International Meeting, San Antonio,
USA, 2006. 194-198

[ 5] Gschwind M, Hofstee H P, Flachs B, et al. Synergistic
processing in cell’ s multicore architecture. IEEE Micro,
2006, 26(2) :10-24

[ 6] NVIDIA Cooperation, NVIDIA’s next generation cuda
compute architecture: Fermi. http://www. nvidia. com/
content/pdf/fermi _ white _ papers/nvidia _ fermi _ com-
pute _ architecture _ whitepaper. pdf, White Paper, 2009

[ 7] Intel Cooperation, Intel Xeon Phi coprocessor system soft-
ware developers guide. https://www. intel. com/content/
www/ us/ en/ processors/ xeon/ xeon-phi-coprocessor-sys-
tem-software-developers-guide. html, White Paper, 2014

[ 8] Micikevicius P. 3D finite difference computation on GPUs
using CUDA. In: Proceedings of the 2nd Workshop on
General Purpose Processing on Graphics Processing
Units, Washington, D. C., USA, 2009. 79-84

[ 9] Araya-Polo M, Cabezas J, Hanzich M, et al. Assessing
accelerator-based HPC reverse time migration. [EEE
Transactions on Parallel and Distributed Systems, 2011,
22(1) :147-162

[10] Heinecke A, Klemm M, Bungartz H J. From GPGPU to
many-core: NVIDIA Fermi and Intel many integrated core
architecture. Computing in Science & Engineering , 2012,
14(2) . 78-83

[11] Zhou H, Ortigosa F, Lesage A C, et al. 3D reverse-time
migration with hybrid finite difference pseudo spectral
method. In: Proceedings of the 78th Society of Explora-
tion Geophysicists Annual Meeting, Las Vegas, USA,
2008. 2257-2261

Zhang Xiuxia, born in 1987, is a Ph. D candi-
date at Institute of Computing Technology, Chinese
Academy of Sciences. Her research includes parallel
computing, compiler and deep learning.





