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Abstract
Big data analytics is emerging as one kind of the most important workloads in modern data cen-

ters. Hence, it is of great interest to identify the method of achieving the best performance for big

data analytics workloads running on state-of-the-art SMT ( simultaneous multithreading) processors,

which needs comprehensive understanding to workload characteristics. This paper chooses the Spark

workloads as the representative big data analytics workloads and performs comprehensive measure-

ments on the POWERS platform, which supports a wide range of multithreading. The research finds

that the thread assignment policy and cache contention have significant impacts on application per-

formance. In order to identify the potential optimization method from the experiment results, this

study performs micro-architecture level characterizations by means of hardware performance counters

and gives implications accordingly.

Key words: simultaneous multithreading ( SMT) , workloads characterization, POWERS , big

data analytics

0 Introduction

Simultaneous multithreading (SMT) has been in-
troduced to modern processor designs for over a dec-
ade'''. Tt permits instructions from more than one
thread to be executed in any given pipeline stage at a
time and delivers better processor resource utilizations
by executing instructions of other threads when there is
a pipeline stall. For the SMT technology has the ability
to improve the parallelization of computations and
shows the potential to increase system throughput, it
has been adopted in most of current generations of mi-
croprocessors. The state-of-the-art IBM POWERS pro-
cessor even doubles the hardware thread parallelism in
comparison with its predecessor (i.e., POWER7 + )
and supports up to 8-way multithreading (SMT8)*'.

Many studies have proved that SMT can substan-
tially increase the performance of various types of ap-

3] However how big data analytics applica-

plications
tions, which are emerging as one of the major work-
loads in modern data centers, performing on SMT pro-
cessors has not been well investigated. Since Spark'®’
is gaining a wide industry adoption in big data domain
due to its superior performance, simple interfaces, and

a rich library for analysis and calculation, this work
chooses the Spark based workloads as the representa-
tive big data analytics workloads and presents measure-
ments on the POWERS platform. By tuning the SMT
modes among ST ( single-threaded) , SMT2, SMT4 and
SMTS8, this study investigates the processor behaviors
using hardware performance counters. Experimental re-
sults show that the thread assignment policy and cache
contention play important roles in application perform-
ance.

This study is a part of a large project of dynami-
cally auto-tuning SMT modes to accelerate big data an-
alytics workloads in modern data centers. The observa-
tions from workload characterizations can help design of
such a project. The observations and findings in this
paper are summarized as follows;

1) The thread assignment policy has a significant
performance impact. An up to 9.6 X performance gap
exists between the proper one and the improper one.

2) The SMT technology can achieve performance
gains (up to 33% ) for big data analytics workloads
and different workloads favour diverse SMT modes.

3) Cache contentions may obviate the perform-
ance improvements brought by the SMT technology.

The remainder of the paper is organized as fol-
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lows. Section 1 states the hardware and software back-
grounds. Section 2 lists the experimental methodology.
Section 3 presents the micro-architectural characteris-
tics of the Spark workloads. Section 4 discusses the re-
lated work and Section 5 concludes the paper.

1 Background

1.1 POWERS processor

POWERS'*' provides many new features compared
with its predecessor (i.e., POWER7 + ). It doubles
the hardware thread parallelism and supports up to 8-
way multithreading. The eight hardware threads in a
POWERS processor are split into two thread-sets: the
even thread-set (TO, T2, T4, and T6) and the odd
thread-set (T1, T3, T5, and T7). Each thread-set
occupies half of the issue queue entries and half of the
execution pipelines. The POWERS processor improves
thread-switch time and removes thread placement re-
strictions. That is to say, any software thread can be
run on any thread-set.

The POWERS architecture, like most modern pro-
cessors, can dispatch groups of machine instructions
every cycle. Groups are dispatched into the execution
pipeline in order and completed in order. Instructions
or internal operations in a group are executed out of or-
der, and all instructions in a group must be finished
before the group retired.

1.2 Spark

Spark'®’ is a general in memory computing engine
for big data processing. The basic idea of Spark is
keeping the working set of data in the memory. The
distributed  dataset
(RDD) provides a restricted form of shared memory,

proposed abstraction resilient
based on coarse grained transformations rather than
fine-grained updates to share state so as to achieve fault
tolerance efficiently.

The Spark cluster works in a master-slave mode.
The Spark application needs to connect to the cluster
master, which allocates resources across applications.
Once connected, Spark acquires workers in the clus-
ter, which are processes that run computations and
store data for the Spark application. The workers are
long-lived processes that can store RDD partitions in
RAM across operations'®’. By default, the Spark
framework allocates one worker instance per server in
the cluster and assigns all cores to the worker instance.

The Spark shows partitioned parallelism so as to
process big data efficiently. By partitioning the input
data set, each Spark job is split into many independent
tasks, working on a part of the data in parallel. Each

task can be given to a hardware thread to execute in
parallel with the other hardware threads and there is no
data racing among them. So the Spark system has the
potential to scale with the number of hardware threads.

2 Experimental methodology

2.1 System Configuration

IBM POWER S822L (8247-221.) server is used
in this paper. The S822L server is based on POWERS
technology and it includes four sockets. Each socket
has six out-of-order cores with speculative pipelines.
Table 1 lists the main hardware configurations of the
server. The server runs Ubuntu 15. 04 with the Linux
kernel version 3.19.0. One of the cores has been de-
configured due to hardware failures. So in the system,
there are 23 cores online and up to 184 hardware

threads (in SMT8 mode).

Table 1 Hardware configurations
CPU type IBM POWERS
# Cores 24
# Threads per core 8
#Sockets 4
Architecture ppcbdle
Byte Order Little Endian
L1 Data Cache 64kB
L1 Instruction Cache 32kB
L2 Cache (unified) 512kB
L3 Cache (unified) 8 MB per core
Memory 256 GB
Disk 4x1TB

2.2 Benchmarks

Five Spark based workloads from BigDataBench'”
are characterized in this section. Table 2 presents the
problem size and the corresponding data type for each
of them. This paper deploys a Spark cluster in standa-
lone mode with Spark version 1. 0.2 and uses HDFS
provided by Hadoop version 1.2.1. IBM ]9 is used as
the Java runtime environment implementation, which

supports Java version 1.7.0.

Table 2 Big data analytics workloads

Workload Problem size Data type
Sort 17.5GB sequence file
Wordcount 17.5GB text
Grep 17.5GB text
Naive Bayes 15.7GB text
PageRank 16.5GB graph
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2.3 Performance data

Wall-clock time is used to determine the execution
time. And hardware performance counters are used to
understand the processor pipeline behaviors. Perf®’ | a
profiling tool for Linux 2.6 + based system, is used to
access the hardware performance counters by specifying
the performance event numbers and corresponding unit
masks. This paper collects about 10 events which can

be found in Ref. [9].
3 Measurements and findings

The SMT technology has double-sided affects. Tt
can hide short duration pipeline stalls, but may in-
crease the pressure of resource allocations in pipelines.
For instance, when instructions from one thread are de-
layed waiting for data because of cache misses, instruc-
tions from other threads can continue to execute. How-
ever, it may increase the overall cache misses for
cache contentions. In this paper, both sides are ob-
served. At the same time, the study finds that the
thread assignment policy will affect performance signifi-
cantly. The following parts of this section show the per-
formance data of diverse thread assignment policies and

SMT modes.

3.1 Single worker instance

The experiments are first running with the default
Spark thread assignment policy: allocating one worker
instance (i.e., JVM) for each server and assigning all
cores to the worker instance. So when the SMT mode is
changed, the number of hardware thread that can be
used by the system is also changed.

1) Speedup

Fig. 1 shows the performance of Spark applications
among different SMT modes. The data processing speed
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Fig.1 Single worker instance SMT speedup

of the ST mode (i.e. , single threaded) is used as the
baseline. The figure shows the normalized processing
speed as the performance (speed up). Contrasted with
expected results, the SMT technology does not achieve
any performance gain. On the contrary, the SMT tech-
nology seems to degrade the performance: the higher
SMT modes the more performance degradations.

2) CPI Stack

In order to find what happens in the pipeline when
different SMT modes are used, the processor pipeline
statistics are collected by accessing hardware perform-
ance counters.

Fig.2 illustrates the normalized CPI stacks of
POWERS8 cores on different SMT modes. The CPI
stack apportions the total CPU time ( cycles) among
the five parts in the execution pipeline on a per-thread
basis as shown in Fig. 2. An instruction group can con-
tain up to eight PPC ( Power PC) instructions. When
they are all finished, the group entry in the global com-
pletion table (GCT) is removed and the next group is
eligible for computation. These cycles are referred to as
PM GRP CMPL. If there is no new instruction dis-
patched for this thread, the global completion table will
have no slot for the thread. These cycles are referred to
as PM  GCT NOSLOT CYC, which are also known
as front end stalls. The computation stall cycles (PM _
CMPLU _ STALL) are caused by the limited computa-
tion resources or less of data. The PM _ CMPLU _
STALL _THRD also means computation stall, howev-
er, it is due to thread conflicts. That is to say that an
instruction group is ready to be executed but it is an-
other thread’ s turn. The cycles after all instructions
have finished to group completed are referred to as PM
_NTCG _ ALL _ FIN.

Within the five main parts of CPI stack in Fig.2,
only the PM _GRP CMPL indicates instruction groups
completed, and all others mean the pipeline stalled
due to certain reasons. The PM _GRP _CMPL has less
proportion when higher SMT mode is used, which indi-
cates that more cycles are needed for each retired in-
struction (i. e., higher thread CPI). The component
that owns the most proportion is PM _ CMPLU _ STAL
( computation stall ). That is to say that the computa-
tion stall is the main bottleneck. The proportion of PM
_ CMPLU _ STALL _ THRD does not have large fluctu-
ations among different SMT modes for Spark work-
loads. And the proportion of PM _ CMPLU _ STALL
THRD does not increase with the SMT mode, which
indicates that higher SMT mode’ s performance degra-
dation is not caused by threads conflicts.
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Fig.2 CPI stacks of single worker instance

The component that increases with SMT mode is
the PM  GCT _ NOSLOT _ CYC, which indicates
pipeline front end stall. It happens before the instruc-
tion entering the out-of-order computation units, which
may be caused by instruction cache misses, branch
miss predictions, etc. In the figure, a high SMT mode
increases the pipeline front end pressures of the POW-
ERS processor and the front end stall is the main rea-
son that causes performance delegations from the per-
spective of micro-architecture. other reasons may also
contribute to this phenomenon, which are out of the
scope of this work.

3.2 Multiple worker instances

Section 3.1 uses the default Spark thread assign-
ment policy, which forks 184 threads in one single
JVM (Java virtual machine) in SMT8 mode. Consider-
ing the fact that multiple moderate JVMs may beat a
single huge JVM as discussed in Apache Spark user

1'% another thread assignment policy is adopted to

lis
configure the Spark environment. This subsection gen-
erates 23 worker instances (i.e., 23 JVMs) and as-
signs each physical core to each worker instance. The
number of hardware threads is changed for each worker
instance according to the SMT mode.

1) Speedup

In order to investigate the impact of thread assign-
ment policy, the performance between the single work-
er instance and 23 worker instances in SMT8 mode is
compared. Fig.3 shows the data processing speed nor-
malized to single worker instance in SMT8 mode for
each workload. There are more than 2 times perform-
ance gaps between single worker instance and multiple

worker instances. For Bayes, the performance gap is a-
bout 9. 6 times.
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Fig.3 Performance gaps between single worker instance and

multiple worker instances in SMT8 mode

Fig. 4 illustrates the performance of different SMT
modes by using the ST mode processing speed as the
baseline when using multiple worker instances. Totally
different phenomena from the single worker instance
situation in Section 3. 1 have been found. The SMT
technology can achieve up to 33% performance gains
in comparison with ST mode and different workloads fa-
vor diverse SMT modes. For all the Spark based work-
loads investigated in this paper, the SMT8 mode never
achieves the best performance, which may be caused
by a number of reasons, e. g., instruction prefetching
is disabled for SMT8 so as to reduce cache misses and
the inner core may not have enough resources to main-
tain the entire architecture state of the 8 threads in

each core'?.
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er instances. In the figure, higher SMT mode increases
resource utilization and incurs more pipeline stalls, es-
pecially for SMT8 and SMT4 modes. Even there are
more pipeline stalls, the overall performance can also
be improved with higher SMT modes ( Fig.4) because
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SMT mode and the worst one, which makes the SMT

. . . . worker instances really decrease the pipeline front end
tuning attractive. In addition, tuning the SMT mode Y Pip

pressures, which is represented by less PM _ GCT _
NOSLOT _ CYC proportions in comparison with the sin-
gle worker instance situation ( Fig. 2). Even though

the proportion of PM _ GCT _ NOSLOT _ CYC is still

rising with the increasing of thread number in each core

should also take the thread assignment policy into con-
sideration. A single huge JVM, which is assigned with
lots of threads (184 threads in this paper) , may incur
overheads and cause performance degradations (up to
8.6t in thi . For th t lots of .
tmes i TS paper') ) or e .sys e owns ?S © for some workloads, the trend is much moderate in
hardware threads, assigning multiple JVMs with a . ) ) ) o
small number of threads in each of them is suggested comparison with the single worker instance situation.
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Fig.5 CPI stacks of multiple worker instances

Multiple threads in a single JVM increases the thread assignment policy. A high percentage of front
pressure of pipeline front end and obviates performance end stall indicates that more moderate JVMs are wel-
improvements brought by the SMT technology. Those comed.
phenomena indicate that the pipeline front end stall 3) Cache behaviors
( GCT no slot stall) may be used to guide the tuning of In this subsection, cache behaviors are investiga-
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ted for cache performance is heavily affected by the
SMT technology. Fig.6 and Fig.7 show the L1 data
cache misses per kilo instructions ( MPKI) due to load
instructions and store instructions respectively. The
SMT technology really aggravates cache contentions.
The higher SMT modes the more cache misses. The on-
ly exceptions are the Sort and Grep’ s store misses. A
high SMT mode can decrease the cache misses, which
might be caused by data sharing or effective prefetch-
ing. This is a phenomenon of constructive cache inter-
For the SMT tech-

nology can multiplex the cache miss cycles by issuing

ferences as mentioned in Ref. [3].

instructions from other threads to the pipeline, a slight
increase of cache misses will not affect the performance
improvements. Taking Sort as an example, the work-
load running in SMT2 mode owns more cache misses
than in ST mode, but the proportion of computation
stall (PM _ CMPLU _ STALL) is less than the ST
counterpart in Fig. 5. The Sort achieves better perform-
ance in SMT2 mode than in ST mode. Similar phenom-
ena can be observed from other workloads.
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Fig.7 L1 data cache misses per kilo instructions caused
by store instructions

However, a large amount of increased cache mis-

ses, which indicates severe cache conflicts, will de-
crease performance. This is caused by too many
threads competing for cache. The data fetched by one
thread can be flushed by the other thread and the in-
herent locality is destroyed in some degree. So the de-
lay that the execution engine gets the missed data is not
hidden by more threads but prolonged. WordCount and
PageRank seem to confront this situation. They get se-
vere performance degradations when switching from
SMT4 to SMT8 in Fig.4. In Fig.6 and Fig.7, when
running in SMT8 mode, they have sharp increases in
data cache misses, including both loads and stores, in
comparison with the SMT4 mode. The L2 cache and L3
cache statistics are also inspected and similar tenden-
cies are found.

The SMT technology may incur cache contentions.
A slight increase of cache misses will not affect the per-
formance. However severe cache conflicts will result in
performance degradations. So cache contentions should
be taken into consideration as a key factor when tuning

the SMT mode.

4 Related work

Lots of work characterizes big data workloads run-
ning on modern super-scalar processors by using hard-

7,11,12
7LR2TC However none  of

ware performance counters
them presents the performance impact of SMT technolo-
gy. There are also many studies that characterize work-
load behaviors on SMT platforms"**~"*-"*' " Huang, et
al. B!, Bulpin, et al. 3 and Mathis, et al. "’ exam-
ine the characterizations of traditional applications run-
ning on Intel Hyper-Threading supported processors
and IBM SMT supported POWERS processors. Ruan et
al. "*) perform macroscopic analysis as well as micro-ar-
chitectural measurements to understand the origins of
the performance bottlenecks for SMT processors on net-
work servers. Zhang, et al. '™*' present a methodology
that enables precise performance interference predic-
tions on SMT processors. However none of them focu-
ses on big data analytics workloads with platforms a-
dopting SMT8. For the microprocessor architecture has
been evolving, workload characteristics are also chan-
ging. To our best knowledge, no previous work has in-
vestigated the SMT technology impacts of big data ana-
lytics workloads, especially on SMT8 platforms.

5 Conclusion and further work
In this paper, by means of hardware performance

counters, five representative Spark workloads running
on the state-of-the-art POWERS platform are character-
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ized and the platform owns a wide range of tuneable
SMT modes. This paper finds that

1) The thread assignment policy has a significant
impact on application performance and an improper
thread assignment policy increases the pressure of pipe-
line front end.

2) The SMT technology can achieve performance
gains for Spark workloads and different workloads fa-
vour diverse SMT modes.

3) Cache contentions may obviate the perform-
ance improvements brought by the SMT technology.

This study is a part of a large project of auto-tun-
ing SMT modes to accelerate big data analytics sys-
tems. Of relevance to this paper is the development of
a tuning tool that can adjust SMT modes dynamically.
The knowledge from this paper can guide us to develop
such a tool. We are using data from hardware perform-
ance counters to predict the suitable SMT modes for big
data analytics workloads automatically. It is believed
that a dynamic, automatic SMT mode tuning tool has
attractive potentials to boost the performance of big data
analytics workloads.
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