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Abstract
Granular computing is a very hot research field in recent years. In our previous work an alge-

braic quotient space model was proposed, where the quotient structure could not be deduced if the

granulation was based on an equivalence relation. In this paper, definitions were given and formulas

of the lower quotient congruence and upper quotient congruence were calculated to roughly represent

the quotient structure. Then the accuracy and roughness were defined to measure the quotient struc-

ture in quantification. Finally, a numerical example was given to demonstrate that the rough repre-

sentation and measuring methods are efficient and applicable. The work has greatly enriched the al-

gebraic quotient space model and granular computing theory.
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0 Introduction

Granular computing, which was first introduced in
1997 by Lin''?' | is an emerging computing paradigm
of information processing, and is now viewed as a su-
perset of models including rough set, topology quotient

space 3 ]

, fuzzy set’, word theory, etc. Granular
computing has been widely applied in image process-
ing, data mining, complex problem solving, pattern
recognition, intelligent control, artificial neural net-
work , knowledge acquisition, and so on'>®'.

Being a widely applied structure in data coding,
formal language and electronic circuit design, algebra
is used broadly to describe the granule structure' "’
Based on the topology quotient space model (U,F,T)
proposed in Ref. [11], and supposing the granule
structure T as an algebraic operatoro , in Refs [ 12,13 ]
of our previous work, algebraic quotient space model
(U,F, o) was proposed.

In the rough set theory, it is granulated by equiv-

alence relation R, and lower approximation RX and up-

per approximation RX are defined to approximately re-
present rough set X € U. But in algebraic quotient
space model in Refs [12,13], only if granulation rule
R is a congruence relation, one can get the quotient u-

niverse [ U], the quotient attribute [ F] and the quo-
tient structure [ o | on granularity (U,F, o), i.e., in
the algebraic quotient space model, it is granulated by
a congruence relation. But in the majority of granular
computing models, taking the rough set and topological
quotient space for example, the granulation rule is an
equivalence relation.

In the algebraic quotient space theory, given
equivalence relation R on granularity (U,F, o), one
can only get the quotient universe [ U] and quotient at-
tribute [ F'] according to Refs [3,11], but can not get
the quotient structure [ o ] by the conclusion of
Refs [12,13]. Thus, is there a method of roughly re-
presenting the quotient structure? If yes, how to meas-
ure the new method?

In this paper, an equivalence relation R is given
as a granulation rule in the algebraic quotient space
model. Inspired by the lower approximation and upper
approximation to approximately represent a rough set, a
rough representation method of quotient structure is
shown in algebraic quotient space model. Rough set
theory and algebraic quotient space model in
Refs [12,13] are simply introduced in Section 1. in
Section 2, the lower quotient structure and upper quo-
tient structure are defined to roughly represent the quo-

tient structure. Section 3 gives the measurement of the
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above rough representation method. Section 4 presents
a numeral example which shows that the rough repre-
sentation and measuring methods are feasible and ap-
plicable.

1 Research basis

In this section, simple introductions are given to
the rough set theory and the algebraic quotient space
model in our previous work in Refs[ 12,13 ].

The rough set theory, first proposed by Polish sci-

entist Pawlak!''*"

in 1982, is an effective mathemati-
cal tool for the characterization of incomplete and un-
certain problems. The rough set is defined as follows.

Definition 1''*) Given equivalence relation R on
approximate space (U, F) and subset X C U, the lower
approximation RX and upper approximation RX are de-
fined as

RX =U {YI (VY e U/R) N(YCX)}| (1)
RX =U {YI (VY e UR) N(YNX#gp)|
. (2)

Then if RX = RX, X is called an exact set, other-
wise, X is called a rough set.

In Definition 1, [ U] = U/R is the quotient set of
universe U by R, namely the quotient universe. If X
equals to the intersection of a subset of U/R, i. e. , tar-
get knowledge X can be exactly represented by U/R,
then X is called an exact set. Otherwise, X is called a
rough set, and by defining the lower approximation RX
and upper approximation RX, interval ( RX, RX) is
used to approximately represent target knowledge X.

The algebraic quotient space model (U,F, o) in
Refs [ 12,13 ] was proposed as follows.

Definition 2'>'"*' Given congruence relation R on
eranularity (U, F, <), where U is the universe, F.U—
Y is the attribute function, and o is the granule struc-
ture on U. It defines: the quotient universe [ U] asp:U
— U/R, the quotient attribute [ F] as [ F]:[ U] —2",
where

Va e [U],[F](x) = F(p'(x))

= {F(y)ly e p'(x)| (3)
the quotient structure [o ] as

Ya,y e Up(xey) =p(x)[e]p(y) (4)
then ([U],[ F],[]) is defined as an algebraic quo-
tient space of (U,F, o).

In Definition 2, it gives the mapping functions of
the quotient universe [ U], the quotient attribute [ F']
and the quotient structure [ o ]. The quotient universe
is a natural mapping, and the quotient attribute pro-
vides a general solution, because [ F]:[ U] —2" must
satisfy some optimization principle specified as a cer-
tain value such as a statistic number, the average, the

maximum, the sum, the intersection or the union,

etc. (13

! The quotient structure is a homomorphic map-
ping between the original structure and quotient struc-
ture.

In Definition 2, the sufficient condition of having
the algebraic quotient space ([U],[F],[ ]) is that
R is a congruence relation, which is proved in theorem

in Refs [12,13].

theory, in order to keep the original structure o and

From the view point of the algebraic

quotient structure [ o ] being homomorphic, the granu-
lation rule must be a congruence relation, i.e. , only if
congruence relation R is given on granularity (U, F,
° ) , one can get the quotient space [o }

2 Rough representation of quotient struc-
ture

Given equivalence relation R on granularity (U,
F, o), by Definition 2 the quotient structure [ o | does
not exist, and the key of getting an approximate quo-
tient structure is to find an approximate congruence re-
lation. Hence, the properties of congruence relation
and equivalence relation are first discussed.

On universe U, by Refs [3,11] all the equiva-
lence relations form a complete semi-order lattice, and
by Refs [ 12,13 ] all the congruence relations form a
complete semi-order lattice. Meanwhile, it is known
that the congruence relation is a special case of the
equivalence relation, i.e., a congruence relation must
be an equivalence relation, but an equivalence relation
may not be a congruence relation.

When an equivalence relation R is given on granu-
larity (U,F, o), it is the key to get the approximate
congruence relation and approximate quotient struc-
ture. Inspired by the lower approximation and upper
approximation to approximately represent a rough set,
there are two kinds of approximate methods ; (1) Try-
ing to find a coarsest congruence relation R among all
the congruence relations which are finer than R. (2)
Trying to find a finest congruence relation R among all
the congruence relations which are coarser than R. If
there exists R and R, then based on Definition 1 the

quotient structure [o ] and [o ] can be deduced by R

and R. Therefore, [+ ] and [ o ] can be used to roughly

represent the quotient structure.

On granularity (U, F, o ), let N be all the equiva-
lence relations, 2 be all the congruence relations, and
R € M. Then, under the containment order of equiva-
lence relation, (N, C) is a complete semi-order lat-
tice, and (), ©) is a complete semi-order lattice.
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The lattice Hasse graphic is shown in Fig. 1, where the
hollow point is an equivalence relation, and the solid
point is a congruence relation.

In the following, the R, R, [o ], [o] is first de-

fined, then the theorem are given to prove that they

must exist and are unique.

finest
@ Congruence relation
© Equivalence relation

Fig. 1 The lattice Hasse graph of R and (2

Definition 3 Let R be an equivalence relation on
granularity (U,F, o). If there exists a congruence re-
lation R € R(R 2 R), and for any congruence relation
R" CR(R" D R), there exists R 2 R'(I?Q R'), then
R( E) is defined as the lower(upper) congruence rela-

tion of R, and by Definition 2 the quotient structure

[o]([]) can be deduced, then [o]([o]) is de-

fined as the lower( upper) quotient structure of o.
Theorem 1 On granularity (U, F, - ), let R be an

equivalence relation, and () be all the congruence re-

lations. Then there must exist and uniquely exists the
lower congruence relation R and the upper congruence

relation R, where

R = mRaeﬂ,RagRRa (5)

R = URQRBE!)RB) (6)

Proof: (1) It proves R = N, cor,crlle

Firstly, Y (%,y) € Ng corcrRys 50 YR, €
{R,I R, € Q,R, CR!,, (x,y) € Ry, thus, Vz e
U, (xoz,y02),(z02,209) € Ry € N _or.crlas
therefore, Ny _,x crR, is a congruence relation.

Secondly, it is proved that R is unique, i. e.,
Nk, cor,ciR, is the greatest lower bound of {R, | R,
e Q,R, CRl, YR, e {R,| R, € 2,R, SR},
N corcele & Ryy 50 Ny _pp cpR, is one lower
bound of {R, | R, € 2,R, TR} ,. LetR' be any lower
bound of {R, | R, € 2,R, S R}, then YR, € {R
| R, € 2,R, € Ri,, R

@

]

C R,, thus R’

C Ny, cor,crR,, therefore, Ny ;5 R, is the grea-

test lower bound of {R, | R, € 2,R, C R} .
Based on the and Definition 3, R

above
= mRae!l,RaQRRa‘

(2) It is provedE = 1( URgRﬁgnRﬁ).

Firstly, it is proved that #( URQRBe.QRB) is a con-
gruence relation. For V (x,y) e #( URgRﬁEﬂRﬁ) , it
has two cases: On the one hand, (x,y)
€ URQRBEQRB' Then HRO IS {RB | R C Rﬁ e N} R
where (x,y) € Ry, s0 Vz e U,(x0z,y02),(z0x,
zoy) e Ry C URQR;;EHRB‘ On the other hand, (x,y)
& URQRBE!ZR37 then, 3 (x = p;),ps,, (P = %),
where (p,,p;,,) € Ry e {R;1 RC R, € 0}, 50 Vz
e U, (pioz,pi°2), (zop,zopy) € Ry C
t( URQRBE.OR5>‘ Therefore, t( URQRBEQRB) is a con-
gruence relation. B

Secondly, it is proved R is unique, i. e.,
£( URQH;;E!2RB> is the least upper bound of {R, | R C
Rﬁeﬂ}. VR, € ?Rﬁl RgRﬁe(H,RO
c URQRBE.()RB C «( UI\’QRBE!)RB) , 80 £( URQI\’BEIZRB) is
one upper bound of {R,| R C R, e Q}. On the other
hand, let R" be any upper bound of #( ngf\'ﬁeuRﬁ) ,
thus VR, {Rﬁl R CR, e 0}, R, C R, s0
UrcrgeoRy © R'. R’ is transitive, so t( U kcrgealts)
Cit(R'") = R". Soi( URQRBE!IRB> is the least upper
bound of {Rﬂl RC R, e 0.

Based on the above and Definition 3, R =
t( URQRBEORB>'

In Theorem 1 it is proved that there exist the lower
congruence relation R and the upper congruence rela-
tion E, and by Definition 3 it is clear that they exist
uniquely. In fact, the lower congruence relation R is
the coarsest congruence relation among all the congru-
ence relations which are finer than R, and the upper
congruence relation R is the finest congruence relation
among all the congruence relations which are coarser
than R.

Having the lower congruence relation R and upper
congruence relation R and by Definition 2 and Defini-
tion 3, the lower quotient structure [ o | and upper quo-

tient structure [ o | can be deduced uniquely.

Thus, the lower quotient structure or upper quo-
tient structure can be used to roughly represent the
quotient structure which are not actually exist.

3 Rough measurement of quotient struc-
ture
In the front section, just the rough representing

method of quotient structure is discussed, i. e. , the
concepts of lower congruence relation and upper con-
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gruence relation are defined and their calculating for-
mulas are given. In the following, the rough measuring
method of quotient structure is discussed in detail by
defining the accuracy and roughness of quotient struc-
ture.

The lower quotient structure [o ] is an algebraic

operator on the lower quotient universe [ U], and the

upper quotient structure [ o | is an algebraic operator on

the upper quotient universe [ U]. It is not easy to di-

rectly measure the quality superiority of [o ], [o ],
which can be discussed by R,R,[ U], [ U] indirectly.

In order to describe the quotient structure in

quantification more exactly, accuracy o[ o ] and
roughness p,[ o | are defined as follows from the reverse
side.

Definition 4 Let R be an equivalence relation on

granularity (U, F, o), R be the lower congruence rela-
tion and R be the upper congruence relation R of R.
Then accuracy ag[ o ] and  roughness py[ o | of the

quotient structure is defined as

| U/R
ople] =T/ Rl (7)
prle] =1 —agle] (8)

Clearly, accuracy0 < ayz[e ] <1, and the larger
the accuracy ag[ o ] is, the smaller the roughness
Pr [o] is. B

At the best, R = R, i.e. , Ris a congruence rela-
tion, then the accuracy is az[ o] = 1, and the rough-
ness ispplo] = 0.

At the worst, the lower quotient structure is on the

finest granularity, i.e. , | U/RI| =1 Ul , and the up-
per quotient structure is on the coarsest granularity,
i,e.,| U/ R =1 {U} | = 1. Then the accuracy is
agle] = ﬁ, and the roughness is py[o] =1 -
1
| Ul

4 Numerical example

In this section, a numerical example is demon-
strated which shows that the rough representation and
measuring methods above are feasible and applicable.

Supposing R is an equivalence relation on granu-
larity (U,F, o), where X = {0,1,2,3,4,5,6,7},
X/R = {{0,2},{1,5},{3,7},{4,6} | and the alge-
braic operation o is shown in Table 1.

Seeing from Table 1, the binary algebraic opera-
tionx o y means (x X y) mod8. It can be proved that R
is only an equivalence relation but not a congruence re-
lation, then by Definition 2 there does not exist the
quotient structure.

Table 1 Algebraic operation o on U
s 0 1 2 3 4 5 6 7
o 0 0 0 0 0 0 0 0
1 0o 1 2 3 4 5 6 1
2 0 2 4 6 0 2 4 6
30 3 6 1 4 71 2 5
4 0 4 0 4 0 4 0 4
5 0 5 2 7 4 1 6 3
6 0 6 4 2 0 6 4 2
7 0 7 6 5 4 3 2 1

By Theorem 1 the lower quotient congruence rela-
tion R can be got, and the lower quotient universe [ U]
= U/R = {10}, {1,5},12f,13,7},{4],{6}} are
gained. By Eq. (4) of Definition 2 the lower quotient

operation [ o | is got shown in Table 2. If the isomor-

phic mapping is given as {0} =0, {1,5} =1, {2} =
2,13,71 =3, {4} =4, {6! =5, then the lower

quotient operation [ o ] is as shown in Table 3.

Table 2 Algebraic operation [ o] on [ U]

Lol fo}  {1,50 {21 13,70 14] {6}
foj fo} for foj {of o} {0}
(1,50 for {1,5) (2§ 13,7} {4} {6}
2 for  f2f  {4f {6} {o} {4}
(3,70 {o} {3,706l {1,5] {4} {2}
{4)  for  {4f  fof (4] fo} {0}
6} fof el 14l {2f  {o} {2}
Table 3 On [ U] after isomorphic mapping

[ -] 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4

2 0 2 4 5 0 4
3 0 3 5 1 4 2
4 0 4 0 4 0 0
5 0 5 4 2 0 2

By Theorem 1 the upper quotient congruence rela-

tion X is got, and the upper quotient universe [ U] =
U/X =1{{0,2,4,6},{1,5},{3,7}} is obtained. By
Eq. (4) of Definition 2 the upper quotient operation
[ o ] is got shown in Table 4. If the isomorphic mapping
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is given as {0,2,4,6} =0, {1,5} =1, {3,7} =2,
then the upper quotient operation [o | is as shown in
Table 5, clearly it is a binary operation (x X ¥) mod 3.

Table 4  Algebraic operation m on [ U]

o] 10,2,4,6} I1,5} 13,7}
10,2,4,6} 10,4} 10,2,4,6/  10,6,4,2!
(1,5 10,2,4,6} 1,5 13,71
13,7 10,6,4,2} 13,71 I1,5]

Table 5 mon [ U] after isomorphic mapping

[ ] 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

According to Eq. (7) of Definition 4, the accura-
cy ag[ e ] of quotient structure is

_ U/ R| _
aR[ ° J = ‘U/]i‘ =
[110,2,4,61,(1,5},{3,7}1]| _3

110}, 11,50, 121,137,141, {61} 6
agle] =50%, and the roughness p,[ o ] of quotient

structure is

pRI:o:I = 1 —()(R[O] =1 —50% :50%
5 Conclusion

In Refs [12,13] of the previous work, it is gran-
ulated by a congruence relation in the algebraic quo-
tient space model. In this paper, granulated by an e-
quivalence relation, one can only get the quotient uni-
verse and quotient attribute but can’t get the quotient
structure according to Refs [3,11] in the algebraic
quotient space model.

Inspired by the definitions of lower approximation
and upper approximation in the rough set theory, this
paper gives the definitions and calculating formulas of
the lower quotient congruence relation and upper quo-
tient congruence relation, based on which one can eas-
ily get the lower quotient structure and upper quotient
structure, which can be used to roughly represent the
quotient structure.

Then the accuracy and roughness are defined to
measure the quotient structure in quantification. Final-
ly, a numerical example is given to demonstrate that
the rough representation and measuring methods are ef-
ficient and applicable.

This work enriches the algebraic quotient space
model and granular computing models greatly.
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