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Abstract

With the occurrence of burst interference, bit error rate (BER) stability of the wireless commu-

nication system ( WCS) always degrades significantly. To cope with it, a stability control algorithm

is proposed, utilizing the stability theory of switched systems, which is specifically applicable for

multi-parameter adaptive WCS with spectrum sensing ability, and it is capable of stabilizing BER

within a reasonable range. Firstly, WCS is modeled as a switched system. Then, based on the

multi-Lyapunov function, controlling rules are presented to enable the switched system to satisfy sta-

ble condition asymptotically. Finally, analysis and numerical simulation results demonstrate that the

switched WCS with the proposed controlling rules is superior to conventional power-controlled WCS

with or without state feedback control in terms of stability performance.

Key words: switched system, stability control, multi-Lyapunov function ( MLF) , power con-

trol, burst interference

0 Introduction

With rapid development and extensive application
of wireless communication technologies, such as soft-
ware radio and cognitive radio, wireless communication
system ( WCS) gradually acquires the abilities to sense
electromagnetic environment and adjust communication
parameters such as transmission power and modulation
and coding scheme (MCS). However, due to the time
delay in the process of spectrum sensing and parame-
ters adjustment, transmission might be unstable or
blocked in case the electromagnetic environment chan-
ges dramatically. Therefore, the implementation of sta-
bility control in the WCS with the capability of sensing
of electromagnetic environment and adjustment of com-
munication parameters ( namely, the multi-parameter
adaptive WCS hereafter) has become an urgent issue to
be addressed.

However, not too many researches can be found
on how to realize the transmission stability control in
the multi-parameter adaptive WCS. In view of the fact
that the stability control theory has always been one of
the hottest issues in the field of control, and many
achievements have been published ' | so it can then

be applied in the stability control of WCS with reasona-
ble modifications.

In order to make research on the stability control
of WCS, a system model should be established firstly
based on the input-output relationship. However, con-
sidering the complexity and non-linear property resul-
ting from the process of adaptively adjusting multiple
communication parameters in the WCS system, it is
quite difficult to search for a unified mathematical
equation to describe the dynamic characteristics of the
system. Therefore, the concept of hybrid system is in-
troduced to describe the complicated non-linear model.
The switched model in stability control theory”**' |
which has received considerable attention in recent re-
searches, is employed to describe the hybrid system
made up of several subsystems.

The stability issue of switched system can be ana-
lyzed by establishing the system’ s Lyapunov function.
By designing the Lyapunov function of switched sys-
tem, one can analyze the system stability and establish
the criteria of stability control with the help of linear
matrix inequalities (LMI). In Ref. [5], the state in-
terval of system’ s switch was divided based on the high
and low bound of time variant delay, and a switching
rule for the asymptotic stability and the stability of sys-
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tem was designed in the form of LMI, by utilizing a
common Lyapunov function ( CLF). And in Ref. [6],
sufficient conditions of system stability were proposed,
based on a quadratic positive definite CLF constructed
with a copositive function. However, in analyzing the
stability of the switched system, CLF is quite conserva-
tive and it is difficult for many switched systems to con-
struct a CLF in practice. Piecewise linear Lyapunov
function (PLLF) """ is an alternative algorithm in defi-
ning the conditions of the switched system. However,
it is applicable in low-order systems only, due to the
large computational burden it may have. For example,
it often requires large amount of parameters in the con-
struction of the function.

As a result, for the stability control of a switched
system with restricted switching signal, the multi-Lya-
punov function ( MLF) got more attention'®®'. In
Ref. [8], MLF was combined with the output feedback
controller to satisfy the global stability of closed-loop
switched systems. In Ref. [9], the sufficient condition
of exponential stability in closed-loop systems was de-
rived by using MLF considering mode-dependent aver-
age resident time. Based on this stability result, a
switching strategy to stabilize the system can be de-
signed. In practice, switched systems are always used
to describe the control systems with feedback link and
time-varying parameters, and utilize the MLF approach
to achieve the stability and stabilization criteria for sys-
tems with distribution or feedback delays, such as the
networked control systems“o’m. In Ref. [10], the sta-
bility of the networked control systems with state feed-
back control was addressed by considering the time de-
lay induced by the short network, under the conditions
with or without interference. Firstly, with MLF and
LMI approach, the sufficient condition for the stability
of the networked control systems was proposed. Then,
the stability control rules of the systems with state feed-
back control were designed based on MLF. By solving
solvable problems and optimal solutions of LMI, pa-
rameters of state feedback controller could be obtained.
In Ref. [11], by applying linear switched systems to
random delay networked control systems, the analysis
could be simplified, which was independent from the
variable system state matrix. Similarly, in Ref. [12],
the stability of a networked control system was ana-
lyzed, in case the delay in the closed-loop was time va-
riant. The scope of delay was discretized according to
the high bound of time delay so that the system was
modeled as a switched system, and then, based on
MLF, the stability criteria was proposed to achieve bet-
ter performances when the system suffered from time-
varying delay.

In view of the aforementioned problems, a control
rule algorithm is proposed in this paper to stabilize the
multi-parameter adaptive WCS, based on the theory of
networked control system with feedback channel. With
the presence of burst interference, it is able to meet the
requirements of stability control of the multi-parameter
adaptive WCS. The major innovations of this paper are
as follows: firstly, the multi-parameter adaptive WCS
is modeled as a linear switched system, so that the sta-
bility theory can be used to analyze it at the cost of low
complexity. Secondly, by taking advantages of the
MLEF, such as the ease of establishment and relatively
low conservatism, the paper proposes the stability con-
trol criteria for the multi-parameter adaptive WCS.
Specifically, by defining each modulation and coding
mode as a subsystem of the switched system, and by
constructing the MLF for each subsystem, the conser-
vatism of stability criteria is reduced significantly.

The rest of this paper is organized as follows. The
model of multi-parameter adaptive WCS is described in
Section 1, and then in Section 2 the fundamental prin-
ciple of stability control algorithm is presented. The
numerical analysis and simulation results of the pro-
posed algorithm are provided in Section 3. Finally,

Section 4 concludes the paper.
1 Problem description and modeling

The multi-parameter adaptive WCS studied in this
paper can adaptively select the most efficient MCS ac-
cording to the change of channel conditions under the
condition of BER performance. The WCS model with a
feedback link that can adaptively adjust its transmission
power and MCS is shown in Fig. 1.

After sensing the electromagnetic environment, it
can be guaranteed that the bit error rate( BER) in the
receiver is lower than the target BER by adjusting the
sender’ s MCS and transmission power.

According to the multi-parameter adaptive WCS
model, communication parameters are under the fol-
lowing assumptions ;

(1) The transmission power of the sender is P ;
the transmission channel is Rician channel; and the
average noise power of the channel is Py.

(2) Without considering the free space propaga-
tion loss, Py and Py are represented by dBm. When
there is no interference, the signal to interference plus
noise ratio ( SINR) in transmission process can be sim-
plified to SINR = Pg — Py.

(3) The interference power P, in the channel can

be estimated.
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Fig.1 Model of the multi-parameter adaptive WCS

(4) P, denotes the BER in the receiver under Py,
and P, denotes the target BER.

(5) There are M kinds of MCSs in the system,
and ¢ denotes the current subsystem ( represents the
system under the ith MCS) , i e {1,---,M}.

The diagram of BER of different MCSs is shown in
Fig. 2.
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Fig.2 BER under different MCSs

The purpose of the modeling is to divide the sys-
tem into M subsystems according to different MCSs.
The ith subsystem is described as the following linear
differential switched equations
{dx(t)/dt = Ax(t) + Bu(t) Cxo< () <,

y(t) = Cx(t) + D,

(D

Here A;, B,, C,, D, are constants, standing for
the ith subsystem’ s dynamic characteristic coefficient
the control coefficient, the sensing coefficient, and di-
rect items, respectively.

Py is selected as the control input variable u(¢) ;

SINR at the receiver is selected as the system’ s state

variable x () ; while P, is selected as the output varia-
ble y(¢).

As indicated in Fig.2, each BER curve has its
waterfall area, where the index value of the BER goes
down linearly with the rise of SINR. For this reason,
the BER curve of each MCS is approximate to a straight
line in the waterfall area. According to Fig.2, the re-
lationship between BER and SINR under certain MCS
can be represented by linear equation. Then those M
MCSs can be described as the following equations;
y(t) = Cix(t) +D,, x, < x(t) < x,

y(t) = Cx(t) +D,, x, < x(t) < x,

: (2)
y(t) = Cx(t) +D;, x;, < x(1) < x,,,

y(t) = Cyx(t) + Dy, 2(1) = xy
Mi, y(t) e (-,0.5].

Under the ith MCS, when there is no interfer-
ence, the system state at moment ¢ consists of the con-

wherei e {1,

trol input u(t) and the current noise power which is
supposed to be measured precisely, then

%iinox(t +At) =u(t) - Py(1)

x, <x(t) <x, (3)
According to Eq. (3), the change rate of SINR
with respect to time is
da(1)
de

lim{x(t +At) —x(t) |
210
—x(t) +u(t) = Py(t)
x, < w(t) <uxyy o (4)
Therefore, combining Eq. (2) with Eq. (4), the

ith subsystem can be modeled as a switched system in

the form of state space equations, as shown below
{dx(t)/dt =—x(t) +u(t) — Py(t)
y(1) = Cx(1) + D,
v, <a(t) <x,  (5)
In this case, A, = - 1,B, = 1, the values of C,
and D, are determined by the slope and intercept of the

certain straight line that describes the relationship be-



378

HIGH TECHNOLOGY LETTERSIVol.23 No.4|Dec. 2017

tween BER and SINR under a specific MCS.

The switching control rules for the multi-parameter
adaptive WCS are as follows. Divide the range of SINR
into several switched state intervals, each of which cor-
responds to a MCS. When the system is disturbed, and
if the interference is so intense that the instant SINR
changes from one SINR interval to another, which
means the corresponding MCS is also changed, the sys-
tem switches the MCS first and then adjusts the trans-
mission power to maintain the target BER. If the inter-
ference is too weak to change the instant SINR inter-
val, then the system adjusts the transmission power on-

ly.
2 Principle of stability control algorithm

While sensing the electromagnetic environment,
the system adjusts its communication parameters, such
as the transmission power and MCS. In these circum-
stances, the stability control of the multi-parameter
adaptive WCS works to stabilize the system and con-
verge the BER to the target value. The principle of the
stability control algorithm is described in detail below,
whose basic idea is to add a stability controller into ev-
ery switched subsystem of WCS, and then provide a
sufficient condition to stabilize the system’ s BER
through MLF. After that, the calculation method of
gain feedback matrix of the controller and system state
equation can be determined.

2.1 Design of the stability controller

If the switched subsystem is required to have an
output BER that stabilizes fast to the target value
through transmission power adjustment, an appropriate
state feedback is needed to configure the eigenvalue of
the subsystem. Therefore, a state feedback controller
with integral link is added to the feedback link of every
subsystem and the control rules are as follows
u(t) =—kx(t) —kyz(t) +k,, x, <x(t) <x,
u(t) =—kyx(t) —kpz(t) +ky, 2, < a(t) < a5

—kx(t) —kz(t) +k

x, < x(t) < x,,

ri 9

u(t) .

w(t) =-kyx(t) —kyz(t) +ky, (1) =2y

(6)
where i € {1,--- ,M!. When the WCS switches ran-
domly to any MCS, the corresponding controller helps
control its stability performance. There is a new state
z(t) established in the controller as a feedback term,
which is equal to the integration of error signal, that is

dz(t)/dt = y(t) - r (herer is the target BER). £; is

a normal state feedback coefficient, and k; is the inte-
gral coefficient that provides the zero steady-state er-
ror. Finally &, is used to set the rated input for the ex-
pected steady state.

After adding the new state, the state space equa-
tions of the system are expanded as
dx(t)\ _ (Ax(t) + Bu(t)\ _ (Ax(t) + Bu(r)
dl(z(t))_(y(t) -r ) (Cix(t) +Dl.—r)

v, <«a(t) <« (7)

where value z(t) is not given, instead, it is automati-
cally adjusted so that dz(¢)/dt = y(¢) —r =0, which

means the output will be made equal to the target value

at the equilibrium point. Besides, y, = r can be en-
sured by selecting the proper value of k.

To simplify the following analysis, augmenting
vectors @(t) = [«x(t) z(t) 1]" are defined, and

then the state space equation becomes;

d2() _ f p(y) (8)
dt
where
A,' - B,tkg - Bikii Bikri
L, = C, 0 D, —r
0 0 0
A, O 0 B,
=|C., 0 D,-r|-|0 (ki k; k)
0 0 0 0
=A, -B, -k, (9)
A, O 0 B,
LetheA, =|C, 0 D, -r|,B,=|0 |k, =
0 0 0 0
<ki ki = kir)'

2.2 Stability control rules and calculation methods

Based on MLF, a sufficient condition for asymp-
totically stabilizing the multi-parameter adaptive WCS
and the calculation method of %,; of the aforementioned
controller are investigated as follows.

Lyapunov asymptotic stability theorem: The
basic idea is to use the concept of energy variation to
analyze the stability of system. If the storage energy is
dwindling over time while the system is in motion, then
the system is to be stable; if not dwindling, it is unsta-
ble. Given a scalar function V(x) that indicates the
energy of the system, if the scalar function is positive-
definite, and

(1) If the derivative of scalar function V(x) with
respect to time is negative definite, then the system is
asymptotic stable.

(2) If V(x) is positive definite, then the system
is unstable.

The following lemma is used to the next proof of
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inference.
Lemma (Schur complement) : For a given sym-
Sl 1 SIZ

T

metric matrix § = (
2 O

) , the following three con-

ditions are equivalent ;

(1)S <0

(2) SII < 0, Szz - Sszsl_llslz <0

(3) 522 <0, Sll - Svlrzsz_zlslz <0

Finally, according to the Lyapunov asymptotic sta-
bility theorem and the lemma, the following conclu-
sions are reached.

Inference: Suppose that i, j e {1, ,M}|?,
where M is the total number of the MCSs, and that the
corresponding {A,, B,, C,, D,} are controllable. For
the closed-loop power adaptive WCS that can be regar-
ded as a switched system in Eq. (6). If there exists M
symmetric positive-definite matrices X, to ensure the
formula (10) tenable, then the switched system is as-
ymptotically stable when the system switches from the
ith subsystem to the jth subsystem. By solving the ine-
quality, k,; of the controller can be computed.

T

Q - Xi (AiXi BikniXi) < O
AX, - Bk,X, - X

(10)

This inference provides a sufficient condition for

Eq. (5)
Eq. (6). It is proved in the following.

Proof: Define V(@ (1)) = &' (t)P,d(t) and
V(@(t+ At)) = @'(t + At)Pd(t + At) as Lya-
punov functions at the time of ¢ and the switching time ¢
+ At, where P, = P| >0, P, = P/ > 0. By taking the

derivative of the Lyapunov functions, the difference

to realize the asymptotical stability via

equation is obtained ;
AV(d(1)) V(d(t +Ar)) - V(d(t))
= @' (¢t + At)P,D(1 + At)
-@" ()PP (1)
=@ (t)LPLD(t) - D' (t)P,D(1)
¢T<t)[LiTPjLi_Pi](I)<t) (11)

If L'P.L, - P, < 0 is met, which resulis in

[ ]

AV(@®(t)) < 0, according to Lyapunov asymptotic

stability theorem, the closed-loop system is asymptoti-
cally stable. According to Schur complement lemma,
the following inequality is equivalent to L,TP,'LL' -P <
0.

i

-1
L. - P

i

(_P' L )<0 (12)

Substituting Eq. (9) into formula (12), then
left-multiplying and right-multiplying by diag{P;",
I}, and letting X, =P,;", formula (13) is obtained.

- Xi (AiXi - BikniXi)T <0
AX - Bk X, - X,

(13)

Hence, the inference can be applied to stability
control of the system and used to obtain k,;. Then put
k, into Eq. (9), so that L; and system state Eq. (8)
can be determined.

With the occurrence of burst interference in com-
munication channels the state and control input and
output of each time can be solved based on Eq. (8) by
using the measure of four-order Runge Kutta meth-
od'"'. Specific steps are as follows

(1) In order to solve all parameters at moment i +
1, the first slope K, = Ab(x, z)' + Bbr should be
solved at moment i firstly, and then the second slope K,
= Ab(x, + hK,/2z, + hK,/2)" + Bbr. In the same
way, the third slope K, = Ab(x, + hK,/2z, + hK,/2)"
+ Bbr and the fourth slope K, = Ab(x, + hK,z, + hK;) "
+ Bbr can be solved. After that, the weighted average
number of them is used as the approximate value of the
average slope K.

(2) Letax(i +1) = x(i) +h xK,.

(3) Obtain output BER y(7 + 1) at moment i + 1
and control input u(i) at moment i

(4) Repeat these above steps to obtain the system
state and output values of all sampled points.

The flow chart of stability control rules and calcu-
lation methods is shown in Fig. 3. When the system is
disturbed, detect the SINR and determine whether the
instant SINR interval changes. If the interval doesn’ t
change, the system only adjusts the transmission power
to maintain the target BER. If the interval changes,
then switch the subsystem corresponding to original
SINR interval to the subsystem corresponding to current
SINR interval. By solving the stability control inequali-
ty in the inference, the gain feedback matrix and the
system state equation are obtained. Thus the system
status and control output of each time can be deter-
mined. Finally, judge whether the output BER is un-
der the target value. If the condition is met, the algo-
rithm is finished; otherwise, return to SINR detection.

3 Numerical analysis and simulation results

In this section, simulations are performed to com-
pare the performance of the proposed stability control
for multi-parameter adaptive WCS with the convention-
al power-controlled WCS with or without state feedback
control ™). The simulation parameters are shown in

Table 1.
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Fig.3 Flow chart of stability control rules and
calculation methods

Table 1  Simulation parameters

Target Sample  Interference  Simulation

Channel BER interval free SINR time
Rician 10-* 0.01s -1.5dB Ss
channel

The self-adaptive modulation-code system in this
paper utilizes BPSK and QPSK combined with LDPC
code to form 4 combinations with the proper BER inter-
val, as shown in Table 2.

Table 2 Chosen MCSs

Scheme 2 Scheme 3 Scheme 4
Modulation BPSK QPSK QPSK QPSK

LDPC coding

Scheme 1

2016,504 2016,504 1008,504 1260,1008

mode
LDPC coding 1/4 1/4 1/2 4/5
rate
Normalized 0.0625 0.125 0.25 0.4

rate

The diagram of BER of 4 MCSs is shown in
Fig. 4.

10 ; : : ‘ , : ;
YO=Cx(ty+D,  y(O=Cx(®)+D, ~ y(t)=C,(x+D, y(t),\=C4x(t)+D4
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—*—QPSK(1008,504)

109 ) ‘ ‘ ‘ = QPSK(1260,1008)

-8 -6 -4 -2 0 2 4 6 8
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Fig.4 BER under 4 MCSs

Consider multi-parameter adaptive WCS that swit-
ches between two subsystems utilizing QPSK and BPSK
modulation combined with LDPC code (2016, 504 ).
As is demonstrated clearly in Fig.4, while BER rea-
ches the target value 10", SINR of the system with

the QPSK modulation is not lower than -1.5dB.
When SINR < —1.5dB, BER under QPSK modulation

is higher than the target value 10 *. Then the system

will switch to the BPSK modulation to ensure the BER
is within the target scope. The BER curves in waterfall
area of the two subsystems fit into straight lines de-
scribed by the equations y(t) = —3.33x(¢) — 9 and
y(t) = —2.4x(t) — 14. 8 respectively. Then the two
linear state space equations of the subsystems are as
follows :

dar =-x,(1) +u1<t),

y (1) ==3.3x,(1) =9
S5 <x(1) <23 (14)

{dx1<t)

T =, (1) + u,y(1)

y,(t) =—=2.4x,(t) —14.8
“45<x,(1) <-1.5 (15)

Based on the stability control inference in Section

{d%(t)

2.2, substitute the obtained system coefficient matrix
into the formula (10) to construct the stability criteria ,
as a result, X, is calculated as

0.72 -0.25 0.34
X, =1-0.25 4.84 -0.01 (16)
0.3 -0.01 0.55
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0.37 -0.09 038 & : ' '
X, = 103[ ~0.09 4.7 —0.01] (17)
0.33  -0.01 1.60 N [ 1
and the symmetric positive-definite matrices in the Lya- é Al
punov functions are further obtained: E;?
1.97 0.10 -1.19 2,1 |
P, = [ 0.10 0.21 —0.05] (18) g
-1.19 -0.05 2.52 2| |
0. 0061 0.0003 - 0.0039 5
P, = [ 0.0003  0.0007 -0. 0002] (19) il ]
-0.0039 -0.0002 0.0079 ﬂ
Therefore, the state feedback gains of the stability [ iyl j s o,
controller are Time(s)
k, =0.45, k; =-0.21, %k, =0 (20) Fig.5 The interference at time =2s and time =4s
k, =260.12, k, =-79.33,k, =0 (21)
Substitute the gain matrices obtained from 0 ' ' » ~
Eq. (20) and Eq. (21) into Eq. (9) to get L., so that Al ]
Eq. (8) can be determined. By using the measure of 2r ]
four-order Runge Kutta method, the state and control 37 [
input of each time can be solved. Then combine o e “, e
Eq. (14) and Eq. (15) to obtain BER of each time. o St i )
The burst interference is shown in Fig.5. The @ 6 i
burst interference at the time of 2s doesn’ t alter the in- i l i
stant SINR interval, and therefore the system adjusts 8 | )
the transmission power only. At the time of 4s, the j —————— N i
burst interference is so strong that the instant SINR in- =IO e il pmpetevadiptive iy
terval is switched from one to another, which leads to '111_ StathBEdbaCk pmzer_comm“ed;‘ - _6

the change of corresponding MCS.

The curves of BER over time for different systems
are shown in Fig. 6. The analysis indicates that when
the burst interference occurs, the BER of conventional
power-controlled WCS will suddenly increase. And the
maximum value can reach 0.5, which will be a serious
influence on the stability of communication system that
can even interrupt communication. The BER of con-
ventional power-controlled WCS with state feedback
control has a less significant increase, but there is an
increase of transmission power. Compared with the
above, the BER of the proposed multi-parameter adap-
tive WCS is always below the target value. Since the
instant SINR changes its control interval from the
QPSK (2016, 504) to BPSK (2016, 504 ), and the
system switches and changes its BER characteristic.
Subsequently, by using the state feedback controller,
the system adjusts the transmission power so that the
actual BER tunes along the direction of the target BER
until the interference disappears. Then the system swit-
ches to the original MCS to ensure good transmission
rate. The multi-parameter adaptive WCS only adjusts
transmission power if the interference is too weak to
make the system switch.

Time(s)
Fig.6 BER of different systems

Fig. 7 shows the ratio of time that meets the target
BER to total switching time for three systems when the
burst interference changes from 1dBm to 10dBm. It
can be clearly seen that the multi-parameter adaptive
WCS completely meet the requirements of target BER.

T T T T T T

120 Sy Conventional power-controlled

State feedback power-controlled
ulti-parameter adaptive

Ratio of meeting the target BER(%)

Interference power (dBm)

Fig.7 The ratio of meeting the target BER for
different systems
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Although the other two kinds of systems have fluctua-
tions, in general, the ratio of conventional power-con-
trolled WCS is about 40% and the ratio of conventional
power-controlled WCS with state feedback control is
about 50% . Therefore, the multi-parameter adaptive
WCS which adopts the control rules proposed in this
paper have better performance.

As can be seen in Fig. 8, the multi-parameter
adaptive WCS switches between subsystems when the
interference is strong. Although the transmission power
increases, the highest transmission power is still lower
than the other two systems, which reduces energy con-

sumption and interference to other devices.
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Fig.8 The transmission power of different systems

Fig.9 shows the changes of average transmission
power increment when the burst interference value
changes. It can be seen clearly that the average trans-
mission power increment of the proposed system is the
minimum. With the increase of the interference value,
the differences between the proposed system and other
conventional systems are enlarged.
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Conventional power-controlled
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Interference power (dBm)

Fig.9 Average transmission power increment of

different systems

4 Conclusions

In this paper, the stability control of multi-param-
eter adaptive WCS, which can adaptively adjust the
transmission power and the MCS through the feedback
link , is studied. Firstly, the WCS is modeled as a lin-
ear switched system. Secondly, the state feedback con-
troller with integral link is designed and a sufficient
condition, which makes the switched system stable in
the presence of burst interference, is given based on
MLF method. Besides, the gain matrix of the controller
and the system state equation can also be determined
by the sufficient condition. Finally, the simulation re-
sults show that the multi-parameter adaptive WCS utili-
zing the sufficient condition has favorable performance.
In terms of the stability of the BER, the proposed algo-
rithm is better than the conventional power-controlled
WCS with or without state feedback control.
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