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Abstract
The ability of achieving a semantic understanding of workspaces is an important capability for

mobile robot. A method is proposed to categorize different places in a typical indoor environment by

using a Kinect sensors for mobile robot exploration. At first, the invariant feature based images stitc-

hing approach is adopted to form a panoramic image according to Kinect visual information, and the

translation between Kinect depth information and obstacle distance information is performed to obtain

virtual LIDAR data. Then, the semantic classifier is designed by using convolutional neural networks

(CNN) for indoor place categorization based on Kinect visual observations with panoramic view. At

last, a frontier-based exploration method is applied to carry out indoor autonomous exploration of mo-

bile robots, which integrates the CNN-based categorization approach. The proposed method has been

implemented and tested on a real robot, and experiment results demonstrate the approach effective-

ness on solving the semantic categorization problem for mobile robot exploration.

Key words: exploration, mobile robot, semantic categorization, convolutional neural network

(CNN), Kinect

0 Introduction

Exploration is a fundamental problem in the field
of mobile robotics, whose goal is to acquire as much
information about a given environment as possible'"’.
Especially for the indoor environment whose structure is
structured, rich semantic information about the place
where mobile robot is located allows it to perform high-
level tasks more effectively and greatly improve its ca-
pabilities in various domains, such as localization,
path planning or human-robot interaction'>’. There-
fore, an important capability for robot is its ability to
categorize different places. In this study, the work
mainly focuses on the semantic categorization in indoor
environments during autonomous exploration of mobile
robots.

In the past, many researchers using different types
of sensors addressed the problem of semantic place cat-
egorization. In some previous work, 2D laser range
finders were popular sensors used for scene classifica-
tion. For instance, Mozos, et al. >’ employed the Ada-
Boost-based classifier to categorize indoor places by ex-
tracting a large number of geometrical features obtained

with a laser range finder. The work in Ref. [4 ] used a
support vector machine (SVM) classifier to estimate
the type of indoor places based on above mentioned
features. Moreover, Shi, et al. "*! introduced the logis-
tic regression approach as a classifier to classify indoor
environments into semantic categories. Other work cat-
egorized places using vision sensors. Ref. [6] intro-
duced a novel technique called PLISS for place catego-
rization is in accordance with image streams rather than
single image. PLISS used change-point detection to
segment image sequences, and subsequently perform
labeling using a probabilistic classifier and keeping
track of its label uncertainty inside a systematic proba-
bilistic framework. The work in Ref. [7] proposed
CENTRIST as a visual descriptor for recognizing topol-
ogical places and scene classification. The descriptors
are later classified by SVM. Furthermore, a novel con-
text-based place recognition method that enables mo-
bile robots to categorize places indoors and outdoors
was introduced in Ref. [8], which adopted the Histo-
gram of oriented uniform patterns extracted from ima-
ges. Finally, the combinations of different sensors were
also applied to robot place recognition. Ref. [9] pres-
ented a supervised learning approach that combines 2D
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laser scans with visual object detection to robustly clas-
sify indoor places by using boosting algorithm. In
Ref. [10], a multi-modal place classification system
based on SVM was proposed to identify places and rec-
ognize semantic categories in an indoor environment by
fusing multiple visual cues and laser range data. Be-
sides, the recent work in Ref. [11] presented an ap-
proach to categorize typical indoor places using local
binary pattern histograms of range and reflectance ima-
ges from 3D laser scans.

In this paper, a semantic categorization approach
is proposed to categorize indoor places using Kinect
sensor for mobile robot exploration. The key idea of the
approach is to use CNN to classify the indoor places,
where mobile robot has been explored based on the
frontier-based exploration method, according to the vis-
ual and depth information provided by Kinect sensor.
Compared with other approaches, the proposed method
can effectively categorize indoor places into semantic
categories with high precision during mobile robot au-
tonomous exploration, and experiment results have val-
idated this approach.

The remainder of this paper is organized as fol-
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lows. CNN is introduced in Section 1, the details
about the visual and depth information extracted from
Kinect are given in Section 2. In Section 3, the appli-
cation of the CNN-based classifier for place categoriza-
tion is described. Subsequently, the frontier-based ex-
ploration method is introduced in Section 4. In Section
5, experiments are conducted. Finally, concluding re-
marks are provided in Section 6.

1 CNN algorithm

CNN is a multilayer feed-forward neural networks,
which consists of various combinations of convolutional
layer, sub-sampling layer and fully connected layer. In
practice application, CNN has been demonstrated to be
an efficient and stable method, and provides even better
categorization performance than AdaBoost and SVM.

To construct a classifier for categorizing different
indoor places, Caffe'™' is chosen as the base frame-
work of CNN. The Caffe-based CNN architecture is
similar to the AlexNet described by Krizhevsky, et

al. """ which is shown in Fig. 1.
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Fig.1 The overall architecture of the proposed CNN

As depicted in Fig. 1, the proposed CNN consists
of five convolution layers, some of which are followed
by sub-sampling ( max-pooling) layers, and three fully
connected layers with a final 8-way softmax. The conv-
olutional layer computes convolutions of the input ima-
ges with multiple trainable filters ( kernels), and gen-
erates different feature maps, which are used as input
of the next layer. The kernels of the second, fourth,
and fifth convolutional layers are connected only to
those feature maps in the previous layer, but the ker-
nels of the third convolutional layer are connected to all
feature maps in the second layer. The neurons in the

fully connected layers are connected to all neurons in
the previous layer. Furthermore, response-normaliza-
tion layers (LRN) are applied to the first and second
convolutional layers, and rectified linear unit ( ReLLU)
follows the output of every convolutional and fully-con-
nected layer.

More specifically, each input image has three
channels: red, green, and blue. For each channel,
the first convolution layer filters the 227 x227 (51529-
dimensional ) input image with 96 kernels of size 11 x
11 with a stride of 4 pixels. The second convolution
layer takes the output of the first convolution layer as
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input, and filters it with 256 kernels of size 5 x5. The
third convolution layer and the fourth convolution layer
has 384 kernels of size 3 x3 connected to the outputs
of the previous convolution layer, respectively. The
fifth convolution layer has 256 kernels of size 3 x 3.
The fully-connected layers have 4096 neurons, and the
output of the final fully-connected layer is a distribution
over 8 class labels. In addition, since CNN requires a
constant input dimensionality, the image should be first
rescaled to a fixed resolution of 227 x227.

2 Information from Kinect sensor

In this paper, a Kinect is used instead of 2D laser
as the main sensor, which can provide both visual in-
formation and depth information at high rates. The spe-
cific Kinect sensor is ASUS Xtion Pro Live with 58°
horizontal field of view and 45° vertical field of view,
and the reliable range of depth is approximately 0. 8m
- 3.5m, as shown in Fig.2. In the proposed ap-
proach , the visual information is applied for the seman-
tic place categorization, while the depth information is
used for mobile robot exploration.

Fig.2 The ASUS Xtion Pro Live Kinect

2.1 Visual information

During the exploration process, a mobile robot
takes one observation with panoramic view at some lo-
cation and assigns the category label to the correspond-
ing place according to the Kinect visual information.
However, since Kinect has a restricted working range
(field of view), mobile robot does not have a broad
perspective to make a 360° vision observation.

To form a complete panoramic scan, mobile robot
rotates around its vertical axis and takes 8 snapshots at
each target location. In other words, the complete pan-
oramic scan is divided into 8 overlapping partial scans,
and the adjacent partial scans has 13° overlapping an-
gle, as shown in Fig.3. Consequently, each panoram-
ic image consists of 8 sub-images covering the 360°
field of view around the robot.

In this section, the ORB''* based image stitching

approach proposed by Adel , et al . "' is employed to

Fig.3 Partial scans in a panoramic scan with gray areas

indicating the overlapping angle

create panoramic image with a high resolution accord-
ing to the input partial images. As an example, Fig.4
shows the partial and stitched images.

(b) the stitched image

Fig.4 An example of the ORB based image stitching

By using the ORB feature-based technique, the
panoramic image around mobile robot is obtained, and
used as input to the CNN-based classifier for categori-
zation purposes.

2.2 Depth information

In this paper, the Kinect sensor is also used as a
virtual LIDAR, and the standard laser-based SLAM
system implemented in robot operating system ( ROS)
is adopted for acquiring environment information to
build 2D grid map. However, unlike LIDAR scan da-
ta, the Kinect’ s depth information comes in the form
of 3D-point cloud because that the depth values have
been transformed into points in a 3D-coordinate sys-
tem. Therefore, in order to use the 2D-based algo-
rithms (e. g. laser-based SLAM) , the acquired depth
information (3D point cloud data) should be converted
into a 2D laser scan.
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To create the equivalent LIDAR scan data, ROS

provides the package Pointcloud To  Laserscan''®

which can convert the 3D-point cloud data into a set of
2D points in a certain plane. The key idea is to read
the 3D-point cloud data at a particular height (28cm in
our case) and at a certain linear angle, which give us
distance information like a laser beam. In addition,
the 2D-point data at a specific frequency was repub-
lished to match the LIDAR publish frequency. By this
way, it is able to make the Kinect appear like a LIDAR
for using the Laser-based SLAM and generating real-
time grid map.

Fig.5 shows the Kinect depth information from
3D-point cloud data to the 2D points of LIDAR using

Pointcloud To _ Laserscan.

(a) 3D indoor environment in Gazebo

(b) 3D-point cloud data
collected by Kinect

(c) 2D points of LIDAR in grid map

Fig.5 An example of converting 3D-point cloud data to 2D
points in grid map

3 Semantic categorization using CNN
through panoramic scans

This paper considers the following types of indoor
environment corresponding to eight different place cate-
gories. Typical instance of these categories in office en-
vironment are shown in Fig. 6. For semantic categoriza-
tion at indoor places, a classifier learned with CNN is
designed based on Kinect visual observations ( pano-
ramic scans). The idea behind is to take the panoram-
ic scans as input of CNN-based classifier for each type
of place and return the labels according to the position
of mobile robot during its exploration phase.

After panoramic scans are obtained, a categoriza-
tion vector z(¢) is constructed representing the i-th
panoramic scan in one place, which can be described
as

‘Water room

Doorway Office Study room

-

=

Fig.6 A typical indoor environment with corridor, doorway,
great hall, laboratory, office, seminar room, study

room and water room

z(t) = {label,,---, label,, -, label,| (1)
where label; corresponds to the j-th categories, and N is
the total number of categories.

By applying the CNN-based classifier, vectorz(t)
is transformed into a probabilistic distribution over N
categories :

P(z) = {p(label, | z(1)),--, p(label | z(1)),

=+, p(labely 1 2(1)) | (2)
where p(label;| z(1) ) is the probability of j-th catego-
ries for the ¢-th panoramic scan.

Finally, the final categorization result for the t-th
panoramic scan can be obtained by selecting the label
with highest probability ;

Label(t) = argmax(p(lable;| z(t))),

j=1,,N (3)

An example that panoramic scan taken in a great
hall together with its corresponding probability distribu-
tion is shown in Fig. 7.

(a) the panoramic image in a great hall
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Corridor Doorway Great hall Lab(laratory Ofﬁce Seminar Stu'dy
(b) the probability distribution over categories

Fig.7 An example of panoramic scan in a great hall

and its probability distribution

In addition, since the categorization method is su-
pervised , training for the CNN-based classifier needs to
be performed in advance.
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4 Frontier-based exploration method

This section describes the exploration approach to
generate navigation goals for acquiring semantic infor-
mation about indoor environments. To this end, a fron-
tier-based exploration approach is used, which was
originally proposed by Yamauchi''""*),

The frontier-based exploration method provides an
efficient way to explore environments, which directs a
mobile robot to the frontiers that lie on the boundary of
explored space and unexplored space (see Fig.8).
This strategy can make the mobile robot see into the
unexplored space laying beyond target frontier. As a
result, the mobile robot can constantly extend its
knowledge about the environment. Once arriving at tar-
get frontier, the mobile robot performs a 360° sensor
sweep using Kinect, computes frontiers and updates
occupancy grid map based on Kinect perceptions. And
after that, the mobile robot exploits semantic informa-
tion by using the proposed CNN technique according to
panoramic scan, and hereby constructs a semantic
map. These processes mentioned above are repeated
until the overall environment has completely been ex-
plored by mobile robot. In addition, the A *""’
is used to plan the shortest collision-free path from ro-

planner

bot’ s current location to the target frontier.

Explored
space

Fig.8 An example of frontiers in grid map used for exploration

However, the fact that multiple frontiers appear
during mobile robot exploration raises the problem of
which frontier should move to next for the mobile ro-
bot. Therefore, one of the key issues in the context of
the frontier-based exploration is how to choose the tar-
get frontier from the list of potential candidates. A
common approach to determine an appropriate target
frontier is to apply a utility-cost strategy that takes into
account the distance between robot’ s current location
and frontier position, and the expected information
gain.

For each frontier ¢, the expected utility U(¢) is

computed in the exploration system, which is defined
as

Uiy (1) = Uy, (8) = €, (1) (4)
where U, (1) is the approximated information gain re-
lated to the number of frontiers that fall within the Ki-
we (1) 1s the opti-
mal path (the shortest distance) that the robot has to
travel from robot’ s current position to frontier ¢.

nect sensing range at the frontier t. C

The main goal of the exploration strategy is to nav-
igate mobile robot to the accessible and unvisited fron-
tier with the maximum utility U, (¢). In this way,
the frontier-based exploration system can direct mobile
robot to the areas that are likely to provide the most
new information about the environment, and eventually
explore all of the accessible space until all the target
frontiers are covered.

According to the aforementioned descriptions, the
overall flowchart of the proposed exploration system
combined with the CNN-based classifier for mobile ro-
bot can be shown in Fig. 9.

Initialize parameters
Kinect scan

Depth information

\ 4

Visual infonnationl

Panoramic image
stitching

| ; |
Select target frontier Slormmatie 6l
> [ |

INavigate to target frontierl

IPointcloud to Laserscanl

| SLAM |

| Occupancy grid map |

ICompute set of frontiersl

A

Semantic map
if exploration
finished?

Fig.9 The flowchart of the proposed exploration system
combined with the CNN-based classifier

5 Experiments

To evaluate the performance of the proposed ap-
proach described above, several experiments are con-
ducted using a real robot in an office environment.

The robot used in the experiments is Turtlebot2
equipped with odometer, gyroscope and Kinect, as
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shown in Fig. 10. It should be noted that the explora-
tion system is realized based on open-source explora-

tion package named frontier _ exploration'™' in ROS

]

, and the robot has the means for sol-

environment ' *'
ving localization and mapping problems by using the la-
ser-based SLAM given Kinect and odometer data. Fur-
thermore , the 3D visualization tool RVIZ** is used to

visualize the grid map published from Turtlebot2.

Fig.10 The Turtlebot2 robot equipped with a Kinect

5.1 Data-set of indoor places

In this section, a data-set of indoor places have
been created by collecting data in the New Main Build-
ing of Beihang University, where the environment con-
tains eight different place categories, namely corridor,
doorway, great hall, laboratory, office, seminar room,
study room and water room. Each category contains
multiple sets of data coming from different locations at
one place pertaining to that category, and each set of data
contains one panoramic image and 8 partial images.

To collect the data for the data-set, the mobile ro-
bot is steered through the indoor environment, and sit-
uated in different locations inside each place. At each
place, mobile robot takes 64 panoramic scans with Ki-
nect. It should be noted that the locations are spatially
distributed inside each place covering the most of the
possible situations. Consequently, the data-set con-
tains a total of 512 panoramic images and 4096 partial
images of indoor places, which can be used for training
and testing the CNN-based classifier.

5.2 CNN setup and training

In this work, CNN are initialized with the default
parameters proposed by Krizhevsky, et al. '/, Aside
from replacing the AlexNet-specific 1000-way classifi-

cation layer (F3) with an 8-way classification layer,
the CNN parameter settings are unchanged. Further-
more, the parameters configuration of CNN’ s solver
should be also done for training CNN. Fig. 11 shows an
example configuration of solver in the convnet style.

test_iter:10
base_Ir:0.0001

test_interval:500
Ir_policy: “step”

gamma:0.1 stepsize:100
display:1000 max_iter:100000
momentum:0.9 weight_decay:0.0005
snapshot: 50000 solver_mode:GPU

Fig.11 An example of solver protobuf files in the convnet style

In practical applications, training CNN needs
much experience and skill, and it consumes time very
much. Furthermore, due to insufficient images, train-
ing CNN on the dataset created in this paper may suffer
from overfitting. To overcome this problem, therefore,
the fine-tuning method is used for training CNN based

on the Girshick’ s implementation of training >’ .

In
Caffe, the fine-tuning is a very effective way to the ad-
aptation of an existing model to new architectures or
data. In this study, training CNN is done through the
fast and standard stochastic gradient descent algorithm,
and it is carried out on a PC with Intel i7 processor,
64GB memory and a NVIDIA GeForce GPU. And the
total training time is approximately 2 days.

In order to evaluate the performance of CNN, both
the overall loss and accuracy are calculated during
training and testing. Based on the solver setting, the
training loss at each iteration and the test loss every
500 iterations are printed and the accuracy every 500
iterations are calculated. Fig. 12 shows the results of
training and testing CNN on the created data-set. From

Accuracy vs Iteration X10*
1 2 3 4 5 6 7 8 9 10

—_
(=3
(=3

Loss

N W R L A 0 O
T T T T —=

Iterations x10*
Fig.12 The results of loss and accuracy during training

and testing
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the reslults, it can be found that using CNN provides
higher accuracy (about 0.974) and lower loss (about
0.325).

Once CNN have been trained, the semantic cate-
gorization task can be performed by it.

5.3 Error analysis of the CNN-based classifier for
semantic categorization of indoor places

In order to verify the performance of the CNN-
based classifier for solving semantic categorization prob-
lem, a series of comparative experiments have been con-
ducted using the created data-set. As the baseline, the
standard SVM and AdaBoost are used, which classify
indoor places based on the geometrical features (2D
structure ) extracted from LIDAR scans. These features
are standard geometrical features often used in shape
analysis, which can be found in Ref. [24].

For performing this experiment, the whole data-
set has been divided into training set and testing set.
The testing set is created by randomly selecting some
panoramic images from each category in the data-set,
while the rest of panoramic images in the same category
are used as training data. In this way, the testing set
does not contain any images of a place in the training set.

In this research, the CNN-based -classifier is
trained by using 320 training examples from the data-
set, 1. e. each training set contains always eight cate-
gories and each category contains 40 panoramic ima-
ges, and the rest of data are used for test experiments.
The test experiments are done repeatedly 20 times, and
the categorization results of the three methods with re-
spect to their average correct categorization rate for
each category are summarized in Table 1, in which the
best results are typed in bold.

As shown in Table 1, the CNN-based classifier
performs much better performance of successfully clas-
sifying the indoor places than SVM and AdaBoost. The
highest accuracy rates of the CNN-based classifier are
achieved for the ‘ Doorway’ and ‘ Laboratory’ catego-
ries. This can be due to the fact that ‘ Doorway’ and
‘ Laboratory’ categories have distinctive features than
the other categories, which can be easily distinguished
from panoramic scans. In contrast, the lowest accuracy
rates are obtained for the ‘ Office room’ and ‘ Study
room’ categories. Although the CNN-based classifier
behaves with the worst performance in the accuracy
rates of ‘ Office room’ and ‘ Study room’ categories, it
presents competitive results compared with SVM and

AdaBoost.

Table 1 Comparison of correct categorization rates using CNN,
SVM and AdaBoost
Category CNN SVM AdaBoost
Corridor 94.83 £0.83 89.16+1.66 88.33 +2.07
Doorway 97.35£0.42 88.33+1.23 89.60+1.75
Great hall 96.66 +0.58 90.00 £1.41 86.66 +1.52
Laboratory 97.33 £0.78 86.63 £1.27 84.41 +1.90
Office 91.50 £1.26 84.16+2.49 82.63+2.76
Seminar room 96.50 £0.42 84.94 +1.25 80.00 +1.36
Study room 90.60 £1.11 85.00 +2.24 80.83 +2.49

From the results, it can be concluded that the
CNN-based classifier performs significantly better than
SVM and Adaboost with the advantage of providing
high precision, which clearly demonstrates the effec-
tiveness of the proposed CNN for addressing semantic
categorization problems of indoor environments.

5.4 Semantic categorization of indoor places with
CNN for mobile robot exploration

To further demonstrate the performance of the pro-
posed exploration method, a real experiment was carried
out with Turtlebot2 robot in the New Main Building of
Beihang University. In this experiment, the exploration
method with integration of the CNN-based classifier has
been tested to categorize the indoor environment.

The experiment result is depicted in Fig. 13,
where the developed semantic grid map is viewed with
the help of RVIZ. The different color areas on the map
indicate different categorization of the corresponding in-
door places. Fig. 14 shows the parts ( excluding robot
path) of the enlarged versions in Fig. 13.

According to the experimental results, it can be
concluded that the proposed method with integration of
the CNN-based classifier and the frontier-based explo-
ration approach can successfully categorize the different
places in indoor environment by using Kinect during
mobile robot autonomous exploration.

6 Conclusion

This work presents an approach to classify differ-
ent places in indoor environments by using Kinect for
mobile robot autonomous exploration. This approach
applies CNN to form a classifier to perform semantic
categorization based on panoramic scans. Moreover,
the frontier-based exploration approach is developed to
explore the indoor environment and build a semantic
map. The experiment results show that the proposed
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‘Water

‘Water
room2

Fig. 13

Corridor

(a) Gat hall- orridor-study room

Doorway18/19

Doorway Doorway
15/16/17

The semantic map of indoor environment explored by Turtlebot2 robot in RVIZ

Corridor

(b) Seminar room- corridor-great hall

Fig. 14 Parts of the enlarged version of Fig. 13

approach with integration of the CNN-based classifier

can effectively categorize indoor places with high relia-

bility during mobile robot autonomous exploration.

Following this work, the CNN-based place catego-

rization method will be further investigated for speeding

up mobile robot autonomous exploration.
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