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Abstract

Clustering data with varying densities and complicated structures is important, while many ex-
isting clustering algorithms face difficulties for this problem. The reason is that varying densities and
complicated structure make single algorithms perform badly for different parts of data. More intensive
parts are assumed to have more information probably, an algorithm clustering from high density part
is proposed, which begins from a tiny distance to find the highest density-connected partition and
form corresponding super cores, then distance is iteratively increased by a global heuristic method to
cluster parts with different densities. Mean of silhouette coefficient indicates the cluster perform-
ance. Denoising function is implemented to eliminate influence of noise and outliers. Many challeng-
ing experiments indicate that the algorithm has good performance on data with widely varying densi-
ties and extremely complex structures. It decides the optimal number of clusters automatically.
Background knowledge is not needed and parameters tuning is easy. It is robust against noise and
outliers.
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0 Introduction

Clustering is a classical problem in machine learn-
ing, and has been used widely in image analysis, in-
formation retrieval and data mining. Clustering algo-
rithms can be sorted into six classes based on different
features ; partitioning, hierarchical, grid-based, densi-
ty-based, model-based and graph-based''’. However,
each class of clustering has its own potential shortcom-
ings. For example, K-means'> and its variations, be-
longing to partitioning clustering, need a specified
number of clusters as an input parameter, which often
influences performance largely and is hard to decide.
The primary disadvantage of hierarchical clustering'”
is that it doesn’ t have back-tracking ability and false
partitions can’ t be undone. Affinity Propagation',
belonging to graph-based clustering, has also another
two important parameters, preference and damping fac-

tor, specified by users influence performance greatly.
Density-based clustering assumes the overall dis-
tribution of the data is mixture of several distributions
and points of different clusters obey different specific
distributions"”’. Clusters are defined as areas of higher
density surrounded by that of lower density. Objects in
those sparse areas required to separate clusters, are
usually considered to be noise and border points'®’.
Due to this general motivation, density-based clustering
can find clusters of arbitrary shape. The other feature
is that density-based clustering doesn’ t specify the
number of clustering. Some representative algorithms
include DBSCAN, DBCLASD, DENCLUE, OPTICS,
Mean Shift. DBSCAN ( density-based spatial clustering
of applications with noise ) ] require two input parame-
ters; radius, eps, to define the neighborhood of each
object, and the minimum number, minPis, of objects
to form a cluster. DBSCAN starts with an arbitrary
starting point that has not been visited. This point’ s
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neighbors in eps range are retrieved. If it contains more
points than minPts, a cluster is formed. Otherwise, the
point is labeled as noise. If a point is found to be a
dense part of a cluster, its neighbors are also part of
that cluster. Hence, all points found within the eps
range are added. This process continues until the den-
sity-connected cluster is completely found. OPTICS'®
can be seen as a generalization of DBSCAN that out-
puts the points in particular ordering and any clusters
can be extracted by this cluster ordering. DBCLASD""’
assumes the points of a cluster are uniformly distributed
and according distribution is known. This assumption
limits DBCLASD’ s using in practice. DENCLUE'"
identifies density attractors, local maxima of the overall
density function in certain areas, and determines clus-
ters mathematically. Mean Shift'""’ counts mean shift
vector of a candidate centroid and locates the local
maxima of a density function by updating candidates for
centroids iteratively. Clusterdp'™' also computes two
quantities for each data point, which are local density
and point’ s distance from points of higher density. The
points of high distance and high local density are cho-
sen relatively to be the cluster centers. Then each re-
maining point is assigned to the same cluster as its nea-
rest neighbor of higher density. A common problem of
these density-based clustering methods is that they usu-
ally perform badly if the data objects have widely var-
ying densities and extremely complex structures. Be-
sides density and distribution problems, noise and out-
liers are also serious to these density-based cluster
methods.

In this paper, the data is clustered iteratively and
clustering parameters are adjusted heuristically to the
basis of the data themselves. First the clustering begins
from the highest density area in the data. Then cluste-
ring scope is spread to all the data from the highest
density area to the lowest density area gradually. Den-
sity-connected methods are used similar to DBSCAN'"’
to find the highest density partitions. In the algorithm,
DBSCAN is applied as a density-connected partition
detector. At the beginning, DBSCAN is used with ex-
tremely small eps and minPts to find some density-con-
nected partitions. These density-connected partitions
are the highest density parts of the data. Then, a rep-
resentative named super core is extracted for each den-
sity-connected partition by the pooling method in deep
learning. The reason of extracting super core is to in-
crease degree of separation of different density parts
and avoid adhesion between them. Some super cores
with little objects or noise will form in this procedure.
Because these super cores are probably meaningless
and influence the accuracy of clustering, the approach

performs a function to eliminate meaningless super
cores. After generating super cores, a global heuristic
approach is proposed to update eps and new density-
connected partitions are detected. The value of minPits
in our algorithm is often set to 2 for finding the high
density parts. That means parameters in DBSCAN are
not specified by users. The algorithm will reach con-
vergence after several iteration.

The rest of the paper is organized as follows. In
Section 1, the algorithm is presented. In Section 2,
the experimental evaluations are shown. Conclusion is
given in Section 3.

1 The proposed algorithm

1.1 Basic definitions

Because DBSCAN is a basic operation in the algo-
rithm, the definitions in DBSCAN'" such as eps,
minPts, directly density-reachable, density-reachable,
density-connected are also utilized in the algorithm and
will not be repeated. In the following, some basic defi-
nitions are introduced ;

Definition 1. (nearest neighbor) Let p be a point
in set D, the nearest neighbor of p in D is point ¢ which
has the minimum distance to p in set D — {p}.

Definition 2: ( nearest neighbor distance) Let p
be a point in set D, the nearest neighbor distance of p
in D is the distance between p and the nearest neighbor
of p in set D.

Definition 3. ( density-connected partition) Giv-
en eps and minPts, a density-connected partition is a
local maximal set of density-connected points in set D.

Definition 4. (super core) Given a density-con-
nected partition, super core s is an aggregation of all
the points in the density-connected partition.

1.2 Motivation

The motivation of the algorithm comes from solving
the difficulty that DBSCAN clusters the objects with
widely varying density and complex structure, especial-
ly including outliers and noise which make DBSCAN
merge into two and more different clusters together. In
Fig. 1(a), cluster 1 and cluster 2 have obviously dif-
ferent densities and some outliers are compose of a
“bridge” to connect two clusters. DBSCAN has some
difficulties to cluster this data. Setting smaller eps and
minPts, DBSCAN only identifies dense cluster 1 and
regards sparse cluster 2 as noise like Fig. 1(b). Set-
ting bigger eps, DBSCAN also identifies sparse cluster
2. But it is possible that DBSCAN merges cluster 1 and
2 as one cluster if eps is too big like Fig. 1(c). Fur-
thermore, if outliers of bridge satisfy density-connect
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with corresponding eps and minPts of DBSCAN, cluster
1 and 2 will merge together definitely. For overcoming
this difficulty, performing DBSCAN by incremental eps
is considered. When eps is very small, the most inten-
sive density-connected partitions in cluster 1 and 2 will
be detected first. Then these partitions are aggregated
to super cores. Aggregating super cores can increase

cluster 1 bridge cluster 2
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(a) Two clusters and a bridge. el <e2<<e3

cluster 1 bridge cluster 2

(c) DBSCAN clusters: e3<<eps

the degrees of cohesion in the same clusters and sepa-
ration between different clusters. As increasing eps,
more and more super cores appear and small super
cores merge to big super cores. Finally, cluster 1 and
cluster 2 aggregate into a super core separately and out-
liers of bridge are also identified as a super core like

Fig. 1(d).

cluster 1 bridge cluster 2

(b) DBSCAN clusters: el <eps<<e2

cluster 2

cluster 1 bridge
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(d) Proposed algorithm clusters

Fig.1 Average distance between points in different groups is el, €2 and €3

1.3 Description of algorithm
The whole data set is denoted as S. At first, the
algorithm analyzes all the points in set S to determine a
reasonable initial eps. Every nearest neighbor distance
for every point is computed to get a nearest neighbor
distance set D. Then eps is computed by
min(D) + o x std(D), S has overlap
mean(D) + B x std(D), otherwise
()
In Eq. (1), min(D) is the minimum of D, mean
(D) is the mean value of D and std( D) is the stand-
ard deviation of D. a = 0. 01 and -3 < 8 < 3 are both
two constants. The ranges of a and 8 which often dis-

epsz{

tribute most of meaningful points come from probability
theory. Note that Eq. (1) stands for two strategy com-
puting eps. When S has overlap, eps increases to a very
tiny extent, data are classified very carefully and run-
ning time is much. Oppositely, if there isn’ t overlap
in S, eps will increase with a large value, classification
is quick and running time is reduced. The aim of using
simple formulas, not complex distribution is to enlarge
universality of algorithm.

After eps is determined, the algorithm makes use

of DBSCAN as a density-connected detector. In the
proposed algorithm, minPts is often set as 2. That
means any two points whose distance is smaller than eps
are directly density-reachable and density-connected
partitions spread until distance between two points are
larger than eps. When minPts equals 2, borders of
clusters in DBSCAN disappear and all the points are
only classified into core points and noise. Core points
are composed of density-connected partitions which are
the highest density part of set S in the current eps. Af-
ter generating density-connected partitions, pooling of

" is applied to extract super cores from

deep learning'"”
density-connected partitions. As mentioned before, the
aim of extracting super cores is to increase the degree
of cohesion in the same partitions and separation be-
tween different partitions. For standing for the whole
density-connected partition better, mean-pooling is ap-
plied that super core is the average value of all the
points in corresponding density-connected partition.
During aggregating super cores, some super cores
including little points are generated. If these super
cores locate in sparse area, they are noise or outliers in
fact and won’ t grow up. So there is a function to check
whether some super cores are meaningless and should
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be decomposed. After new super cores are added into
S, the number n; of points in every super core i is recor-
ded and a super core quantity set N is gotten. Set N is
measured to judge whether some super cores are outli-
ers. If recover conditions, std (N) = mean ( N) and
median( N) = mean ( N), are satisfied, that means
some discrete super cores appear. Here mean( - ) and
std( + ) are the same as before, median ( N) is the
median of N. A super core will be recovered to original
points, then these points are put back to set S. Note
that this process is probabilistic, rather than determin-
istic. The probability that a super core ¢ is recovered is
inversely proportional to its volume ratio which is de-

fined in the Eq. (2).

volume, = n,/( Z "ieNnj) (2)

Intuitively, the supér core with little points has
low volume ratio and its probability recovered is high.
After a super core is recovered, super core quantity set
N is updated and recover conditions are computed
again. If recover conditions aren’ t satisfied, recove-
ring super cores will stop. Otherwise, a new super core
will be recovered.

After recovering meaningless super cores, new ag-
gregated super cores are added into S and corresponding
points are removed from S. At the same time, nearest
neighbor distance set D of S is also updated. Next eps
is computed and a new procedure of detecting density-

Tabel 1

connected partitions begins. Two keys about super core
should be noticed. First key being a super core is re-
garded as an ordinary point in computing nearest neigh-
bor distance and generating density-connected parti-
tions. Secondly, in pooling of density-connected parti-
tions, a super core is regarded as the points in it. That
means if density-connected partitions include super
cores, corresponding super cores will be recovered to
points in it and the average value of all these points
generates super core of this partition.

In each iteration mean of silhouette coefficient' "’
of every point is used as an internal index to indicate
the performance of clustering. Silhouette coefficient is
bounded from —1 to 1 and greater value is better. The
reason why silhouette coefficient is chosen as index is
that silhouette value is correlated better with the F1
score, F2 score, Jaccard index so that it would be a
better measure for un-labeled datasets' "’ .

As algorithm runs, more and more super cores ap-
pear, more and more original points are removed from
S, eps becomes larger and larger and the total points in
S becomes less and less. Finally, the algorithm will
converge to a balance situation. Points in the same su-
per core are regarded as a cluster and the points that
don’ t belong to any super cores are identified as noise

in the convergence situation. The whole algorithm is

described in Tabel 1.

Description of algorithm

Algorithm;: Input: Dataset S, o, 8

Output: A clustering solution

repeat

1. Calculate the nearest neighbor distance set D, determine eps.

2. Generate density-connected partition p using DBSCAN in eps and minPts =2.

3. Reduce p to super core ¢ by pooling. If there are some points which are super cores in p, recover su-

per core to corresponding original points.

4. examine whether some super cores including little points are needed to recover. If existing, recover

these super cores to original points.

5. Update S by adding new super cores and removing corresponding original points.

6. Compute mean of silhouette coefficient and record current situation

until S remain unchanged

return the solution whose silhouette coefficient is maximum.

For n objects in data S, the average complexity of
DBSCAN is O(nlogn) and the worst complexity is
O(n*) if data are degenerated or eps is unreasonable.
The complexity of computing nearest neighbor distance
set D is O(n*). The complexity of extracting super
cores is O(n). The complexity of decomposing super
cores including little points or noise is O(n). The com-
plexity of computing silhouette coefficient is O(n*).
The number of iteration is defined as ¢. In the worst sit-

uation, ¢t isn — 1. In normal situation, t << n. In fact,
the maximal value of ¢ in the experiments is just 270. So
the average complexity of the algorithm is O(¢ x n*).

2 Performance evaluation
Performance of the algorithm is evaluated with

three experiments and the algorithm in Python is imple-
mented. Compared clustering algorithms including DB-
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SCAN, K-means, average linkage, complete linkage
and ward’ s clustering come from scikit-learn package
in Python.

In the first experiment, the working procedure of
the algorithm is shown and its ability to cluster the
dataset with excessive unbalanced density and distribu-
dataset is called Unbalance
in 8

Each cluster of left three clusters

tion is evaluated. The

18] This dataset contains 6500 vectors

from
Gaussian clusters.
consists of 2000 vectors but each cluster of right five
clusters has only 100 vectors. The density ratio be-
tween left dense cluster and right sparse cluster is more

than 20. Fig.2 shows the main steps of the proposed

approach. Note that bigger colored dots mean super
cores and the same colored parts or points as super
cores are vectors which are aggregated by super cores.
In the first iteration of Fig.2(a), the proposed ap-
proach just constructs one super core because of small
eps.
on left three clusters and just three super cores are in

Then 369 super cores, most of which concentrate

the right sparse parts, are generated in the second iter-
ation of Fig.2(b). As eps increases, left three clusters
have aggregated to one super core separately and right
five clusters also consiste of several super cores in the
tenth iteration of Fig.2(c). Finally, all the vectors
form eight super cores as shown in Fig.2(d).

X 10* X 10*

45 = 45

40 40 8

SRR 35100

30 30

25 X10* 25 X 10*
10 20 30 40 50 60 10 20 30 40 50 60

(a) Iter=1 eps=4.47 (b) Iter=2 eps=300.8

X 10 X10*
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' sy B
¥
35 LI I ]
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(c) Iter=10 eps=12640.15 (d) fter=14 eps=30453.09

Fig.2 Unbalance clustering (a) (b) (¢) (d) clustering procedure of the proposed algorithm to Unbalance

In the second experiment, the approach’s ability
is evaluated to determine the number of clusters auto-
matically. Dataset from Ref. [ 17 ] is used in the work.
This dataset consists of 4 subsets of synthetic 2-d data
points. Each subset containing 5000 vectors in 15
Gaussian clusters has different degree of cluster over-
lapping. Strategy eps =min(D) + a x std(D) is em-
ployed to heuristically update eps in each iteration. In
practice, « is increased 0.01 each time from 0. 01 to 1
because too large o is meaningless. This makes tuning
parameters of our algorithm easy and don’ t need back-
ground knowledge of dataset. In fact, although o has
100 values, there are only a little clustering results be-
cause the algorithm is robust to tuning parameters. Fi-
nally, the values of @in S,, S,, S;, S, are decided to
0.8, 0.6, 0.4, 0.05 respectively. The result is de-
scribed in Fig. 3. As shown in Fig. 3, the proposed al-
gorithm obtains the correct number (15) of clusters
and near-perfect structure on each of the four subsets.
In the bottom row, the number of super cores varies
from few to many and back to few, corresponding sil-
houette value has an incremental trend and becomes
stable finally. Vertical line in the figure shows maxi-
mum of silhouette value indicates the correct clustering
number. Note that there are some separated black vec-
tors which are labelled noise because of the function of
recovering super core in the proposed algorithm. These

vectors lying in the edge of clusters are only in a very
small portion of data and have no influence to final re-
sult.

In the third experiment, the algorithm’ s ability is
evaluated to some datasets with special shape and dif-
ferent degree of connection, compare it with some other
popular clustering algorithms including K-means, DB-
SCAN and three types of agglomerative clustering; av-
erage, complex and ward linkage. The performance is

(18] , Flame'"’

evaluated on three datasets: Aggregation
and Jain'*"). Aggregation contains 788 points from sev-
en different groups with different shapes and sizes. The
most difficulties of Aggregation are two “bridges” be-
tween different groups which perhaps connect them to-
gether in clustering. Flame contains 240 points from
three groups. Upper left two outliers belong to one
group. Another two groups have compact combination
in the large area. Jain contains 373 points from two
groups. Although two groups do not combine directly,
there is an overlapping part of two groups with adjacent
distance.

In the third experiment, correct number of clus-
ters is used as input parameter for K-means, average
linkage, complex linkage and ward linkage. For DB-
SCAN, minPts is varied from 2 to 10 and eps is trav-
ersed from the minimal distance to the maximal distance

between all the points in the dataset . The strategy eps



154 HIGH TECHNOLOGY LETTERSI Vol. 24 No.21June 2018
8| "W 8 .
6 s kY e 6 #‘ﬁt
ire |
! e 2| 9
0 0 :
0 2 4 6 8 10 0 2 4 6 8 10 . 0 2 4 6 8 10 0 2 4 6 8 10
The proposed S1 X 10° The proposed S2 X 10 The proposed S4 %X 10°
2 = 2
o 0. 0.8 900 0.6
 Ryles 600 & 2 o[ - 800 8 8 04 S 806 12005
S 05| 5S04 [ N\ S 7005 S 02 5 S o2 1000 .,
2 [ 500 & % g5 [ - 600 & = 0 & = 92 1/ 800 &
£ 03| A 400 3 2 oSl 500 2 2.3 2 £.02|// 600 2
- 300 2 -02f/ 4 Q- o "y b=
g ol " - 20 o 2 -04/ 300 S 3 -04 S 2-06|f ;83 2
gl e 238 #5200 B2 % 5
Z -0.11 ] =0 = = 5
) number of iteration o 5%l e o § ° £ g m number of iteration §
& z number of iteration number of iteration Z z
s silhouette value w=fill= super core

Fig.3 Clustering for determining the number of cluster automatically. (top row) Original data. (middle row) Clustering results of
proposed algorithm. (bottom row) Relationship between silhouette coefficient and number of super cores in clustering that ver-

tical line shows the location of maximum of silhouette coefficient and corresponding number of super core

=mean(D) +B xstd(D), eps>0 and -3 <B <3 is
applied to search optimal performance of the algorithm.

In the result of the algorithm, dots which are big-
ger than ordinary points are super cores. Super cores
are retained to show final convergence of each cluster.
As demonstrated in Fig. 4, the algorithm can identify
the shapes of clusters and have excellent performance
in three datasets. In the Aggregation, the approach
mistakes six points in the left bridge, which is three
more than that in Ref. [21]. Ref. [21] utilizes four
underlying algorithms to get that result, however the al-
gorithm achieves an approximate performance inde-

pendently. Note that average linkage clustering algo-
rithm has an outstanding clustering that mistakes three
points in right bridge like” | and DBSCAN also per-
forms well at eps = 1. 18 and minPis =6 by searching eps
and minPts carefully. Another two datasets, the per-
formance of the proposed algorithm is much better than
remaining algorithms. For flame, the algorithm clusters
ten points wrongly in the combination of two groups and
remaining algorithms identify wrong structure. Further-
more, the algorithm clusters Jain exactly but other al-
gorithms make mistakes in the overlap part.

Original data K-means Average linkage ~ Complete linkage ~~ Ward linkage DBSCAN  Proposed algorithm
AR : : AR 3:’ ,g,\? P R

g s WM s a3 5 Rl s MR o s Rt

£ o i o ‘ﬁ%ﬁ 1 %ZEE s g
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< |
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Fig.4 Clustering in data with different shapes
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3 Conclusion

A new density-based clustering algorithm is pres-
ented which is clustered from the high density-connect-
ed partition, to solve the clustering problem of the
dataset with varying density and complicated structure.
In essence, this algorithm is a mixture of agglomerative
clustering and DBSCAN that combine their advantages
and overcome their disadvantages. A lot of experiments
prove that; The approach has good performance to the
data with widely varying densities and extremely com-
plex structures; It decides the optimal number of clus-
ters automatically; Background knowledge is not nee-
ded and tuning parameters is easy and fixed; It is ro-
bust against noise and outliers.
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