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Abstract

An experimental platform with bracket structures, cables, parallel computer and imaging system
is designed for defects detecting on steel rails. Meanwhile, an improved gradient descent algorithm
based on a self-adaptive learning rate and a fixed momentum factor is developed to train back-propa-
gation neural network for accurate and efficient defects classifications. Detection results of rolling
scar defects show that such detection system can achieve accurate positioning to defects edges for its
improved noise suppression. More precise characteristic parameters of defects can also be extracted.
Furthermore, defects classification is adopted to remedy the limitations of low convergence rate and
local minimum. It can also attain the optimal training precision of 0. 00926 with the least 96 itera-
tions. Finally, an enhanced identification rate of 95% has been confirmed for defects by using the
detection system. It will also be positive in producing high-quality steel rails and guaranteeing the
national transport safety.
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0 Introduction

During the production process, accurate and effi-
cient defects detection on steel rails is of great signifi-
cance in improving track quality and guaranteeing
transport safety. Up to now, many methods have been
Ref. [1] de-
scribed an alternative current field measurement
(ACFM) to detect breaking defects on rails. Ref. [2]
adopted an infrared light for defect detection on heavy

developed to detect defects on rails.

rails. Besides, manual observation, eddy current and
magnetic leakage techniques have also been proposed

for defects detection**.

However, false detection is
of common occurrence for inefficient manual observa-
tion. Low detection precision will be caused by infrared
and eddy-current methods. Besides, some other tech-
niques may be complex, costly, imprecise and ineffi-
cient for defects detection. Therefore, exploring an ef-
ficient, facile and accurate method to detect defects on
rails is still a big challenge.

In recent years, machine vision technique>*' has
gained growing popularity in detection fields for its re-
al-time, non-contact and precise advantages. The most

common back-propagation'’* | radial basis function
[11,12]
and feed-

back'"”""*' neural networks have gained great attentions

( RBF )" counter propagation

in industrial visual classifications and inspections.
Among them, back-propagation network has advantages
in reducing fuzzy edges and extracting more defects de-
tails. Meanwhile, it can also effectively weaken the
noise interference to achieve better real-time computa-
tion than others for accurate defects classifications.
However, some limitations of low convergence rate
and local minimum still exist in classical gradient de-
scent algorithm for training back-propagation network.
Meanwhile , some incomplete detection results are often
seen. Besides, some external interferences and unobvi-
ous gray changes are also found when detecting com-
plex defects in poor production conditions. Recent
years have seen some improved back-propagation algo-
rithms. Ref. [15] introduced a back-propagation algo-
rithm with an adaptive learning rate to predict land-
slides deformation. But its experimental reliability was
not significantly improved. Ref. [16] put forward an
improved algorithm to analyze the data of light distribu-
tion in orchards by modifying weights and thresholds.
But its convergence speed and application object were
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severely restricted.

Herein, on the basis of classical gradient descent
algorithm, an improved back-propagation algorithm is
developed to achieve accurate and real-time defects
classifications, which is constructed by adding the self-
adaptive learning rate and a momentum factor of 0. 6.
Meanwhile, an experimental platform is designed for
defects detection on rails. To evaluate its detection effi-
ciency, training iterations have been investigated. The
edge details and characteristic parameters have also
been extracted to assess positional accuracy and identi-
fication rates of this detection platform.

1 Classification methods of defects

Defects on rails mainly contain rolling scars,
marks, scratches, folds and other types. These defects
have abundant geometry features, depth information

and gray characteristics. Hence, their classifications

are far beyond linear scopes. Multi-layer back-propa-
gation neural network with an input layer, an output
layer and more hidden layers, can meet their classifi-
cations requirements. The characteristic parameters of
defect images extracted by machine vision are set as
the input data, which are outputted to nodes in next
layer until the final output of classification gets results.
To reduce errors between target and actual outputs, the
classical gradient descent algorithm is always used for
improving classification accuracy.

Neural network training is determined by adjusting
weights and biases in signal forward-propagation and
error back-propagation processes. In signal process,
the input of unit ¢ with iteration number n is set as
x;(n). The output of unit j is set as y;(n), as shown
in

1
1 +exp(-s,(n))
()

where N refers to inputting number, w; means weight

y(n) =

zww n)x,(n)) =

function and f; denotes sigmoid function.

In the error back-propagation process, the expec-
ted output is set as d;(n) and the error signal is set as
e;(n), as shown in

e/(n) = d,(n) = y,(n) 2)

The mean square error is expressed as

Eav = ( Ze (n)) (3)

nl

where M refers to outputtmg number and N represents
the total number of training samples. The correction of
weight w, is

Awlj(n) af(”)

i

- n8;(n)x.(n)  (4)

where negative sign means the gradient descent direc-
tion and the local gradient function is given as

5,(n) = e.f:(s5,(n)) (5)

The classical gradient descent algorithm for train-
ing neural network is found with some limitations of low
learning efficiency, low convergence rate and local
minimum. Herein, an improved gradient descent algo-
rithm is developed by adding self-adaptive learning rate
and momentum factor to remedy these limitations. After
being added with momentum factors, the correction of
weight is

w;(n +1) 8x;(n) +mAw;(n) (6)

where m, refers to momentum factors with value range
from 0.01 to 1.00. As shown in Eq. (6), added mo-
mentum factors can adjust the weight towards an aver-
age direction of the error-surface bottom. When the
weight goes into a flat area of the error-surface bottom,
8; will be very small and Aw;(n + 1) is close to Aw,;,
Wthh can effectively prevent the occurrence of Aw; =
0. As a result, it can help the network jump out of the
local minimum value of the error-surface bottom.

Another important reason for the slow convergence
rate of algorithm is improper selection of learning rates.
The learning rate [, ,, is expressed as

by = by (1 - T i c) (7)

where ¢ refers to iterations, T means total iterations and

C represents iteration constant. A small learning rate

can lead to a slow convergence rate. A large learning
rate can cause oscillation and divergence. Hence, im-
proved convergence speed and calculation accuracy can
be achieved with the appropriate choice of learning

rates.

2 Experimental platform

2.1 Detection system
The experimental platform for defects detection is
exhibited in Fig. 1(a).

system, parallel computers, bracket structures and ca-

It mainly consists of imaging

ble system. Among the imaging system, Dalsa SG-
01k40 and Computar M5018-MP are chosen as the
models of linear CCD cameras and lens, respectively.
The camera layout is exhibited in Fig. 1 (b). The most
frequent defects are always found on the camber surface
of rail waist. Hence, cameras 2, 3, 5 and 6 are set to
focus on such camber surface. Camera 1 and 4 are set
to focus on the top and bottom surfaces. Such layout of
cameras can collect more comprehensive images on rail
surfaces. The structural design of light source is shown
in Fig. 1 (¢). 8 rectangular LED light sources are con-

nected by expansion links and hinges. Such layout of
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light sources can make uniform illumination on rail sur-
faces.

The imaging system is installed on gantry brack-
ets. Defects images are firstly achieved by sliding
brackets on guide rails. Then image signals are pro-
After
that, defects detection and recognition results will be
obtained.

cessed by transmitting to parallel computers.

P
——CCD camera

™ Bed-jig

“>Cable system

(b)Camera3pCamera2 (c) Rectangularlight

4 Cgimesal Xpansion link
7 Hinge
o
{ Rail
N\Camera 6

Camera 5¢

Camera 4

(a) Experimental platform, (b)Cameras layouts, (c)Light sources layouts

Fig.1 Defect detecting platform

2.2 Calibration of pixel response nonuniformity

In the working process of CCD cameras, energy
exchanges between photons and silicon atoms can pro-
mote the output of charge packets. Then the packets
further convert to current or voltage signals to obtain re-
sultant photoelectric information. Generally, a linear
relation is found between pixel charges (V) and irradi-
ances (X) in Eq. (8):

Y =AX + B (8)
where A refers to relational parameter determined by ir-
radiation frequency and B denotes charge changes
caused by interference noises. However, due to the ex-
istence of dark currents and external noises, the pixel
response nonuniformity of cameras can be found in im-
age acquisition process. As a result, some unwanted
errors between gray values of each pixel can be caused
in the case of a fixed light irradiance. To ensure that
all gray values are calculated within an allowable error
range, photoelectric responses must be calibrated.

Herein, the outputting charge of a certain pixel C
is deemed as an observed target gray value Y. in
Eq. (9). By synthetically considering Eq. (8) and

Eq. (9), the revised gray scale of pixel C( *Y,) is
finally obtained in Eq. (10) :

Y, = A X, + B, (9)

*Y, = A(Y, - B.)/A, + B (10)

By adjusting the current values of light sources,
various irradiation intensities are attained. Fig.2(a)
exhibits the recorded gray values of different irradi-
ances for various pixels. Obviously, an increasing gray
scale deviation is seen with the enhancement of irradi-
ances. Take pixel 200 as an example, its target gray
values Y, versus irradiation intensities X,y is linearly
fitted in Eq. (11). Fig.2(b) shows the average gray
values of each pixel with different irradiances. A pro-
portional relationship is found between gray values and
irradiances after linear fitting, as exhibited in
Fig.2(c¢) and Eq. (12). When the irradiance is 80
nW. cm > (Y, =180), the revised gray of pixel 200
(% Y, ) is 186.664 according to Eq.(10).
Fig.2(d) shows the calibrated gray values for various
irradiances, among which a lower gray value deviation
is seen compared with the unregulated one. Fig.3 ex-
hibits a scar image before and after the calibration of
pixel response nonuniformity. Clearly, an undistorted
defect image with considerably decreased noises has
been extracted after the calibration process.

Yo = 2.092X,, + 10.499 (11)

Y =2.132X +13.923 (12)

It is known that rail surfaces have certain radians.
When extracting defects images on rails, some uneven
background illuminations inevitably exist due to various

240 T— Pixel 50 240
— Pixel 100 . 100 mW.cm-2
2 160 — pixel 200 : o
—rixe -2
3 — Pixel 250 1 Ei 1l EDimyoms:
é’ 2 60 mW.cm-2
40 mW.cm2
0 50 100 0 80 160 240
Irradiance (mW - cm?) Pixel number
(a) Effect of irradiance on (b) Average gray values of
gray values various pixels
240 240
227.430 100 mW.cm-2
T e = 186.664 80 mW.cm
3 2 140
B, > 145.900 60 mW.cm—2
g 80 &
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(d) Average gray values of
various pixels after
calibration

(c) Linear fitting relationship
between gray values and
irradiances

Fig.2 Calibration of pixel response nonuniformity

of CCD cameras
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(a) Before calibration of pixel response nonuniformity
(b) After calibration of pixel response nonuniformity

Fig.3 Scar images

shooting angles of cameras and beam-angles of light
sources, as shown in Fig.4(a), Fig.4(b) exhibits the
corresponding background light of the scar image
achieved by MATLAB. To intuitively characterize its
background details, a three-dimensional simulation with
eray scales is conducted in Fig.4(e). Clearly, uneven
light distributions are seen. To eliminate these uneven
illuminations, the process of background subtraction is
conducted. And the resultant scar image is exhibited in
Fig.4(c). Meanwhile, the corresponding background
light and three-dimensional gray scales are shown in

( a) Yew e Tooh Deskp idow tilp b (b) Vew e Toch Deop Yiodow tile
4/ h N 09W4-Q 0H aQ s 8 R.099£ Q08 =0

Scar image Background light

(C) Yow Imet Tods Deskop Wndow Help . (d) Vew sen Toos Deskiop Wiedow Help
la &% PeL-a 0H s @ & NR0BEL-Q 08 =0

Background light

Scar image

i Jook Dektop Wiedow Help

IRL-Q

(a) Scar image, (b) Background light of scar image, (c¢) Scar image
after calibration, (d) Background light of scar image after calibration,
(e) Three-dimensional gray scales of scar image, (f) Three-dimensional
gray scales of scar image after calibration

Fig.4 Calibration of uneven background illuminations

Table 1

Fig.4(d) and Fig. 4(f), respectively. Clearly, more
uniform light distributions are seen on the processed
scar image, which can help to achieve more integrated
and precise edge detection in the following step.

3 Detection and classification results

3.1 Edge detection results

The classical Sobel operator is used to extract
edge details on scar defect, as shown in Fig.5. Clear-
ly, comprehensive and continuous edge details inclu-
ding edge position data (see Table 1) have been ex-
tracted, which can distinctly and precisely characterize
the defect features. Meanwhile, such operator can eas-
ily achieve accurate location to defects and then extract
precise characteristic parameters. Besides, the noise
points are seldom seen suggesting that the operator can
help to identify and judge defect edge information for
its excellent noise suppression.

Edge detection Defect segmentation

Number
[T

Lengih Ares T
413 1124 387 €614.3

Fig.5 Edge image of scar defect

The classification and identification of surface de-
fects on rails are conducted by parallel computers. The
extraction of characteristic parameters can be achieved
by converting the physical features of a defect into
some digital features that can only be processed by
computers. Hence, accurate extraction of characteristic
parameters acts as a fundamental role in defects classi-
fication and identification. After the binary and seg-
mentation processes of the scar image, 24 sets of char-
acteristic parameters are extracted, as shown in
Table 2. These digital parameters can reflect important

physical features of the scar defect.

Edge position information of scar defect

Position parameter Width ( mm) Length ( mm)

Perimeter ( mm ) Area(mm’) From rail joint( mm)

8.2 41.3

value

112.4 338.7 6614.3
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Table 2 Characteristic parameters of scar defect

Characteristic Value Characteristic Value Characteristic Value Characteristic Value
Second t
Dispersity 69.75 Gray entropy 7 Background energy 0.6 ceond mormen 12.43
invariants
A back d Back d Third t
Rectangle degree  0.72 verage backglot 69 ackgroun 0.96 e momen 23.82
gray homogeneity invariants
Back d gr Fourth t
Aspect ratio 0.18 acketounc gray 255 Relevance 0.2 ourth momen 25.44
codomain invariants
Back d gr Fifth t
Average gray 95 ac gr(?un gy 23 Energy 0.6 l, mhomen 49.35
variance invariants
Back g ixth >
Gray codomain 224 ackground gray 6 Homogeneity 0.96 Sl),(t m.oment 30.84
entropy invariants
. . First moment Seventh moment
Gray variance 53 Background correlation  0.08 5.99 49.29

invariants invariants

3.2 Neural network classification

Herein, back-propagation neural network with ex-
cellent self-learning and self-organizing ability has been
adopted to achieve accurate and rapid classification of
defects on rails. When it comes to neuron numbers in
each layer, 24 sets of characteristic parameters ( see
Table 2) are exiracted as the input data. The neuron
numbers in two hidden and one output layers are re-
spectively set as 15, 4 and 4 for the highest correlation
coefficient and the lowest error between target and ac-
tual outputs. Based on above analyses, the optimized
network structure is determined, as shown in Fig. 6. In
such network, sigmoid and purelin functions are used
as transfer functions in hidden and output layers, re-
spectively. To test the classification effect, 40 sets of
scar images are obtained by the designed image acqui-
sition system. Among them, 20 sets are used as train-
ing specimens and the others as testing specimens. The
maximum training frequency, minimum mean square
error (MSE) and learning step are set as 500, 0.01
and 0.15,
process, the iteration will stop and the system will con-
verge immediately when MSE falls below 0. 01 or itera-

respectively.  During the simulation

tion reaches to 500.

Weights and Error
biases adjust

X — ; ~ ¥ ? Y,
X~ % -->Y:
.. 9l

Fig.6 Structure of back-propagation neural network

Fig.7 shows various neural network training
curves for detects classifications. Fig.7(a) exhibits
the training curve with classical gradient descent algo-
rithm (algorithm a). As seen, after iteration for 500
times with 10193ms, MSE is 0.343, which is larger
than the convergent value of 0.01. The training curve
attained by using an improved gradient descent algo-
rithm with an additional m, of 0. 6 is seen in Fig.7(b)
(algorithm b). However, after iteration for 500 times
with 8832ms, the corresponding MSE is 0.228, which
is still larger than the convergent value. Fig.7(c) de-
picts another training curve by adopting an improved
algorithm with a self-adaptive [, (algorithm c¢). Clear-
ly, its MSE can attain the optimal training precision of
0.00996 ( <0.01) with 158 iterations and 5057ms.
The training curve obtained by using an improved algo-
rithm with a fixed learning rate (I, =0.15) and a fixed
momentum factor (m, =0.6) is shown in Fig. 7(d)
(algorithm d). Its MSE can reach the optimal training
precision of 0. 00989 ( <0.01) with 105 iterations and
3692ms. Fig.7(e) describes a training curve by using
an improved gradient descent algorithm with a self-
adaptive [, and a fixed m_ of 0.6 (algorithm e). Clear-
ly, its MSE can achieve the optimal training precision of
0.00926 ( <0.01) with the least 96 iterations and
1921ms. Tt can be seen from Fig. 7(f) that algorithm e
can achieve the training accuracy with the least itera-
tions. The reason for this is that such improved algo-
rithm can overcome some limitations of the classical al-
gorithm, such as low convergence rate, strong coupling
relation with other parameters and local minimum.
Hence, the above improved algorithm can improve both
the classification efficiency and recognition rate of de-
fects.

To further determine the optimal m,, a series of

training curves for defects classifications with various m,
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(a) Classical algorithm, (b) Improved algorithm with an m, of 0.6,
(¢) Improved algorithm with a self-adaptive /., (d) Improved algorithm
with an /, of 0. 15 and an m, of 0.6, (e) Improved algorithm with a self-
adaptive [, and an m, of 0.6, (f) Contrastive iterations of the above five
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Fig.7 Neural network training curves by using various

gradient descent algorithms

have been measured, as shown in Fig. 8. Obviously,
the mean square errors based on various algorithms
with fixed m, of 0.2, 0.4, 0.6, 0.8 and 1. 0 can
achieve the optimal training precision with 152, 144,
96, 308 and 500 iterations, respectively. Take full ac-
count of the above iterations, the gradient descent algo-
rithm based on a self-adaptive [, and a fixed m, of 0.6
can overcome the limitations of the classical algorithm
which accounts for its best classification efficiency.

To further investigate the effect of [, on improved
algorithms under the optimal m, of 0.6, a series of
training curves for defects classifications with various [,
have been measured, as shown in Fig.9. Clearly, the
mean square errors based on various algorithms with
fixed I, of 0.05, 0.10, 0.15, 0.20 and 0.25 can reach
the optimal training precision with 117, 109, 105, 113
and 147 iterations, respectively. Therefore, the gradi-
ent descent algorithm based on a fixed [, of 0.15 can
achieve the best classification efficiency. It is also con-
cluded that the classification efficiency of all fixed /, is
still lower than the self-adaptive one only with 96 itera-
tions. Hence, algorithm e based on a self-adaptive [,
and a fixed m,_ of 0.6 is used in this work to train the
network.
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Fig.8 Neural network training curves based on various

momentum factors
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Fig.9 Neural network training curves based on various

learning rates
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3.3 Recognition accuracy analysis

Table 3 shows the output data of the testing speci-
mens (20 sets) after being processed with algorithm e.
The output value will be identified as 1 if it is larger
than 0.5. Otherwise, it will be regarded as 0. Name-
ly, an output result (0, 1, 0, 0) with 4 parameters
can be recognized as a scar defect. Clearly, the recog-
nition number of scar defects based on algorithm e is

19.

Table 3 The output data of the testing specimens (20 sets)
after being processed with algorithm e

Specimen Output value Discriminant
result
1 (0.0485, 0.9794, 0.0943, 0.0931) (0,1,0,0)
2 (0.1249, 0.9774, 0.0983, 0.0025) (0,1,0,0)
3 (0.0811, 0.9451, 0.0593, 0.0183) (0,1,0,0)
4 (0.0173, 0.9096, 0.0443, 0.0477) (0,1,0,0)
5 (0.0202, 0.9547, 0.1822, 0.0188) (0,1,0,0)
6 (0.0055, 0.0093, 0.0624, 0.0264) (0,0,0,0)
7 (0.1854, 0.9873, 0.0374, 0.0249) (0,1,0,0)
8 (0.1753, 0.9836, 0.0382, 0.0066) (0,1,0,0)
9 (0.1077, 0.9765, 0.0306, 0.0073) (0,1,0,0)
10 (0.0902, 0.9675, 0.0099, 0.0605) (0,1,0,0)
11 (0.0029, 0.9508, 0.0389, 0.0623) (0,1,0,0)

12 (0.0925, 0.9582, 0.0203, 0.0627) (0,1,0,0)
13 (0.0388, 0.9473, 0.0490, 0.0903) (0,1,0,0)
14 (0.0529, 0.9794, 0.0094, 0.0716) (0,1,0,0)
15 (0.0905, 0.9520, 0.0172, 0.0095) (0,1,0,0)
16  (0.1302, 0.9708, 0.0285, 0.0927) (0,1,0,0)
17 (0.0040, 0.9428, 0.1003, 0.0091) (0,1,0,0)
18 (0.0127, 0.9471, 0.0491, 0.0740) (0,1,0,0)
19 (0.0921, 0.9710, 0.0089, 0.1001) (0,1,0,0)
20 (0.0193, 0.9737, 0.0452, 0.0072) (0,1,0,0)

Fig. 10 shows various recognition results of scar
defects after being processed with other algorithms.
Clearly, the correct recognition number based on algo-
rithm a, b, ¢ and d are 12, 13, 15 and 16, respec-
tively. Furthermore, the defect identification rate can
be calculated as

r=n/m (13)
where r refers to defect identification rate, n means
correct recognition number and m denotes testing num-
ber (m =20). Accordingly, algorithm e has got the
optimal defect identification rate of 95% , higher than
others. According to these analyses, the designed ex-
perimental platform with the improved gradient descent
algorithm based on a self-adaptive [, and a fixed m, of
0.6 can detect surface defects on heavy rails with high-
er accuracy and efficiency.

40 100
32 80
224 60 =
p=1 15
O 16 40 3

<
8 20
0 0

C
Algorithm
Fig.10 Recognition quantity and recognition accuracy of scar

defects for various algorithms

4 Conclusions

An experimental platform is designed for scar de-
fects detection on rails surfaces. The pixel response
nonuniformity and uneven background illuminations
have been calibrated during the imaging process. In
the detection system, an improved gradient descent al-
gorithm based on a self-adaptive learning rate and a
fixed momentum factor of 0. 6 is proposed to compre-
hensively consider accuracy, efficiency and classifica-
tion efficiency of defects. Detection results show that
accurate positioning of defects with complete edge in-
formation is easily attained for its noise suppression ca-
pacity. Meanwhile, more precise characteristic param-
eters are extracted to achieve convergent precision with
the least 96 iterations. And also the optimal defect
identification rate of 95% is found for the detection
system. Parameters and structures optimization of the
experimental platform and more effective gradient de-
scent algorithms are hoped to be solved and designed in
future work.
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