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Abstract

Combinatory categorial grammer ( CCG) supertagging is an important subtask that takes place
before full parsing and can benefit many natural language processing ( NLP) tasks like question an-
swering and machine translation. CCG supertagging can be regarded as a sequence labeling problem
that remains a challenging problem where each word is assigned to a CCG lexical category and the
number of the probably associated CCG supertags to each word is large. To address this, recently re-
current neural networks (RNNs) , as extremely powerful sequential models, have been proposed for
CCG supertagging and achieved good performances. In this paper, a variant of recurrent networks is
proposed whose design makes it much easier to train and memorize information for long range de-
pendencies based on gated recurrent units (GRUs), which have been recently introduced on some
but not all tasks. Results of the experiments revealed the effectiveness of the proposed method on the
CCGBank datasets and show that the model has comparable accuracy with the previously proposed

models for CCG supertagging.

Key words : combinatory categorial grammer (CCG) , CCG supertagging, deep learning, gated

recurrent unit ( GRU)

0 Introduction

Combinatory ctegorial grammar ( CCG) forms an
important class of lexicalized grammar formalism. In
CCG grammar, each word is associated with a lexical
syntactic category. The syntactic CCG categories have
two types: atomic ( Sentence (S), Noun (N), Noun
Phrase ( NP) and Prepositional Phrase (PP)), and
complex categories that are built by combining atomic
categories or complex categories themselves using sla-
shes; (“\’) or (/) indicating whether the argu-
ment should appear on the left or on the right, respec-
tively.

Sequence labeling corresponds to several tasks of
natural language processing ( NLP) problems that aim
at associating a sequence of symbols (i. e. words) with
labels (syntactic and semantic information) facilitating
many NP-complete problems such as parsing, question
answering, among others. CCG supertagging is an im-
portant task in NLP that can be treated as a sequence
labeling problem and formulated as follows: given a
sentence of N words { W,, W,,---, W, |; the super-

n

tagger aims at assigning a lexical category y to each

word in the sentence'' {y,, y,,-+, y,}. CCG super-
tagging is a fundamental step that should be performed
before full parsing and remains a significant challenge
due to the huge number of the associated lexical cate-
gories to each word.

High performance approaches have been domina-
ted to this challenging problem. Reducing the number
of the assigned lexical categories was the main focus of
several researchers that have proposed different meth-
ods based on machine learning approaches such as the
maximum entropy models'?>’ and the feed forward neu-
ral network by Lewis and Steedman'®’. However, these
methods have many drawbacks and require many fea-
tures.

In recent years, deep learning methods have
achieved massive success in many NLP tasks such as
[4]

machine translation , language modeling”” | se-

quence-to-sequence learning tasks'®’ | handwriting rec-

[7]

ognition and generation''', and various tagging prob-

lems'®.

As an alternative to the feed forward neural
networks and to overcome the drawbacks of the model
proposed by Lewis and Steedman ', Xu et al. °' have
demonstrated the effectiveness of the recurrent neural

networks ( RNNs) for the CCG supertagging problem
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and have achieved promising results over several state-
of-the-art models.

However, the difficulty of training RNNs to cap-
ture long-term dependencies' '’ has encouraged various
promising research attempts to solve it. Different vari-
ants of RNNs have been proposed. In this paper, a va-
riant of recurrent nets based on gated recurrent units
(GRUs) "

mation for long dependencies, to solve the problem of

is proposed which is able to retain infor-

CCG supertagging. As the task can be treated as a se-
quence prediction problem where we can access to in-
formation in both previous and future directions, the
proposed model is centered around bidirectional recur-
rent networks and more specifically is a bidirectional
gated recurrent unit ( Bi-GRU) model that has the a-
bility to memorize information not only for one direction
but also in both past and next directions of a word e-
liminating the problem of limited context'’’ and also for
long periods of time.

Experiments on CCGBank datasets were conduc-
ted. The results are compared with most of the state-of-
the-art models. The results on CCG supertagging task
show that the GRU model outperforms most existing
models such as maximum entropy models'?’ | feed for-
ward neural networks"®’, and RNNs"* and demonstrate
that bidirectional RNNs are of a vital importance for
CCG supertagging as a sequence tagging task. The best
results remain that the Bi-GRU based model has
reached an accuracy of 93.87% on the test data.

Rest of the paper is organized as follows: in Sec-
tion 1 related works are discussed. Next, Section 2
introduces GRU architecture used in this paper for
CCG supertagging. In addition, Section 3 gives details
about the experiments and provides experimental re-
sults along a comparison with previous works. Finally,
in Section 4 the paper is concluded.

1 Related work

CCG supertagging is an essential technique to per-
form as a primary step for many NLP tasks. For exam-
ple, in the parsing task, the supertagging is a crucial
step because it deals with reducing the search space
that the parser must explore. Recently, CCG supertag-
ging has become a very important task in the NLP area
and attracted the attention of several researchers in the
NLP community. In literature, dominant approaches
that exploited machine learning and deep learning mod-
els have been developed. In this section we briefly in-
troduce some proposed models for the CCG supertag-
ging task.

Clark and Curran'®’ used a set of lexical catego-

ries that appeared at least 10 times in Sections 02-21 of
the CCGBank resulting in 425 categories and intro-
duced maximum entropy ( ME ) models using words
and part of speech (POS) tags in the five-word win-
dow, plus the two previously assigned lexical categories
to the left as features. Because the number of the as-
signed lexical categories could be high, Clark and Cur-
ran'?' used a tag dictionary: the supertagger assigned
categories with the word in the data for words seen at
least k£ times and assignsed categories with the POS tag
in the data to the words seen less than k times. Unfor-
tunately, this model has a number of shortcomings.
First, its high reliance on POS tags leads to low accu-
racy on out-of-the-domain datasets''?’. Second, be-
cause the main set of features is based on raw words
and POS tags, there is degradation in the performance
of the model in the presence of rare and unknown

words '

. Third, in order to reduce the feature sparsi-
ty, every tagging decision is made without considering
any contextual information over a local context window.

Lewis and Steedman'®’

proposed a feed forward
neural network model to deal with the drawbacks of
Clark and Curran’ s>’ model mentioned above that
heavily relied on features by using word embeddings
that was more accurate to predict lexical categories
without dependence on POS tags with no lexical or POS
features. The features used in Lewis and Steedman’ s
model were similar to those used by Collobert et al. ™
for POS tagging based on character suffixes and wheth-
er a word is capitalized or not in a context window per-
forming some data preprocessing (e. g. all words are
lower-cased ) .

Recently, deep learning emerges as an effective
way to solve many NLP problems and overcome several
shortcomings of machine learning methods and have
achieved good results on various tasks. Xu et al. "*) ex-
ploited RNNs for CCG supertagging that have the abili-
ty to capture information for long distance outperfor-
ming state-of-the-art methods and addressing all previ-
ously mentioned problems.

Following Lewis and Steedman" | Xu et al. "’
used the same set of features with a window size of sev-
en and achieved good and comparable results to the
state-of- the-art methods.

However, traditional RNNs suffer from several

%7 where gradients tend to either vanish or

limitations
explode in earlier layers over long sequences. A variant
of sophisticated recurrent units proposed more recently
by Cho et al. """ is the gated recurrent unit ( GRU).
In this paper, the gated recurrent unit architecture is
introduced to solve the CCG supertagging problem.

The model uses both previous and future informa-
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tion between input words via bidirectional GRU achie-
ving comparable results to the state-of-the-art. The re-
sults verify the effectiveness of GRU for CCG supertag-
ging as a sequence labeling problem with a deep bidi-
rectional architecture that is more convenient to learn
complex interactions between entries for both previous
and next directions of an input sequence.

2 Proposed method

In this section, RNNs are described briefly before
the description of the proposed model.

Recurrent neural networks are a class of artificial
neural networks that have the ability to make use of se-
quential information performing the same task for every
element in a sequence, where the output at each time
step is dependent on that at the previous time step.
RNNs have been successfully used for many applica-
tions such as language modeling”>’, spoken language
understanding'"*' and CCG supertagging'®’ .

The structure of the widely used RNNs models is
introduced by Elman'"’ which consists of a hidden lay-
er h, that is updated based on input x, and the previous
hidden state h,_, providing an output layer y,.

In CCG supertagging, x, represents input features
and vy, represents the predicted lexical categories. The
RNN computes hidden layer h, and output layer y, as

follows :
h,=f(Ux, +Wh,_) (1)
y, =g(Vh,) (2)

where U, W and V are the connection weights and g is
the activation function.

In theory, RNNs are designed to store history in-
formation for long sequences; however, in practice it is
hard to train traditional RNNs that capture information
for long periods and sequences because of the vanis-
hing/exploding problems. To deal with these problems
many variants of RNNs have been proposed, among
which the gated recurrent units represent a good alter-

native.

2.1 Gated recurrent units

Recently, as an alternative to the simple RNNs,
the gated recurrent unit architecture was proposed by
Cho et al. """ to solve the difficulty of training tradi-
tional RNNs. The main idea of GRUs is that it has a
memory cell which decides the degree of information to
keep in the memory from the previous states and it is
known to be good at preserving long distance depend-
encies. GRU networks have gates to control the infor-
mation ;

(1) areset gate r; determines how to combine the

new input with the previous memory and decide wheth-
er the past sequence is relevant for the future or not;
(2) an update gate z: defines how much of the
previous memory information to keep around. Fig. 1 il-
lustrates all these components.
Mathematically, a GRU hidden state h, given an

input x is calculated as is described by the equations

below :
z,=0(W.LLh_y, x]+b,) (3)
rr=0(W,[h,_,, x,+b,) (4)
h, =tanh(W,[r,Oh, ,, x,] +b,) (5)
h,= (1-z) Oh, , +z0h, (6)

where ¢ is the logistic sigmoid function, r and z are the
reset and update gates, respectively, © stands for ele-
ment-wise multiplication, W is the weight matrices and
the b terms denote the bias vectors.

Fig. 1 illustrates a gated recurrent unit where r
and z are the reset and update gates, respectively, and
h and h are the activation and candidate activation.

—-@—»/—» n € —Xx
I J

Fig.1 A gated recurrent unit memory block

2.2 GRU proposed model for CCG supertagging

In sequence labeling tasks, information is access-
ed on both past and future directions of an input se-
quence. Therefore, it is reasonable to use models that
are able to capture previous and future input informa-
tion. An elegant solution to model sequential data that
has achieved high accuracies in many sequence labe-
ling tasks is bidirectional models. The idea behind bi-
directional models is to present each sequence in two
separate layers to capture past and future information
respectively, which is well-suited for our task. The two
outputs from each sequence are then concatenated to
form the final output.

This paper is interested in using GRU networks for
CCG supertagging. The proposed model consists of a
bidirectional GRU E}here a forward GRU computes the
hidden sequence (h,) and reads an input from the be-

ginning to the end and a backward GRU (;:) uses the
opposite direction. The outputs from each GRU ( back-
ward and forward) are then fed to another backward
and forward GRU layers. Finally the outputs fro(g each
layer at each time step are concatenated [ h,, h,] and
fed through a Softmax layer to decode them into proba-
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bilities for each supertag forming the final output of the
network.

A deep architecture that is more convenient in
capturing complex interactions in the context between
words is used. The architecture of the model is shown

in Fig. 2.

Output

(eee] (eee (o009

Backward GRU

Forward GRU

Backward GRU 4—[_

Forward GRU

Input (@ee] ([@ee (@ee®
Fig.2 Model overview

The network uses look-up tables of feature vectors
that are first concatenated and then fed to the network.
The output at each time step is fed through a Softmax
layer to decode it into probabilities for each Supertag.

Word-level features; the final model uses four sets
of features.

Following Lewis and Steedman”', suffixes and
capitalization features are used.

Capitalization feature; The capitalization feature
has only two values indicating whether a given word is
capitalized or not.

Suffix feature; State-of-the-art existing CCG su-
pertaggers are followed by using suffixes of size two.

Word embeddings: Given a sentence of N words
{W,, W,,---, W |, the embedding feature of w,, W:
words— R is a paramaterized function mapping words
in some language to high dimensional vectors and is ob-
tained by projecting it into an n-dimensional vector
space using the look-up table. Each dimension de-
scribes syntactic or semantic properties of the word. It
has shown that word embeddings have been exception-
ally successful and played a vital role in improving
many NLP tasks performance such as sequence tag-
ging:B: .
used to improve the performance in solving the CCG

For the experiments, word embeddings are

supertagging problem.

¢ Word index embeddings: Task specific word
embeddings model is used because several misspellings
words, abbreviations, and compositions of words have

occurred in the training data. These words are identi-
fied as * UNKNOWN’ words by a pre-trained word em-
beddings model. The task-specific word embedding

7 * Embedding ’
!. The embedding layer takes a 2-

model is built using the layer of
Keras'"' library '’
dimensional matrix of integers representing each word
in the corpus (index of the word in the corpus) as in-
put and outputs a 3-dimensional matrix, which repre-
sents the word embedding model that maps the integer
inputs to the vectors found at the corresponding index
in the embedding matrix''®'.

e Pre-trained word embeddings: The best
model uses pre-trained Google’ s Word2Vec 300-di-

mensional embeddings which was trained on 100 billion
[18]

1 [13]

words from Google news

Following Collobert et a all words are lower-

cased before passing through the look-up tables to con-
vert them into their corresponding embeddings and also
all numbers are replaced by a single digit ‘0’ . For a
word that does not have an entry in the pre-trained

word embeddings, the ‘* UNKNOWN’ entry from the

pre-trained embeddings is used.
3 Experiments and results

In this section, the data sets and training parame-
ters of the proposed experiments are reported. The a-
chieved results are then discussed where experiments
are conducted to evaluate the model by applying it to
supertagging and multi-tagging.

3.1 Experimental data

Following the standard split, the models are
trained on Sections 2-21 of the CCGBank corpus'"’
using section 00 (1 913 sentences) for development.
The experiments tested the utility of the proposed mod-
els on section 23 from CCGBank corpus (2 407 sen-
tences) as a testing set, and all the datasets are pre-
processed as follows

e All words are lowercased.

e All sequences of digits are transformed into a
single digit ‘0.

e For words and numbers containing * V
back-off to the sub-string after the delimiter.

3.2 Hyper-parameters and training

The neural network is implemented using the ver-
sion 1. 2.2 of keras''®'; a Theano based neural net-
work library. Training and testing are done on the sen-
tence level. For pre-trained word-embeddings, the
Google” s Word2Vec' ™' 300-dimensional embeddings

are used. During development, experiments are done
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with Turian 100-dimensional embeddings but no re-
markable improvements were seen on the resulting
model. The accuracy of the model is tested on the de-
velopment set with the hidden dimension values ranging
in {100, 200, 256, 300, 400, 512, 600} and it is
found that the hidden dimension with size 300 can pro-
vide the best accuracy.
3.2.1
The training was done by the SGD optimizer with

Learning algorithm

a fixed learning rate of 0.01. Other more sophisticated
optimization algorithms have been explored such as Ad-
am and AdeDelta”"! without any remarkable improve-
ment over SGD. For the output layers, the Softmax ac-
tivation function is used.
3.2.2 Dropout

Dropout of fixed rate of 0.2 is applied to the input
layer'”’ that was quite effective in reducing over-fitting

and gave significant improvements on accuracy.

3.3 Results and analysis
In this section, the evaluation of the performance
of the proposed Bi-GRU model is presented for CCG
supertagging on the CCGBank datasets, and multi-tag-
ging experiments are also performed and the results are
discussed bellow.
3.3.1
The models for 90 epochs are trained and the pa-

Supertagging results

rameters that gave the highest accuracy on the develop-
ment set are used. The hyper-parameters are tuned
then the models are trained. The final chosen parame-

ters are reported in Table 1.

Table 1~ The final chosen hyper-parameters for the best model
Hyper-parameter Value
Word embeddings Google’ s word2Vec
Hidden dimension 300
Dropout 0.2
Optimizer SGD
Learning rate 0.01

The model is compared with the three systems pre-
viously proposed for CCG supertagging : the C&C mod-
el proposed by Clark and Curran'®' with gold and auto
POS tags, the feed forward neural network (NN) by
Lewis and Steedman™’, and the RNN network model
by Xu et al. ). Table 2 compares the results with
those models on the section 00 from the CCGBank cor-
pus (development set) .

By examining Table 2, it becomes obvious that
the proposed Bi-GRU achieves higher accuracy over
RNN model with an improvement of +0.40% and +
0.9% over C&C with gold POS. Therefore, the use of

GRU can lead to a better performance than simple re-
current networks and that the use of Bi-GRU was very
useful to model and memorize more information from
both directions of an input entry.

Table 2 1-best tagging accuracy on CCGBank Section 00
(development set )
Model

Accuracy (% )

C&C (gold pos) 92. 60
C&C (auto pos) 91.50
NN 91.10
RNN™’ 93.07
GRU 93.47

The overall results on the test set are shown in Ta-
ble 3. Bi-GRU model improves the performance of
CCG supertagging task to a significant extent, bringing
up the accuracy from 91.57% to 93.87% comparing
to feed forward NN by Lewis and Steedman'®’.

Table 3 1-best accuracy on the test set
Model Sec-23 (%)

C&C (gold pos) 93.32

C&C (auto pos) 92.02

NN 91.57

RNN™ 93.00

GRU 93.87

Also, it outperformed the RNN model proposed by
Xu et al. ' with a significant improvement. This may
be due to the higher quality of the network that can
learn from past and future entries, which helps the
model to make more accurate predictions.

3.3.2 Multi-tagging results

The proposed model is also evaluated for multi-
tagging where the proposed supertagger is able to assign
more than one category to each word whose probabili-
ties are within a g8 factor.

The performance of the proposed model on multi-
tagging is measured in terms of WORD accuracy where
the word is considered to be tagged correctly if the cor-
rect category is included in the set of the assigned lexi-
cal categories and SENT (sentence) accuracy which is
the percentage of sentences whose words are all tagged
correctly using the default 8 levels used by the C&C

)
parser[ ’

on the development set. The results of these
experiments are presented in Table 4. It can be seen
that the model results have much better performance

than the previous models for both WORD and SENT

accuracies on all B levels.
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Table 4  Performance comparison of different models for multi-tagging accuracy on Section 00 for different 8 levels.

The Word column gives the WORD accuracy (% ) and the SENT column gives the sentence accuracy (% )

C&C C&C
B CRU RNN NN (auto pos) (gold pos)

WORD SENT WORD SENT WORD SENT WORD SENT WORD SENT
0.075 97.22 67.22 97.33  66.07 96.83 61.27 96.34 60.27 97.34 67.43
0.030 98.08 74.90 98.12 74.39 97.81 70.83 97.05 65.50 97.92 72.87
0.010 98.71 81.87 98.71 81.70 98.54 79.25 97.63 70.52 98.37 77.73
0. 005 99.01 85.04 99.01 84.79 08.84 83.38 97.86 72.24 98.52 79.25
0.001 99.42 90.92 99.41 90.54 99.29 89.07 98.25 80.24 99.17 87.19

Backward GRU is very powerful in capturing past References

information on long time memorizing previous context
information. On the other hand, forward GRU is also
very efficient on memorizing future information on long
periods. However, it is well known that single direc-
tion GRU suffers weakness of not utilizing the contextu-
al information from the other direction of an input. Bi-
directional GRUs utilize both the previous and future
context by processing the sequence on two directions,
one processes the input sequence in the forward direc-
tion, while the other processes the input from the fu-
ture direction and generates two GRU output vectors,
which was suitable for the task. This work demon-
strates that bidirectional GRU architectures are capable
of modeling sequential data and reaches high accuracy
over simple recurrent models. The improvements are
due to the deep bidirectional GRU architecture advan-
tages capturing the interaction between sequences in

two directions.
4 Conclusion

Gated recurrent unit ( GRU) model is introduced
(GRU) for CCG supertagging. The proposed approach
uses look-up tables of features. Experiments are per-
formed on the CCGBank datasets with the accuracy as
an evaluation metric. Experiment results show that the
proposed approach achieved state-of-the-art perform-
ances.

It is also found that: (1) traditional recurrent
neural networks are extremely weak in modeling se-
quential data, while adding neural gates dramatically
boosts the performance; (2) bidirectional GRU per-
forms better than simple ones to capture information
from two directions; (3) deep architecture is more
convenient to capture interactions between inputs.

It would be beneficial to integrate the supertagger
to the C&C parser where the supertagger is likely to
play a significant role which will be left as a future
work.
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