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Abstract

Multi-label learning is an active research area which plays an important role in machine learn-

ing. Traditional learning algorithms, however, have to depend on samples with complete labels. The

existing learning algorithms with missing labels do not consider the relevance of labels, resulting in
g g alg 2 s 2

label estimation errors of new samples. A new multi-label learning algorithm with support vector ma-

chine (SVM) based association (SVMA) is proposed to estimate missing labels by constructing the

association between different labels. SVMA will establish a mapping function to minimize the number

of samples in the margin while ensuring the margin large enough as well as minimizing the misclassi-

fication probability. To evaluate the performance of SVMA in the condition of missing labels, four

typical data sets are adopted with the integrity of the labels being handled manually. Simulation re-

sults show the superiority of SVMA in dealing with the samples with missing labels compared with

other models in image classification.
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0 Introduction

Labels are important characteristics of images and
are necessary carriers in image processing. Abundant
unlabeled images in existence will cause low efficiency
in information extraction. Multi-label learning is an
emerging method to annotate images with missing la-
bels. Traditional learning algorithms, however, have to
depend on images training with complete labels''?’
which can be hardly achieved in practical applications.
Some new learning algorithms are presented aiming to
solve the missing labels problem. Ref. [3] introduced
a concept of fuzzy mutual information. Ref.[4] pro-
posed a new multi-label learning formulation by intro-
ducing a self-paced function as the regularizer.
Ref. [5] established a model of ranking-preserving
low-rank factorization with missing labels. Ref. [6]
proposed a multi-label classification method that can
learn the inductive classifier and explicitly deal with
the missing labels. The training method in Ref. [7]
had only positive label data and unlabeled data, with
which only standard binary classifiers can be learned.
Ref. [ 8] proposed a semi-supervised multi-class learn-

ing method. Ref. [9] proposed a weak label learning
method, and the multi-label sorting with a group lasso
was proposed in Ref. [10], considering multi-label
classification as bidirectional sorting. Ignoring the
missing labels in research models will cause errors or
mistakes in image processing. A missing-label multi-
label (MLML) learning method proposed in Ref. [ 11 ]
set the positive labels and negative labels to different
values to solve the binomial problem in some degree,
but failed to deal with the complicated distributed da-
ta. Ref. [12] showed that multi-label learning based
on support vector machine ( SVM) was an effective
method. Ref. [ 13] proposed an active learning based
on SVM. Ref. [14] minimized the margin and rank

loss' ™’

. However, not full consideration about the rel-
evance of the labels will result in label estimation er-
rors, which may reduce the usability of the image infor-
mation. Therefore, a new multi-label learning algo-
rithm with SVM based association ( SVMA) is pro-
posed in this paper to deal with the possible overfitting
problem of SVM. Loss functions and association models
among labels will be established by sample smoothness
and class smoothness to estimate the missing labels, so
as to improve the accuracy of data classification.
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1 SVM classifier

1.1 Support vector and margin

Given a data set D = {(x,, y,), (x,, v,),",
(x,, y,)l,andy, € { =1, +11.

Recall that classification learning is used to find a
hyperplane to classify data into two categories accurate-
ly. In the sample space, the hyperplane is defined by

wx+b=0 (1)
where, w and b are normal vector and bias of the hy-
perplane respectively.

The closest samples from the hyperplane are the
support vectors which satisfy w'x + b = +1 and the
distance between negative and positive support vectors
is margin, e.g. 7y in Fig. 1. After obtaining the hyper-
plane, the data class can be obtained by Eq. (1).

A
X2

Fig.1 Support vector and margin

1.2 Multi-label SVM

Given data set X = [x,,--,x,] € R”, and
these images can be divided into m classes {c,,---,
¢, }. The image is annotated by the label matrix ¥ =
(y,,**,y,), wherey., e { =1, +1}"" is the label of
the ith sample, and y,, = 1(k = 1,---,m) indicates
that sample x; belongs to the kth class. Vector w, and
bias b, satisfy .

g = min( L w* + e X ) )

Eq. (2) meets yki(w;fxi +b) =1 -§,, Vi,
= 0, where £, is the slack variable, and ¢ >0 is a con-
stant.

For SVM is a binary classifier, one-vs-rest strate-
gy is adopted, where samples in the kth class are con-
sidered as class A and the other samples are considered
as class B , and the kth binary classifier is represented
by f,(x;) = wix, + b,. f(x) > 0 means true if x be-
longs to the kth class, otherwise it is false.

Although realizing multi-class classification, SVM
does not take the associativity between labels into ac-
count, so as to fail to solve the multi-label learning
problems with missing labels.

Traditional SVM is optimized in this paper with
the working process shown in Fig. 2.

Relaxation
constraints

SVM model A One -vs-rest

Sample
smoothness

Class
smoothness

Relevance building

Parameter Objective
learning function

Fig.2 Implementation process of SVMA

2 Loss function of SVMA

Given a sample x,, and the label y, e { - 1,0,
11", where y,, =0 indicates that the kth label is
missing.

As shown in Fig. 2, sample smoothness and class
smoothness are used to estimate the missing label.
However, the model will become too complicated to
solve if SVM is directly combined with them, and it

will reduce the flexibility of SVM. Therefore, Eq. (2)
can be replaced by

g = minz ;ferriTerri + ;ftr( W'W) (3)

where, err; is a column vector with element f, -y, ,
and subscriptq = (k|1 1 <k <n, f, xy, < (1 -
£;) 1 is a sample index. f represents f, , (x,) =

i

wix, +b,, wherew, € R"is a weighted vector of cate-
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dxm
w,] eR

the margin will be

W= w,,
Here,

gory ¢;, and b, is the bias.
is the weight matrix.
2/tr(W'W).

Standard SVM aims to find the largest margin with
the whole of samples out of margin, and the model in
the paper will minimize the number of samples in the
margin and maximize the margin at the same time. The
first term in Eq. (3) tries to achieve the first purpose,
and the second term can maximize margin through W.

There are two types of typical data, which include
28 samples satisfying Gaussian distribution respective-
ly. These data are utilized to compare the performance
of SVM and SVMA with consistent slack variables. The

relevant distribution parameters are shown in Table 1.

Table 1 Relevant distribution parameters of class 1 and class 2
Covariance matrix Mean vector

Classl [0.07 -0.02; -0.02 0.17] [ -0.63 -0.38]

Class2  [0.06 0.02;0.02 0.13] [0.61 0.43]

Further, two outliers, which are [ —0.1, 0.32]
and [ =0.09, 0.13]

results.

, are provided to affect learning
Fig.3 shows the comparing results that both
the two models are able to realize classification effec-
tively. However, SVM allows choosing an outlier as the
support vector, which is the overfitting problem that in-
creases the probability of a new sample being misclassi-
fied, making the margin small and the hyperplane near
to the samples in class 2 , while SVMA considers the
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Fig.3 Comparison between SVM and SVMA

general features of most samples, and selects a point of
class 1 as the support vector, which can obtain such a
more reasonable and large margin that improve the ro-
bustness of the model. Based on this, the association

of labels will be built subsequently to estimate missing

labels.
3 Construction of association in SVMA

3.1 Sample smoothness

An adjacency graph G = (X, V) can be used to
characterize the local geometry of the training samples
X as shown in Fig. 4.

.. Ey—)
Vo Ve Vi Vi v‘
VZ] V2Z V23 VZJ
VSI V}Z VSJ VS e
Vio Vo [ Vs Vi

Fig.4 Adjacency graph G=(X,V)

X in Fig.4 is the vertex of graph G and V is a
weight matrix along with V, (or V;) representing the
Generally, V
is a symmetric matrix with element defined by

2

V, = exp —” xla_ x| (4)

where, ¢ is the hyper parameter. It is obvious that V;

relationship between samples x; and x;.

represents the closeness of x; and x;.

Since Eq. (2) does not consider the local geomet-
ric structure of the data during learning, Eq. (5)
added as a new constraint.

Z;
= mlnfz . =
b
2 % | V;, and z; is the label of x; obtained
7=
which

i

(5)

where, d; =

based on the method proposed in the paper. z,

is the jth element of z;,, is defined as

(6)

sign function with the value being 1

— a1 T
z; = 51gn(wi X; + bi)
here, sign(x) is a
when there is x >0, otherwise is — 1. Samples smooth-
ness is considered during learning progress of parame-

ters w and b, as a result, if samples x; and x; are
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close, the difference between estimated labels z; and z;
should be small enough, or it will affect the solution of
Eq. (5), which reflects the correlation between the la-

bel and the sample.

3.2 Class smoothness

Similar to Section 3.1, G, = (Y',Q) is the class
graph built on class adjacency matrix ¥ and @, which
is the weight matrix with element (), defined as

0, = exp( - g(1 - cos(u,, u,))) (1)
where ¢ is the hyper parameter and u; (i = 1,2,+:-,m)
is the ith column of ¥". The cosine similarity of u, and
u, is calculated by cos(u,, uw,) = (u, wu;)/
o, |1l w1

The smoothness of class-level label matrix Y is re-
presented as

c = mlan Q; |

where, Z = [z,,--

=1 (8)

is the ith column of Z", z/ ,Qu

It can be seen that Eq. (8) considers the label
smoothness when learning w and b that if u; and u;are
close to each other and estimated vectors z, and %j have
obvious difference, the value of Eq. (8) will be affect-
ed, therefore, two close classes of samples have to

generate two similar estimated labels.
4 SVMA weight vector learning

Eqs(9) and (10) can be obtained by simple
computations

Z; 2
22 : ﬁ !

=t (Z(I-D"?VD'"*)Z") = wr(ZLZ")
(9)

1
? Qt] ||

i

r(ZT( -D?QD"*)Z)w(Z"HZ)
(10)
Matrixes L = I — D™?VD™"? and H = I -

D"?QD™"” respectively are the normalized Laplacian

ﬁZV-(za-ij -1 _20’7 -
Jr

matrix of graph G and G, which are symmetric matri-
= diag(d,,--,d,) and D =

s,,) are the diagonal matrixes.

xes, where D = diag(s,,

> *n

’m

SVMA will find a mapping function to satisfy :
g = mlnz ferr err, + ftr( wW'w)
+,8tr(ZLZT) +ytr(Z"HZ)

where, B and 7y are non-negative constants,

(11)
represen-
ting the weight of the sample smoothness and the label
smoothness, and can be modified by cross validation
method ,

non-differentiable

and Z is related to the sign function. The

sign function, however, makes
Eq. (11) fail to be solved directly. Thus, an approxi-
mating process as Eq. (12) can be adopted to repre-
sent Z.

= sgn(w;rxj +b,) = 20’(7’(W;1‘xj» +b)) -1
(12)

where o(a) = 1/(1 + exp(—a)) is a sigmoid func-

Zij

tion and 7 =1 is a parameter, and z; e [-1,1].

w, and x; are defined as Eq. (13) to solve Eq. (11).

v = (o)1)

The mapping function isf, , (x;) =w;

(13)

i X;, and w,
can be learnt iteratively by
g =

(1 Iw l* B < 5
mln{?erri e+ =+ 2 er(i - L)

(14)

2

2

)

To simplify the derivation process, four terms in
Eq. (14) can be written as A, B, C, and D orderly.
The partial derivatives of A and B to w, are shown in
Eq. (15), where X = {x, | f, xy, < (1 =£&,)} and

the partial derivatives of C and D to w; are shown in

+7222(),,(

r#EL

Eqs(16) and (17) respectively, where o is the ab-
breviation of function o ( Tw,-ij).
A _ g 9B

o =X - err. (15)

iy . =W,
; aw,
According to Vw, = A + 9B + aC 4 ﬂ,
ow, ow, ow, ow,

Eq. (18) can be obtained

/d; /d, Iz

1)[22%0”(1 o;)

szra-ir(l - 0',})] 4BZ4x/UU(1 - O-ij>
/d, /%

(20'ij —li v - i V.20, - 1)

(16)
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Next, in the tth iteration, w; will update with the
gradient falling as shown in
w —wl —q, VW (19)

i

where «, can be obtained by Armijo criterion.
5 Performance simulation and evaluation

Four typical image sets'®" (ESP-GAME, MIR
Flickr, NUS-WIDE-Lite, Wikil0) are adopted in the
simulation to verify the learning effect of SVMA. Two
algorithms proposed recently (MLML and SLEEC) and
two widely used algorithms ( SVM with RBF kernel and
Logistic regression with L1 norm) are added in the
simulation to compare and evaluate image process abili-
ty with missing labels further. 8 and y will be adjusted
by cross validation with the range lying in [ 1077,
10°]. To handle the data in more complex distribution ,
SVMA with RBF-kernel ( KSVMA) is also adopted.
Further, the cases with 8 =0 and y =0 (SVMA,_,
and SVMA _,) are supplemented to evaluate the
effects of both sample smoothness and class smooth,
and the parameter 7 =0.

Training data are constructed in the simulation in

40 T I ——

S - S—

—+&— Logistic —<&— SVMAB=0
30 | —o&—KSVM —<—SVMAy=0

% —A&—MLML —H—SVMA

—v— SLEEC —&—KSVMA

0.2 0.4 0.8 1
Label ratio

(a) AP

()”(20,} 1)

z /d,
20, -1 & " 0,20, - 1)
[ —xe-I ) @

order to verify the effect of all methods with missing la-
bels. For the sake of generality, the label retention
rate ranges from 20% to 100% in all data sets with the
simulation results shown as Figs 5 - 8.
Two common evaluation parameters, the average
precision ( AP) shown in Eq. (20) and the area under
the ROC curve (AUC) are used in the experiment as

the indicators to evaluate the performance of multi-label

classification.
ap= Ly L
n (N

s

| {s, € S| rank(x,, s,) < rank(x,,
rank(x;, s,)

(20)
where rank(x;, s,) is the order of class s, lying in the

sorted list of sample x,, and S'is the real positive sam-

ple label of x,. The larger the value of AP is, the more
accurately the algorithm will perform, and AUC is the
, the value of which in the

simulation is the average of multlple ROC curves. The

region below ROC curve'

larger the value of AUC is, the better the classification
capability will be.

75

—8—Logistic —&— SVMAB=0
65| ——KSVM —<— SVMAy=0
—A—MLML —p—SVMA

—v—SLEEC —&—KSVMA

AUC

60

0.2 0.4 0.8 1
Label ratio

(b) AUC

Fig.5 Simulation results in ESP game
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Fig.6 Simulation results in MIR Flickr
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Fig.7 Simulation results in NUS-WIDE-Lite
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Fig.8 Simulation results in Wikil0
Different algorithms in different data sets show dif- in the condition of missing labels because of the multi-
ferent classification ability, the general comparison re- label learning with association.
sults are nearly the same. Compared with the other al- Next, the classification performance of each clas-

gorithms, simulation results show that SVMA proposed sifier with complete labels will be analyzed by three
in this paper can bring better classification performance typical methods Top-5 F1, Top-5 precision and P@ k.
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Specifically, the first five categories in each ordered
list of the test images are considered positive, while the
others are negative. A discrete label matrix will be ob-
tained by Top-5 accuracy and Top-5 F1.

P@ k is the abbreviation of precision at £ which
focuses on the prediction results of the first & positive
values. They are often used as the evaluation criteria
during label ranking. Given the real label vector and
the predicted value, accuracy k can be calculated as

Bl wiki10_

70 5P Game MR Fiicke [ INUS-WIDE-Lit

Logistc KSVM MLML SLEEC SVMAB=0 SVMAy=0 SVMA KSVMA
(a) Top-5 FI

Eq. (21).
P@K(T, 1) = ¥ ¥ (21)

iemnkk(j;‘)
According to Eq. (21), P@ k with k =5 is equiv-
alent to Top-5 precision. Performance comparisons of
the algorithms evaluated by the methods above are

shown in Fig. 9 and Fig. 10.
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T T
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(b) Top-5 precision

Fig.9 Top-5 evaluation (% ) comparison of different algorithms
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Fig.10 P@1 and P@3 evaluation (% ) comparisons of different algorithms

Fig. 11 shows the convergence curves for the algo-
rithm on four typical databases. It can be seen that the
algorithm proposed in this paper has a better conver-
gence performance than the other three, which indi-
cates the proposed algorithm SVMA has higher compu-
tational efficiency than the common algorithms.

In order to evaluate the effect of 7 in Eq. (12),
the percentage of the training samples coming from the
NUS-WIDE-Lite data set with missing labels will range
from 20% to 100% . The simulations are performed for
10 times to obtain the mean values of AUC and AP for
different missing label rates as shown in Fig. 12. It can
be seen from Fig. 12 that SVMA has better performance
when 7 is 1.

10° . ; . .

g 10 3

5 —\

E MIR Flickr

g \

B NUS-WIDE-Lite

3 10°L 1
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103 L I I L
0 50 100 150 200 250

Times of iterations
Fig.11 The convergence curves with different

times of iterations
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Fig.12 Simulation results of SVMA with different values of 7
6 Conclusion

To solve the problems of multi-label learning un-
der condition of missing labels, a new algorithm SVMA
is proposed in the paper by establishing an effective
mapping function, which can not only provide a margin
large enough, but can minimize the number of samples
in the margin so as to increase the robustness to noise.
Class smoothness and sample smoothness are adopted
and the association among labels is constructed to esti-
mate the missing labels. The simulation results show
that the proposed algorithm SVMA will achieve better
average classification accuracy than the other typical
algorithms in the absence or completeness of the la-
bels. Moreover, the rapid convergence of SVMA makes
it possess significant practical application value. There
are still some issues to be further considered. The com-
plexity cost of SVMA will be evaluated and the theoret-
ic model of convergence will be established in the fu-
ture research.
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