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Abstract

In this paper, a t/(t +1)-diagnosable system is studied, which can locate a set Swith| S| <
¢t + 1 containing all faulty units only if the system has at most ¢ faulty units. On the basis of the char-
acterization of the ¢/ (¢ + 1) -diagnosable system, a necessary and sufficient condition is presented to
judge whether a system is ¢/ (¢ + 1) -diagnosable. Meanwhile, this paper exposes some new and im-
portant properties of the t/(t + 1) -diagnosable system to present the /(¢ + 1) -diagnosability of some
networks. Furthermore, the following results for the ¢/ (¢ + 1) -diagnosability of some special net-
works are obtained: a hypercube network of n-dimensions is (3n —5)/(3n —4)-diagnosable, a star
network of n-dimensions is (3n —5)/(3n —4)-diagnosable (n = 5) and a 2D-mesh (3D-mesh)
with n” (n’) units is 8/9-diagnosable (11/12-diagnosable). This paper shows that in general, the /
(t +1)-diagnosability of a system is not only larger than its ¢/¢-diagnosability , but also its classic di-
agnosability, specially the ¢/ (¢ +1)-diagnosability of the hypercube network of n-dimensions is about
3 times as large as its classic t-diagnosability and about 1.5 times as large as its ¢/¢-diagnosability.

Key words: i/:-diagnosable system, characterization of ¢/ (¢ + 1) -diagnosable system, fault di-

agnosis, n-dimensional hypercube networks

0 Introduction

As a result of the rapid development in digital
technology, a multiprocessor computer system can be-
come a system incorporating hundreds and thousands of
processors (units). The number of processors in such
a system is so large that it is difficult to avoid the phe-
nomenon that some processors become faulty, especial-
ly after the system continues to work for a long time.
To maintain reliability, the system should be designed
to have the ability of identifying faulty processors that
can be repaired or changed by additional ones. On the
identification of the fault processors in the system,
there are two approaches, one is called the logic-elec-
tric-level approach, the other is system-level approach.
Because of the large number of processors in a system,
the approach of the fault identification has been in-
clined to emphasize the system-level approach rather
than the logic-electric-level approach''’. In the models
of system-level fault diagnosis, the model proposed by
Preparata et al, called the PMC ( preparata, Meize,

and Chien) model, is known as the first model of sys-

tem-level diagnosis'>*'. For a system denoted by di-

graph H(V E) , the PMC model assumes that (a,b) e
E represents unit b is tested by unit a. u(a,b) stands
for the test result of unit a testing unit b. If a judges b
to be fault-free, thenu(a,b) =0. Otherwise, u(a,b)
= 1. If a is fault-free, then the result of a testing b is
reliable. Otherwise, unreliable. The results about the
PMC model can be found in Refs[4-12].

Under the PMC model, ¢-diagnosis''' and #/-di-

3 are two important diagnosis strategies in the

agnosis
system-level diagnosis. If a system with at most ¢ faulty
units can correctly identify all units in it, then it is
called a t-diagnosable system. And a system with at
most ¢ faulty units is called a #/t-diagnosable system if
a set with the size of at most ¢ can be located so that it
incorporates all faulty units. There are some papers re-
porting the results about #/i-diagnosable system'®'*"7/.
However, for a t-diagnosable (t/t-diagnosable) sys-
tem, if the real number of faulty units ¢' > ¢, then the
above two diagnosable strategies can do nothing for i-

dentifying the faulty units in the system. In other
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words, in designing a system, it should have a large
diagnosability, which is the maximum number of faulty
units the system can guarantee to identify. This gives
us a strong motivation to study on the t/(t + 1) -diag-
nosable system, whose diagnosability is larger than that
of the t-diagnosable system and that of ¢/¢-diagnosable
system.

In next section a characterization of the t/(t+1)-
diagnosable systems based on the PMC model will be
proposed. In Section 2 some important properties on
the t/(¢ + 1)-diagnosable systems are presented. In
Section 3 the diagnosability of some special networks
are analyzed such as n-dimensional hypercube network
and n-dimensional 2D (3D ) -mesh network.

1 Characterization of the ¢/(¢ +1)- diag-
nosable systems

For the sake of convenience, let us introduce
some necessary preparation knowledges. A diagnostic
graph of a system or a network S with n units is usually
denoted by an undirected graph H(V,E) , where V de-
notes the set of units in S, Eis edge set, (u,, u;) € E
implies u, tests u. Forx e V, two sets are defined as
follows: Tx = {y| (x,y) e E} andT7'x = {y | (y,
x) e Ef. Foe, U CV, TU =U,_Ty - U, T7'U
=U,y I'"'y — U are defined.

Remarks When H(V,E) is an undirected graph,
I'v = T'w, TU = T'"'U. The relative terminologies
and notations in this paper follow Ref. [ 18 ]. Through-

yelU

out this paper, the four notations: unit, node, vertex
and processor are not distinguished. At the same time,
also other three notations: graph, system and network
are not distinguished.

Let H(V,E) stand for a network graph, V(H)
stand for the unit set in H. A connected subgraph L in
H is called a connected component if there doesn’t ex-
ist an edge (x, y) € Esuch thatx € V(L) andy € V
-V(L). C,, (H) ={C,1 1 <i<k} is used to stand
for the set of all connected component in H. It is obvi-
ous that for C;, C; e C,, (H)(i #j), V(C) N
V(C) =0, V(C) UV(C,) U --V(C) =V

Especially, if H is connected, C,,, (H) = H.

LetLCV,H, (L) = (L,E")withE’ = {(«, y)
e El x, y e L} is said to be the induced subgraph of
LinH. Let Card,(C,, (H)) =1{C]l1C, eC,, (H),
| C;1 = k{. In order to explain the two terminologies
C,pnp,(H) and Card,(C,,, (H)), let us consider an
example shown in Fig. 1. Fig. 1 is a graph of 10-node,
denoted by H(V, E), which is easily obtained that
C,.,(H) = {C,C,,Cy 1, where C; = H,,(v,,0,),

comp

comp

C, = H,,,(vy,v,,05) and €y = H, ) (vg,0;7,05,0,0).
Card,(Coppy(H)) = 1€/}, Card,(C,,(H)) =
Gt CardS(Ccomp(H) ) = {C;f and Card4<c[‘omp(H) )
=0.

Definition 1 System S with at most ¢ faulty units
is said to be t/(t + 1) -diagnosable if a set of size at
most ¢ +1 can always be determined so that it incorpo-
rates all faulty units.

The concept of allowable fault set ( AFS) is im-
portant in fault diagnosis, the definition of AFS is as

[14]

follows

Definition 2 Tet H(V, E) be a graph, u a syn-
drome, Y a subset of V. For syndrome y if the following
conditions are satisfied, Y is said to be an AFS of the
system.

i) For (a, b) e E,ifa, b € V-7, then u(a,
b) =0, and

ii) For (a, b) e E,ifa e V-Yandb € Y, then
ula, b) =1.

Lemma 1 ' Let H(V, E) be a graph, u a syn-
drome, P C Vand Q C V. If both P and Q are AFSs for
u, then P U Q is also an AFS.

For convenience, for any subsets A,B C V, let (A
-B) U (B-A4) = AAB.

Lemma 2 "' A system H(V, E) is t/t-diagnos-
able if and only if any two subsets A, B € Vwith| Al
<t+1,| Bl <t+1andA # B, there exists an edge
fromV — A — B to AAB.

Theorem 1 A system given by H(V, E) is t/i-
diagnosable if for any two subsets A,B C Vwith| Al <
t+1,1 Bl<t+1andA # B, there exists an edge
from V-A-B to AAB.

Proof According to Lemma 2, H(V,E) is (¢ +
1)/(t +1)-diagnosable, which implies that H(V, E)
is t/(t +1)-diagnosable.

Theorem 2 If a system given by H(V, E) is t/
(t +1)-diagnosable, then for any two subsets A,B C V
with| Al <i¢, | Bl <tandA # B, at least one condi-
tion holds in the following conditions.

i) There exists an edge from V — A — B to AAB.

i)l AUBI<t+1.

Proof Suppose, on the contrary, that A,B © V

Fig.1 A graph of 10-node
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withl Al <t, | Bl <tand A # B, such that the fol-
lowing two conditions are satisfied ;

i) ' (AAB) C AN B.

i) IAUBI<t+2.

Assume that the units of A are exactly all faulty
units in the system. Consider the following syndrome
for each pair of units a, b € E so that (a, b) e E:

i) Ifa, b e V-A, thenu(a, b) =0.

i) faeV-Aandb € A, thenu(a, b) = 1.

iii) The test result from A to B is 1 and the test re-
sult from Bto A is 1.

For the above syndrome, A and B are all allowable
fault sets. Therefore, all the fault sets in a set of size at
most ¢ + 1 can’t be isolated owing tol A U Bl <t +2.

Theorem 2 presents a necessary condition on #/ (¢
+ 1) -diagnosable system, in the next section, some
significant properties and corollaries of ¢/ (¢ + 1) -diag-
nosable system will be presented.

2 Properties of the ¢/(t + 1)-diagnosable
system

For a system H(V, E) with n units, it is conclu-
ded that if it is t-diagnosable system, then n = 2¢ +
1" It is easily seen that if H(V, E) is i-diagnosable
system, then it is also ¢/¢-diagnosable, furthermore, it
is also t/(t + 1) -diagnosable. For the sake of conven-
ience, n = 2¢ + 1 is assumed in the following argu-
ment. Before presenting the characterization of /(¢ +
1) -diagnosable system, some useful properties of the t/
(t +1)-diagnosable system is summarized as follows

Property 1 If H(V, E) is t/t-diagnosable, then
it is also t/(t + 1) - diagnosable.

Lemma 3 Let H(V, E) be a network system, A
=min{l (I''v,) U(T"v,) U (T '0,) || wherew,,
v,, v; € Vand (v, v,) ¢ E(1 <i<j<3), then the
system is not (A +1)/(A +2)- diagnosable.

Proof Without loss of generality, let three units
v, vy, v5 € Vsuch that | (T7's,) U (I''w) U
(T'0,) = A Let L = (T''s,) U (T''0y) U
(I'"'v,). Suppose that F = L U {v,} C Vis the set of
faulty units. Then| F| = A + 1. Consider a syndrome
w as follows for each pair of units a,b € E (shown in
Fig.2) .

i) Ifa,b € V-F - {v,, v5}, thenu(a,b) = 0.

ii) fa e V-Fandb e F - {v,, vy}, thenu(a,
b) = 1.

iii) Ifa e {v,,v,,05} andb € F, thenu(a,b) =

iv) Ifa € {v,,v,,0,} andb € V- F, thenu(a,
b) =0.

v) Other situations u(a,b) is 0 or 1.

For the above syndromepu, L U {v;} (1 <i<3)
are all allowable fault sets. Since | U?zl (LU {v}]
l = A +3 > A +2, it is concluded that the system is
not (A +1)/(A +2)-diagnosable.

Lemma 4 For a system given by H(V,E) with n
units, if the system is t/(¢ + 1) -diagnosable, then for
XCVwithl X1 =2(¢=r), | T7'X| > r, wherer e
[0, ¢ — 1) is an integer.

Proof Assume that there exist an integerr € [0,
t—1) and a subset X C Vwith| X | =2(¢t -7r),
| T'X| = s < r. Decompose X into the two subsets
X,, X, such that X = X, U X, withl X, | =1 X, | =¢
—r. Sincel VI-l XUT'Xl =n-2t+2r-s=1
+7r+r—s, one can choose aset X, C V- (XUT™'X)
with Xy =r—s. LetY, =T'XUX, UX,, Y, =T"'X
UX,UX,,andR = V- (Y, UY,). Note that| Y, |
=1 Y,| = tand there are no edges from R to (X, U
X, ). Construct the following syndrome g for each pair
of units a,b € E such that (a, b) € E (shown in
Fig.3) :

i) Ifa,b € R, thenu(a,b) = 0.

ii) Ifa e Randb € V- R, thenu(a, b) = 1.

iii) The other possible test results are arbitrary.

1”722 73 /

0/1

Fig.2 A syndrome g of Lemma 3

For above syndrome y, Y, and Y, are all allowable
fault sets. Butl Y, U Y, | =1t +2. Therefore, the sys-
tem is not ¢/ (¢ + 1) -diagnosable.

Theorem 3 For a ¢/(t + 1)-diagnosable system
H(V, E) and a syndrome o, if both X and Y are AFSs,
then at least one of following conditions holds;

DIX-XnNnYl<L

mly-xnvyl<sl.

Proof Let X and Y be two AFSs with| X - X NY
| = 2 for syndrome o, a contradiction will be derived.
Without loss of generality, let| X| = aand| Y| = b
witht = a = b. Since both of X and Y are AFSs, there
exists no edge (u, v) such thatu e V-X - Yandv e
(X -Y) U (Y-X). Choose a set of units Z C V - X
- Ywithl Z1 =1t - a.
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Fig.3 A syndrome y of Lemma 4

LetX, =XUZand Y, = YU Z. Construct a syn-
drome o, as follows: for two units p,q e Vthat (p,q)
€ E (shown in Fig.4).

pr,q € V_Xz - Yz’ thenaﬁ(P#]) = 0'(]),(]) =
0.

IfpeV-X -Y andg € X, NY,, theno,(p,
q) = 1.

The other possible situations o, (p,q) = o(p,
q)-

Since there exists no edge from V — X - Yto (X -
Y) U (Y - X), therefore, there also exists no edge
fromV -X, =Y to (X, -Y,) U(Y,-X.,). ltis obvi-
ous that for syndrome ¢, both X, and Y, are all the al-
lowable fault sets with | X_ | , | Y, | < ¢ Note that | X
- XNYl=2and! Y-XNYI =2, which implies
that | X, UY.l =t -a+a+2 =1t+2. Therefore, the
system is not ¢t/ (¢ + 1) -diagnosable system, a contra-
diction.

Fig.4 A syndrome ¢, of Theorem 3

Theorem 4 For a ¢/(t + 1)-diagnosable system
H(V, E), a syndrome o, suppose that both X and Y
are AFSswith X € YandYZ X, ZC V, ifZ ¢ X U
Y, then Z cannot be an AFS for syndrome o.

Proof On the contrary, suppose that Z is an AFS
for syndrome ¢. Since X ¢ Y, there exists a unit v that
v € Xandv ¢ Y. By the assumption of both X and Y are

AFSs and Lemma 1, we have X U Y is also an AF'S.
Note that Theorem 3 and the assumption Z ¢ X U Y,
there exists a unit u thatw € Zandu ¢ X U Y. Hence,
| XU Z -Y| =2. On the other hand, since both X U
Z and Y are AFSs for syndrome o, | XU Z -YI <1,

a contradiction.
3 Applications

In this section, the t/¢,-diagnosability of the fol-
lowing three regular networks: n-dimensional hyper-
cube network ((Q,), n -dimensional star network
(S,), and 2D (3D )-mesh will be discussed. For an
undirected graph H(V, E) , subset X C Vand unitv e
V,1etTX = TX"' = N(X) andTv = Tw™" = N(v)
where X C V, v e V.

Lemma 5"’ Suppose that H(V, E) is an undi-
rected graph with n units. Let X be the faulty set in
H(V, E) with| X| <t, ua syndrome produced by X,
YCVwithl YIz=t+1. IfH,,(Y) is a connected sub-
graph and for any (x, y) € Esuchasx, y € Y, o(x,
y) =0,thenX NY =@, in other words each unit in
Y is fault-free.

3.1 The t/(t +1)-diagnosability of n-dimensional
hypercube network

Lemma 6 Suppose that H(V, E) is the diagnos-
tic graph of Q (n=4), S = {u, v, w! is a subset of
Vin which v, v, w has one common neighbor. Then |
N(S) | =3n -5.

Proof For unita € V, add(a) is used to repre-
sent its address. Let unit x be the common neighbor of
u, v, w. Without loss of generality, it is assumed that
add(u) =a,a,-++a, 3100, add(v) = a,a,+-a,_;010,
add(w) = a,a, -+a, ;001, add(x) = a,a, --a,_;000.
Note that any two units in S , say u and v, have exactly
two common neighbors (one is x, the address of anoth-
er one, say y, is add(y) = a,a,---a, ;110). At the
same time, it is easily seen that each one of u, v, w
has n — 3 private neighbors. Therefore, | N(S) | =
3(n-3) +3+1 =3n-5.

Lemma 7'*' Suppose that H(V, E) is the diag-
nostic graph of Q,, LC Vwithl LI =r, 1 <r<n+
I,then| N(L) |l =rm -r(r+1)/2 + 1.

Lemma 8'*' Suppose that H(V, E) is the diag-
LC Vwith| LI =r. IfH,,(V-L)
is disconnected. Then following conditions hold ;

i) Ifn<r<2n(r-1) -1, thenC,, (H,, (V-
L)) =1{C,, C,} withl V(C,)| =1and!| V(C,) | =
2" —r - 1.

i) IfC

nostic graph of Q

no

(Hind(V_S)) = {61 7C2,""Ck} with

comp
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| V(C,) I =2and| V(C,) | =2, then| S| =2(n -
1).

Lemma 9 For 4-dimensional hypercube network
Q, denoted by H(V, E) , let S be a set of units S C V,
if there exists at least two C,, C; € C,,,,(H,,(V~S5))
with | V(C;) 1,1 V(C) 1 =3, thenl SI=7.

Proof According to Lemma 8, | S| = 6 is got.
Next, | S| # 6 is shown. Assume that| S| = 6, then
| V—=S1 =10. Now the following cases are considered :

Casel | V(C,) | =3.

According to Lemma 6, | N(V(C,)) | =3n -5
= 7, which is a contradiction to N(V(C,)) C S.
Therefore, no such subgraph C; € C,, (H,,(V-S))
with | V(C,;) | = 3 exists.

Case2 | V(C,) | =4,

Similarly, according to Lemma 7, | N(V(C,)) | =
4n — 9 = 7 is obtained, which is a contradiction to
N(V(C;)) € S. Therefore, no such subgraph C; e
Crpnp (Hyy (V= 8)) withl V(C;) | = 4 exists.

Case3 | V(C,) | =5.

Q, can be divided into two 3-dimensional hyper-
cube networks denoted by Q% and Qf. Consider the fol-
lowing cases;

Case 3.1 5 units are all in Q%.

According to Lemma 7, | N(V(C,)) | =8 is got,
a contradiction.

Case 3.2 4 units are all in Q.

According to Lemma 7, | N(V(C,;)) | =7 is got,
a contradiction.

Case 3.3 3 units are all in Q5.

According to Lemma 7, | N(V(C,)) | =8 is got,
a contradiction.

comp

In summary, no such subgraph C; € C,,, (H,,(V
- S)) withl V(C,) | =3 (4 or5) exists that the re-
sult holds. Therefore, it can be seen the result holds
only when | S| = 7.

Lemma 10 Suppose that H(V, E) is the diag-
nostic graph of Q,, S C Vwith2(n -1) <I SI1 <3n
-6, H,,(V-S) is disconnected, C, (H,,(V-S))
= {C,,C,,-,C,{. Then the following conditions
hold :

1) 22:11” Cardk(c“""lp(Hind<V_S))) | $2
(H,,(V-5))

comp

ii) There exists only one C; e C
with | V(C,) | = 3.

Proof If condition i) is not satisfied, then at
least one of following cases must be satisfied ;

Case4 | Card,(C,, (H, ,(V-S)))|l=3.

There exists at least three unitsu, v, w € V — S such

that N(u, v, w) ©S. According to Lemma 6, | N(u,
v, w) | =3n -5, therefore, N(u, v, w) € S which is
a contradiction to the hypothesis.

Case 5 | Card,(C,,, (H, ,(V-S)))|l=2.

There exists two pair adjacent units v, , v,, v;, v, €

comp

comp

comp

V = Ssuch that N({v,, vy, v5, v,{) © S. According
to Lemma 7, | N({v,, vy, v5, v,} ) | =4n -9, there-
fore, N({v,, vy, v;, v,} ) € S, which is a contradic-
tion to the hypothesis.

Case 6 | Card,(C,,,, (H,,(V~-S)))!=1and
| Card,(C,,,, (H,,(V-5))) =1

The argument here is similar to that of Case 4.
According to the above three cases, condition i) must
be satisfied.

The proof of condition ii) : By induction onn, | S|
=3n -5. Forn =4, assume that2(n -1) <| S| <
3n - 6, which implies | S| = 6. According to Lemma
9, it follows that if there exists at least two C,, C, e
Cpny (H,y(V =S)) is the two connected subgraph with
| V(C)H 1,1 V(C,) | =3, thenl S| =7, a contradic-
tion. Hence, n = 4, the result is true. Assume that the
result is true n — 1 wheren -1 = 4. Forn, letC,, C,
e C,,, (H,,(V-2S8)) be two connected subgraph with
| V(C,)) I =3and!| V(C,) | =3. And dividing an n-
dimensional hypercube into two copies Q"_ and Q.
LetS = S, U S, where S, € V(Q",) and S, e
V(QF ). Now the following cases are considered.

Case 7 V(C,) C V(Q:,) and V(C,) C
V(Q,.)-

According to the assumption, we have | S, | =
3(n -1) =5. Since V(C,) (V(C,)) and V((Q* )
is disconnected, | S, | =| V(C,) | +1 V(C,) | = 6.
Then!| ST =1 S, 1+l S;1=3(n-1) -=5+6 =3n
-2 =3n -5, a contradiction.

Case 8 V(C,) C V(Q",) and V(C,) C
V(Q)-

| S, 1=l V(C,) | and | Spl =1 V(C,) 1. Ifl S, |
<2(n-2) -1, according to Lemma 7, | V(C,) | =
2" —1-[2(n=2)-1] =2"" =2n +4. Thenl S,
| =2"" —2n +4and whenn =5, | S,1 =3n 5. If
| S, 1 =2(n-2), similarly, | S;1 =2(n -2), then
| SI=4n -8 >3n -5(n=15), a contradiction.

Case 9 V(C,) C V(Q:,) U V(QF,) and
V(Cy) S V(QL).

Let V(C,) =AU BwhereA CV(Q"_,) and B C
V(QF ). Now the following cases are considered.

Case 9.1 | Al =1land| Bl =2.

| S;l=zn-1landl S, | = V(C,) | +] Bl -1 A
l. Ifl Bl =2, then!| S;1=2(n —2). Therefore,
Sl =(n-1) +2(n-2) =3n-5. Ifl Bl =3,
then | S,1 =3(n-1) —5. Therefore, | S| = (n-1)
+3(n-1)-5=4n-9=3n-5(n=5), a contra-
diction.

Case 9.2 | Al =2and| Bl = 1.

| S, 1 =2(n-2)and!| S; | = (n -1). There-
fore, | SI=(n-1) +2(n-2) =3n -5, a contra-
diction.
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Case 9.3 | Al=3and!l Bl = 1.

Ifl Bl =3, thenl S;1 =3(n-1) =5and! §,
| =1 V(C,) |. Therefore, | S| =3(n-1) -5 +3 =
3n - 5.

Ifl Bl =2, then| Syl =2(n-2) and!| S;1 =
| Al =l BI.If1 S, | <n—-1,thenl Al =2"" -1 S, 1.
Therefore, | S| =3n -5. If| S, =n -1, then!| S|
=(n-1)+2(n-2) =3n-5.

Ifl Bl =1,then| Sy;l=zn-1.Ifn-1<13S§,I
<2(n-2) -1, according to Lemma 7, | A| = 2"
-1-(2(n=-2)-1) =2"" -2n+4. Then| S| =
(n—=1) +2"" =2n+4-1=2""-n+3=3n-
5(n=5). ltis easily seen thatif | S, <n—-1,1 S|
= 3n - 5, a contradiction.

Case 10 V(C,) C V(Q',) U V(QF,) and
V(C) S V(Q) U V(QL).

Let V(C,) = AU BwhereA CV(Q" ) and B C
V(Q*,). AndletV(C,) CX U YwhereX CV(Q" )
and Y C V(QF ). Now see the following cases

Case 10.1 | Al +1 X 1| = 2.

| S, =2n-3. Sincel Bl=2and!| Y| =2,
| Sp | =2(n-2). and| Sl =4n-7=3n-5(n=
5), a contradiction.

Case10.2 | Al +| X | = 3.

IS, =3(n-1) =5and| Syl =n-1. | S| =
4n -9 =3n -5(n =15), a contradiction.

Case 10.3 | Al +| X | = 4.

Ifn-1<I1S,1<2(n-2)-1,thenl Al =2""
-1 S, I =1orl XI =2"" —1 S, | = 1. Without loss of
generality, let| A1 =2"" =1 S, | = 1. Then!| X| =1
and | Y| =2. Therefore, | YI <I S, +1<2(n-2).
And if | Bl =2, then| S;| =2(n -2). Otherwise,
| Sgl =l Al -1 BIl. It is obviously that| S| = 3n -
5, a contradiction.

If1 S, 1 =2(n-2),itis claimed that| S;1 =n
— 1. Otherwise, H,,(V(Q* ) =S, H) is connected.
Then| S1=2(n-2) +(n-1) =3n -5, a contra-
diction.

Lemma 11 Suppose that H(V, E) is the diag-
S C Vwith| S1 =3n -5. Suppose
(H,,, (V-

Then following conditions

nostic graph of Q0 ,
that H,,(V - S) is disconnected and let C
S)) = %CI,CZ’...’CIC%‘
hOld:

i) zzzlkl Card,(H,,(V-S))|<3.
(H,,(V-5))

comp

ii) There exists only one C; € C
with | V(C,) | = 4.

Proof a similar proof of Lemma 10 can be used
to prove that the result is true.

Next, the t/(t + 1)-diagnosability of n-dimen-
sional hypercube network will be discussed.

Theorem 5 Q,(n =5) is not (3n - 4)/(3n -
3) -diagnosable.

comp

Proof According to Lemma 3 and Lemma 5, it is
easily seen that the n-dimensional hypercube is not (3n
-4)/(3n - 3) -diagnosable.

Theorem 6 An n-dimensional hypercube Q,(n
=5), denoted by H(V, E),is (3n =5)/(3n -4) -
diagnosable.

Proof Suppose that F € Vwith| F |1 <3n -51is
the set of faulty units in ,.

Casell | Fl<sn -1

It is obviously that H,,(V — F,H) is connected.
According to Lemma 5, all nodes in V — F can be cor-
rectly diagnosed to be fault-free.

Case 12 n<| FIl<2(n-1) - 1.

When H,,,(V - F, H) is connected, all units in V
— F can be diagnosed correctly to be fault-free. Contra-
rily, when H,,(V — F, H) is disconnected, according
to Lemma 8, C,, (H,,(V-F)) = {C,, C,} with|
C,/l =landl C,1 =2" -1 -1 FI. Sincel C, 1 >
| F1, V(C,) can be identified correctly as fault-free.
Furthermore, V — V(C,) can be located that it contains
all faulty units in H.

Case13 2(n-1) <l FI<3n-6.

When H,,(V - F, H) is connected, all units in V
— F can be diagnosed correctly to be fault-free. Contra-
rily, when H,,(V — F, H) is disconnected, according
to Lemma 10, C, (H,,(V - F)) = {C,, C,,
C,! (V(C,) may be empty). Since|l C,| >| F| and
| V(C,) I +1 V(Cy) 1 <2, V(C,) can be identified
correctly as fault-free. Furthermore, V — V(C,) can be
located that it contains all faulty units in H.

Casel14 | F| =3n -5

When H,,(V - F, H) is connected, all units in V
— F can be diagnosed correctly to be fault-free. Contra-
rily, when H,,(V — F, H) is disconnected, according
to Lemma 11, C,,, (H,,(V - F)) = {C,, C,, C;,
C,} (V(Cy), V(C,) may be empty). Now three situa-
tions described as follows will be considered.

Caseld.1 | V(C)I =2" -3 -1 FI, | V(C,) |
=1,1 V(Cy) I =1and!l V(C,) | = 1.

Similarly, | V(C,) | =| F | + 1, then the system
identifies all units in V( C,) correctly as fault-free. It is
claimed that each unit of F'is connected to V(C,) , oth-

erwise Y k| Card,(H,,(V~F)) | =4 which is a

contradiction to the hypothesis. Therefore, the system
can diagnose all units of F to be faulty through units in
V(C,)).

Casel4.2 | V(C)) I =2" -3 -1 FIl, | V(C,) |
=2,1V(C,) I =1and!l V(C,) | =0.

Similarly, V(C,) can be identified correctly as
fault-free. Similar to case 14. 1, it is claimed that each
unit of F'is connected to V(C,). Therefore, all units of
F can be identified as faulty by fault-free set V(C,).

Casel4.3 | V(C)) I =2"-2-1 FIl, | V(C,) |
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=2, 1 V(Cy) I =0and! V(C,) | =0.

Similarly, V(C,) can be identified correctly as
fault-free. According to Lemma 11, there exists at
most one unit in F', say u, which is disconnected to any
one unit in V( C,). Therefore, the system can diagnose
correctly all units in ¥ — {u} to be faulty by the units
in V(C,). It is easily seen that the test results of C, are
0 and the test results from V(C,) to u are 1. Then
V(C,) can be identified as fault-free.

Caseld4.4 | V(C)) I =2"-2-1 Fl,| V(C,) |
=1,1 V(Cy) I =1and!l V(C,) 1 =0.

Similarly, V(C,) can be identified correctly as
fault-free. And each unit of F is connected to V(C, ),
otherwise | F'| >3n —5. Therefore, the system can di-
agnose correctly all units in F — {u} to be faulty by the
units in V(C,).

3.2 The diagnosability of ¢/ (¢ +1)- diagnosable
of 2D (3D) -mesh

Lemma 12 Let H(V, E) denote a 2D-mesh with
n’units (n =5), S = {u, v, wl C Vbe a set in
which u, v, w have a common neighbor. Then | N(S) |
= 8.

Proof According to the symmetry of the graph, S
can be shown in Fig.5. It is obviously that | N(S) | = 8.

Fig.5 A subsetS = {u, v, w} of Lemma 12 in 2D-mesh

Theorem 7 A 2D-mesh with n° units (n = 5) is
not 9/10-diagnosable.

Proof According to Lemma 3 and Lemma 12, it
is easily seen that the 2D-mesh with n” units (n =5) is
not 9/10-diagnosable.

According to the structure of 2D-mesh with n®
units (n = 5), it is easy to get the following Lemmas.

Lemma 13 For a 2D-mesh with n” units (n =
5), denoted by H(V, E), let S C Vwith| S| = 6. If
H,,(V - S) is disconnected, then:

i) Either C,,, (H,,(V - S)) = {C,, C,} with
| V(C,) 1 =1and!| V(C,) 1 =n*> =1 -1 SI.

i) orC, (H,,(V-3S8)) = {C,, C,} with

comp

| V(C,) | =2and| V(C,) | =n> =2 -1 SI.

Lemma 14 For a 2D-mesh with n* units (n =
5), denoted by H(V, E), let S C Vwith| S| =7. If
H,,(V - S) is disconnected, then:

i) Either C,, (H,,(V - S)) = {C,, C,} with
| V(C)! =lor2or3andl V(C,) | =n" -1 V(C,) |
-1 SI.

i) OrC,,, (H,,(V-8)) =1{C,, C,, Cyf with
L V(C) I =1,1V(C) | =1and!l V(Cy) | =n* -
2 -1 SI.

Lemma 15 For a 2D-mesh with n* units (n =
5), denoted by H(V, E), let S C Vwith| S| = 8. If
H,,(V - S) is disconnected, then:

i) Either C,,, (H,,(V - S)) = {C,, C,} with
| V(C,)! =1lor2or3 or4and!| V(C,) | =n’ -
L v(c,) ! -1 SI.

i) Or C,,, (Hy(V=5)) = |C,, C,, G with
L V(CH 1 =1,1V(C,) | =Tandl V(C,) | =n" -
2 -1 SI.

iii) OrCcmnp(Hind(V_S)) =1{C,, G, Gy, C,f
with | V(C) 1 =1,1V(C,) I =1,1V(C;)| =1 and
| V(C,) | =n" -3 -1 SI.

Theorem 8 A 2D-mesh with units (n =5) is 8/
9-diagnosable.

Proof A similar argument of Theorem 6 can be
used.

Similar to 2D-mesh, a 2D-mesh with n’ units is

11/12- diagnosable but not 2/13-diagnosable.

4 Comparisons between t/(t + 1) -diagnos-
ability and other classical diagnosabilities

In this section, a comparison is taken between the
/(¢ + 1) -diagnosability and the i-diagnosability (/-
diagnosability) in an n-dimensional hypercube and 2D
(3D) -mesh.

According to Theorem 6, the ¢/(¢ + 1)-diagnos-
ability of Q,(n =5) is 3n =5. On the other hand, it’s
known that the i-diagnosability'®’ ( t/t-diagnosabili-
ty[]()]
a table is set up (see Tablel for the comparison of
above three diagnosabilities of Q,(n =5). Besides, by
Theorem 8, a table (see Table 2) can be made for the
comparison between two of ¢/ (¢ + 1) -diagnosability, -
diagnosability and #/i-diagnosability of 2D-mesh (3D-
mesh ). According to Table 1 and Table 2, one can see
the t/(t + 1)-diagnosability is much larger than the

of Q,is n(2n —=2). For the sake of convenience,

classical diagnosability. Especially, for an n-dimen-
sional hypercube, the t/(t + 1) -diagnosability is about
2 times as large as t-diagnosability and is also about
1.5 times as large as t/t-diagnosability.
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Table 1  The comparison between the /(¢ + 1) -diagnosability

and the ¢-diagnosability (¢/¢-diagnosability) in Q,
Dimension 5 6 7 8 9 10
t-diagnosability 5 6 7 8 9 10
t/t-diagnosability 8 10 12 14 16 18

t/(t +1)-diagnosability 10 13 16 19 22 25

Table 2 The comparison between the /(¢ + 1) -diagnosability
and the ¢-diagnosability ( z/¢-diagnosability ) in 2D

(3D) -mesh
2D-mesh 3D-mesh
t-diagnosability 4 6
t/t-diagnosability 6 10
t/(t + 1) -diagnosability 8 11

5 Conclusions

In this paper, the concept of t/i-diagnosable sys-
tem is extended to a novel concept, called t/(t+1)-
diagnosable system, the latter has larger diagnosability
than the former. A necessary and sufficient condition is
presented to test whether a system is t/(¢ + 1) -diag-
nosable. At the same time, in order to figure out the
diagnosability of a system, some significant properties
of t/(t + 1) -diagnosable system are proposed. Further-
more, it shows an n-dimension hypercube (n = 5) is
(3n - 5)/(3n - 4) -diagnosable, and a 2D-mesh
(3D-mesh) with n*(n’) units is 8/9-diagnosable(11/
12-diagnosable) of Q, (n =5) is about 3 times as large
as its t-diagnosability and is 1.5 times as large as its ¢/
t-diagnosability.
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