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Abstract
A heterogeneous coverage method with multiple unmanned aerial vehicle assisted sink nodes
(MUAVSs) for multi-objective optimization problem (MOP) is proposed, which is based on quan-
tum wolf pack evolution algorithm (QWPEA) and power law entropy ( PLE) theory. The method is

composed of preset move and autonomous coordination stages for satisfying non-repeated coverage,

connectedness, and energy balance of sink layer critical requirements, which is actualized to cover

sensors layer in large-scale outside wireless sensor networks ( WSNs). Simulation results show that

the performance of the proposed technique is better than the existing related coverage technique.
Key words: wireless sensor network (WSN) , coverage, multi-unmanned aerial vehicle (MUAV) ,

heterogeneous, sink node, quantum wolf pack evolution algorithm (QWPEA), power law entropy

(PLE)

0 Introduction

Multi-unmanned aerial vehicle assisted wireless
sensor networks ( MUAV-WSNs ) are composed of
MUAVs and WSNs, which are widely applied in civil
! In recent years, MUAV-WSNs

have broad prospects in large-scale WSNs coverage.

and military affairs'"’.

Nevertheless, the problems including low detected fre-
quency, small shoot range, and unbalanced energy
consumption become more serious than before.

Recently, there are 2 modalities of MUAV-WSNs
application, including research and communication re-
lay. MUAV-WSNs are utilized for relaying between
fixed or mobile facilities in Refs[2] and [3]. And in
Ref. [4], they are used in film videos and data trans-
mission with frontier-based exploration algorithm for re-
solving the communication and energy consumption
problems. In summary, the former application modali-
ties are mature, operable and stable. However, their
applications in media information detection and com-
munication relay limit dominance of MUAV-WSNs’ re-
alizing multi-objectives. Also, these methods are ex-
posed with meteorological interference.

In this paper, MUAV-WSNs are utilized to cover
plenty of sensors on the earth for sink, transmission, and

relaying use. And the QWE-PLE algorithm is proposed.
Specifically, the quantum wolf pack evolution algo-
rithm (QWPEA) and power law entropy (PLE) theory
are utilized to be designed into preset move and autono-
mous coordination stages for the sub-objectives inclu-
ding non-repeated coverage, connectedness, and bal-
anced energy consumption. Simulation results show
that the performance of the proposed method is better

than that of the existing coverage technique.

1 System model

UAVs’ models with GPS systems are identical
completely. Also, their initial battery reserves are
equal. And sensors are deployed on the detected area
heterogeneously. Flight height /i, is a preset value, and
surface elevation is h,,. Therefore, h; > > h, andh, =
0 are existence for flight safety. Then a circular cover-
age projection is shaped from each multi-unmanned
aerial vehicle assisted sink node (MUAVS).

The improved duality perceptive model ' is uti-
lized to simulate the WSNs’ communications with 2-
layer topology structure. Specifically, the sink nodes
set C
A

z
yi’zi’r ’ r%'

{e,, ¢,*,cy} on the deployment area

sink

And the model from any of sink node is¢c; = {%;,

net *

Its coordinate is (x;, y;, z;). Then
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the different frequencies communication models
including Wi-Fi and ZigBee are installed in each
sink node. The Wi-Fi link is utilized for sink layer’s
communication, whose range is r*. Similarly, the
ZigBee link, whose radius is r*, is for transmission
between sink and sensor layers. And there exists r =
7. In addition, r is the surface projection and there
iS:

ri =sqrl (r})* = (hy=h,)*] (D

The communication area A, of each MUAVS for
connection in sink layer is;

A =30 m(r)? (2)

In preset move stage, the location information is
detected and transmitted, whose data packets are too
the MUAVS i obtains
L' bits in autonomous coordination stage of any
period T.. For instance, it sends 1 bit data with

Also,

energy coste,. Likewise, it transmits data packets to

small to count. Nevertheless,

energy consumption e,. it receives 1 bit with

U neighbor sink nodes with energy consumption £

receive

for receiving. Therefore, MUAVS i is actualized with

the packets transmission with energy cost E; ;. There
iS;
U U
Eg =2L' e+ 2L - e (3)
- =1
Furthermore, the flight energy consumption

Eq, . of MUAVS i is just related to flight duration
ty, ;- If flight energy cost parameter is v, the residual
energy I, ; is

E,.= Eorg

ex,1

_TiEall,i _Eﬂy.i (4)
where E  =vt, ;. Fig. 1 shows MUAVSs’ coverage.

A Height

Fig.1 MUAVSs’

coverage slates

2 Proposed method

In this work,
problem (MOP) o)

including

the multi-objective optimization
is composed of 3 sub-problems
connection, and balanced
Then the MUAVS coverage
process is divided into preset move and autonomous

Firstly, all MUAVSs fly to the

Secondly, autonomous coordination

coverage,

energy consumption.

coordination stages.
preset target.

stage runs in circles, until the system can meet the

need of each sub-objective or achieve maximum
number of iterations.

Definition 1 Effective coverage
(C,y)- The

effective coverage size A

ratio R

ratio is between non—overlappmg
wea (Coni ) and communication
area A,. And g of it is the number of coverage layers,

A (x;, v, z;, C,,) is the coverage size of MUAVS
i, and A, (¢,

coverage sizes,

(Cblﬂk) Adrt‘d
:2?;1{[A(<)v(xz’ Yis Zis Csink)

DT L MO 2 CP R
g, )\L-eN+ , &<A; (5)
Definition 2 Cross-layer connected ratio R_,.

The ratio is between the number of connected
MUAVSs and sensors. If R,

central. It means that the deployment of sink layer is

g) is the summation of redundant
which are intersected with c,.

( Csink ) /As

drt‘d

.Is less, sensors are more

more dynamic

4—2[1’(2 [ P(d(c;, ¢)<r") >0) /N,

(6)
d (¢;, ¢;) is the distance between the
connected MUAVSs ¢; and ¢, P(d(c;, ¢;) <r") =1
means the former 2 MUAVSs are connected. Therefore,
P(Z P(d(cl,c) r) >0) >0 means that
MUAVS ¢, is connected with sink layer.

Definition 3 Communication energy cost ratio
R,... The ratio is between MUAVSs’
energy consumption K and K ., which stands for
that of MUAV-WSNs.
parameter u is utilized to adjust the transmission
state of MUAVS 1.

Ry =E./E,

=ux(i§(ﬂ>2+N§"(r;)2)/E(,l,_C (7)
(Couw)s R

objectives for optimization at the same time completely.

where,

communication

And node communication

In summar and R, are sub-
y’ Ecc

area 559

And the balance among them is actualized with weigh-
ted method.

fi(x) =1-R,,
fr(x) =R, (8)
f3(x3) =1 -Ry,

S (%) = ;winfi(x Zw = (9)

where f,, (%) is general obJectlve function, K is the

min f(x)

number of sub-objectives, n, is normalization constant,
and w; is weight. Here w, + w, + w; = 1 and K = 3.
Therefore, the optimum solution is obtained from the

minimum offb(x) e (0,1).
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At the preset move stage, the target positions are
pre-optimized for multi-objective by quantum wolf pack
evolutionary algorithm ( QWPEA ). Then MUAVs fly
straight forward there.

Each quantum state of artificial wolf coding is set
as| V).

| ¥) =al 0) +81 1) (10)
where a and B stand for probability amplitudes of quan-
tum corresponding state. | a1 stands for probability of
1 0), and | B17is that of | ¥).

N MUAVSs and M sensor nodes are coded as cov-

erage matrix C and cascade matrix S. And ¢ S,. €

m,n% Ym,n

= 1 in matrix

m,n

{0, 1} exists. Furthermore, while ¢

C, s, ,in matrix S is coded from lines to rows. There
are ;
(T Cin Ci N
C = cz',l cz.,z cz',N
cm,n
Cur Cuyp Cy N
S S SN
S = sz.,l sz',z SZ.,N (11)
sm,n
Sur Sup Su.n

The initial probability amplitudes of quantum cor-
responding states emerge from Logistic chaotic map,
which is ... = 4.

N1 = Moo (1 —2,) ke N (12)

The leader wolf is in iteration directly, which is
the nearest to the initial optimal general objective func-
tion. Then the quantum state of each wolf needs to be

measured.
random[0, 1] >| o, |°

0
z =
! {1 random[0, 1] <! o

where Z = (z,, z,,

2 (13)
, z,) is the binary solution after
measuring states. Then they are transformed to binary
series codes to compose the corresponding objective
coverage projects. If the new solution is better than the
all of that will be re-
freshed to compose a set Z“"" | which contains the can-
didate leader wolves (CLW).

Subsequently, the evolution is actualized. Fig. 2

current optimum solution Z

best 9

shows that the method is genetic evolution based on
cross quantum in sliding mode theory. And it expands
the directed solution space. Then the elements in solu-
tions set Z“"" are sorted from optimum to the subopti-
mum to cross with leader wolf’ s chromosomes as the
sliding mode method. In addition, cross parameter w;
defers to Gaussian distribution. Moreover, the single-
point crossover starts from the low quantum at the right

end of chromosomes.

1 o~ (w220

¢
S (€)=
gauss i
/2wo
candi candi candi candi candi .
WhereZi = (zi,,l S R B R ) ),JEL

shows all the quantum j of CLW i is sorted. [ is the
number of CLW, and ;" is the quantum meaning fin-

(14)

ished sliding-cross mode.
i+l
I

T

1
wi = | S () der Y wi =1 (15)
Tﬂ' i=1
L w e [0, "]
= Lx (1 —wl) | wie (I, (I=-2)-1"]
2 wi e ((I=2) 1", 1]
(16)

Therefore, while CLW is the optimum solution, w}
reaches minimum value, and the new solution space is
near the existing solutions. In contrast, if w; is higher,
the new solution space will have more changes.

DDDDDDDokYoDonoonD
=
(Lo o[ st e e ]
1

<—eChromosome 4&
[ifolafifoluifofo]ze [1o 1 1]1]o]o]1]
Cross
[Tt Jo o [r o o rf e e e To Jo Jo o Te]
Chromosome

Fig.2 Sliding-cross method

Then update of the quantum rotation gate and con-
trol to non quantum gate are utilized on each quantum
of newest iterate wolves with the current optimum solu-

tion.
o _ [cosf - sinf ,
[Z;W] - [sinﬁ cosf ng] (17)
[ii] - [(1) (1)][;;] (18)

where o and 8" stand for probability amplitudes of
quantum corresponding state after refreshing. Similar-
ly, a, and B, are that of before refreshing.

In the autonomous coordination stage, the loca-
tions of sensors are analyzed. And n, sensor dense cen-
ters O, are clustered with the SUBFCM algorithm in
Ref. [7]. Then the connected MUAVSs move forward
or away from these centers with the power law entropy
method from the quadratic entropy theory'®'. Moreo-
ver, PLE has great effect on multi-objective.

Definition 4
The distance is between MUAVS and any of covered
sensors j which stands for the sensors clustering states

Average coverage distance L™

in the coverage area of MUAVS. And node communi-
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cation parameter u is utilized to adjust the transmission
state of MUAVS i. There is L™ = (sqr z le [ (X s
- x[)z + (Vews = yb.)2 + (Za s — zi)z] )/K, where K
is the number of sensors, covered by MUAVS. L*" and
K decide the coverage quality of A, (x,, y,, 2
Coin)-

Definition 5 Average connected distance L. It

i

shows the square errors of Euclidean distance between
directly connected MUAVSs. There is L™ =
(sqrz;_lzlr(xj —x,)7 + (y; - y.)?>1)/J, where J is
the number of directly connected MUAVSs. L™ and J
decide the connected quality in sink layer.

Similarly, while any of the flight duration z;, ; is
equal, and all the flight energy consumptions E; ; of
MUAVSs are equal. Therefore, the transmission energy
cost £, ; and the number of iteration periods T’ in au-

i

tonomous coordination stage decide the redundant ener-

gy Eex, it

Quadratic entropy S, ;(t) is decided according

squ, I
to the probability distribution of variable ¢'. And the
approximate valuation from entropy of information is
obtained with it.

stage, the power law entropy S, based on quadratic en-

At the autonomous coordination

tropy S_, ;(t) is proposed to optimize all the sub-ob-

Lo ‘
jectives.
Definition 6  Power law entropy (PLE) S,. It
describes the MUAVS’ s dynamic state including trans-
mission probability, connection level, and redundant

energy.

Ssqu,i ( t>Kian TiEall,i

S,.(t) = (19)

JZ?in

where ¢ is interval sampling time, and right side of
equation is transformed as it. And the average PLE

S

dense area G,(0,, R,). The R, is the area’ s radius,

and [;, ;is the jth equal spaced concentric circles in the

area G,. There isl, ; € [0, R,].

1 n
Spla,(;k(l(;k,j’t) = ;;Spl,i(l(;k_j’t) (20)
There is the PLE distribution S, ; (¢) in area G,.

a.c, of n MUAVSs are selected from any of sensor

* Splu, Ck(l(}k,j’ t) .
Sl = |G Y
Spl—max(t) = maX{S})l.i(t)}
i=1,2,-,n5  (21)

According to entropy theory, PLE is transformed
towards entropy increase naturally. However, the PLE
incremental quantity AS, is adjusted in period T of au-

tonomous coordination stage. And the MUAVSs move

towards or away from the center O, in the area G,.
Meanwhile, the PLE distribution S, is as reference co-

ordinate, and step,,, (! T;) is moving step. There

G j»
1s;

ASpld,i = sz,i(lck,j, t) - szd,ck(l) (22>
stepdbs(lck,j,Ti) = IO(a]/KTilGA"j)l/z, AS,,; <0
step“,m(lck_j, T.) =0, AS,;; =0
step (Lg, ;o T;) =—10(a)/KTl, )",

AS,,; >0
(23)

where « is coordination parameter, and the positive di-
rection is toward the center O,.

3 Simulations

For the simulations, the detection area is set to
1 km®. The number of UAVs with single sink node is
16. And the 100 sensors are deployed as random loca-
tions. The related length parameters are r’ =220 m, r;
=180 m, and R, =200 m. Moreover, sending or re-
ceiving 1 bit energy consumption is 50 x 10 ~*J/bits.
In the proposed algorithm, the sub-objective normaliza-
tion constantn, = 0.4, n, =0.3, n; = 0.3, and the
coordination parameter o = 50. In addition, the UAV’s
flight height h, is 50 m, the surface elevation 4, is 0.
And the battery’ s storage on each one is 4 480 mA.
The compared algorithms include virtual potential field
(VPF) ™', virtual force algorithm ( VFA) HO) - and
non-dominated sorting genetic algorithm-II ( NSGA-
My,

Fig. 3 shows that the sink layer effective coverage
ratio is 89.6% , and the cross-layer connected ratio is
100% under stable state. At the preset move stage, each
UAV flies straight forward to the target. Then 6 MUA-
VSs carry out optimization for 2 sensor dense areas in
the autonomous coordination stage. In these areas, the
higher PLE MUAVS:s fly away from their related sensor
dense centers, the lower flies towards the centers for
the balanced energy consumption''>"*.

In Fig.4, the algorithms show that the residual
energy mean variance ratios expand with the increasing
iteration frequency. Nevertheless, its difference with
QWE-PLE algorithm is less than the other’ s as entropy
increases. The reason is that the autonomous coordina-
tion stage of the proposed method is based on the for-
mer global optimization. In contrast, the compared al-
gorithms are merely devoted to the largest area than be-
fore. Therefore, the energy holes are easy to appear at
sensor dense areas, where the consumption of sink
nodes is faster than the else significantly. In experi-
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ment, the result shows that the residual energy mean
variance ratio with QWE-PLE method is 7. 6% , while
the iteration number is 50. And the ratio is 39. 2%
lower than that with the compared methods at least.

— Preset mobile path ® Take off place
Autonomous
aardination path O Sensor dense center

(' Preset mobile coverage O Sensor dense area

Autonomous coordination coverage

Fig.3 Heterogeneous coverage results of MUAVSs
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Fig.4 Residual energy mean variance ratio transform

with iteration

In Fig.5, the algorithms show the changes of
MUAVSs coverage with iterations. The QWE-PLE al-
gorithm needs an overall plan about the 3 sub-objec-
tives, so the coverage effect is lower than the others in
the early stage. However, the effective coverage ratio
is improved rapidly in the autonomous coordination
stage, because the parameter PLE leads that the MUA-
VSs’ mobiles refer to the sensor dense centers. Mean-
while, the non-sensor covered area is decreased. How-
ever, the compared methods tend to expand coverage

merely. While the energy holes appear, the original
covering capability becomes weak rapidly. The experi-
ment shows that the coverage ratio with the proposed
method is 88.7% , which starts with the 36th iteration
period. And the ratio is 10. 2% higher than that with
the compared methods at least.

0.9

e
o0

=
Q

MUAVSs coverage ratio
(=1
(=)

QWE-PLE
0.5
------- 'nnnm VPF
Gik pd. =0 ™ o VFA

P E—— NSDS-IT

0.3 -
0 10 20 30 40 50

Tteration number

Fig.5 MUAVSs coverage ratio transform with iteration
4 Conclusion

QWE-PLE algorithm with MUAVSs is presented
based on quantum wolf pack evolution algorithm and
power law entropy theory for heterogeneous sensors de-
ployment environment. The proposed algorithm is com-
posed of preset move and autonomous coordination sta-
ges, and satisfied 3 critical requirements. The experi-
mental results show that the claimed method has great
usefulness in non-repeated coverage, connectedness,
and energy balance of sink layer.
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