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Abstract

A new diagnosis method, called Double-Syndrome diagnostic, is proposed, which can identify
faulty nodes by comparing 2 different syndromes. For the same system, the average number of faulty
nodes identified correctly by the Double-Syndrome diagnostic is much greater than the ¢-diagnosabili-
ty and the (t,/t,) -diagnosability of the system. Furthermore, in order to identify the remaining
faulty nodes in the system, two strategies of fault diagnostic are proposed, one is called (k, ) -fault
diagnosable strategy, another is called (£, t/t) - fault diagnosable strategy. Besides, the conditional
(k, t) -diagnosable ( (k, ¢/t) -diagnosable) system is introduced. Furthermore, the conditional di-
agnosabilities are proved for some regular (%, t) -diagnosable and (k, t/t) -diagnosable networks
such as n-dimensional hypercube network and n-dimensional star network. And then, for a system,
its (k,t) -conditional diagnosability and its (k, ¢/t) -conditional diagnosability are identical, and in
the worst case, they are equal to their traditional conditional diagnosability.

Key words: Double-Syndrome diagnostic, (k, ¢) -diagnosable, (k, ¢/t) -diagnosable, hyper-
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0 Introduction

With the rapid development of multiprocessors,
multiprocessor computer systems contain hundreds and
It is inevitable that
some processors in such a system may fail. To ensure

thousands of processors now

reliability, the system should have the ability to
identify the faulty processors which are then isolated
from the system or replaced by additional fault-free

OHGS[Z]

. In order to maintain the reliability of the sys-
tem, automatic diagnosis procedures were proposed by
Preparata et al. >’ and Somani et al.'*'| which is
known as system-level diagnosis. Preparata et al. '
proposed the first system-level diagnosis model, namely
the PMC model, which can be represented by a di-
graph G = (V,E) and the edge (i, j) means node i
tests node j. A test result w(i, j) is associated with
each (7, j) and w(i, j) = 1(0) if i evaluates j to be
faulty (fault-free). A complete set of test results asso-
ciated with the edges of the system is called a syn-
drome>”’. For a syndrome o, let w(o:i, j) = w(i,
j) where w(i, j) € o. Under the PMC model, there
are 2 fundamentally different strategies to system-level

[39]

diagnosis: ¢-diagnosis"®' and /¢ -diagnosis**'. A sys-

tem is ¢ -diagnosable if and only if all the nodes can be
identified by the system correctly in the presence of

107 And a system is ¢/t -diagnos-

most ¢ faulty nodes
able if and only if all the faulty nodes can be isolated
by it to within a set of size at most ¢ in the presence of

21 However, the diagnos-

at most ¢ faulty nodes'
ability (z-diagnosable and i/7 -diagnosable) of a system
given by G = (V, E) is nearly depending on the de-
gree of the graph G, which results in that the improve-
ment of the diagnosability of one system by using tradi-
difficult" """

Therefore, this provides a strong motivation to discover

tional method becomes increasingly
a new diagnosis method, for which more faulty nodes
can be identified correctly. Next section will present a
new diagnosis method, called Double-Syndrome diag-
nostic, under the PMC model, for which more faulty
nodes can be identified correctly. Section 2 proposes a
new system called (%, t) -diagnosable and the charac-
terization and some properties of such systems are also
presented. Section 3 proposes a new system called (k,
t/t) -diagnosable system and the characterization and
some properties of such a system are also presented.
Section 4 uses properties of these 2 systems and Doub-

le-Syndrome diagnostic to further increase the number
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of faulty nodes which can be identified correctly. In
Section 5, a further study is proposed on above 2 diag-
nosable systems under the conditional diagnosis and
figure out some special conditional diagnosability of a-
bove 2 diagnosable systems. In the last section,a con-
clusion is drawn.

1 Double-Syndrome diagnostic

Under PMC model, for a system given by G =
(V,E),let 'u = {v| (u,w) € E,u, v € V} and
I'u™ = {vl (v,u) € E,u,v € V|. Similarly, for any
subset X C V, I'X =U,.Ju - X and I'X"
=U,.JIu"" - X. Without loss of generality, let I'u
= {v,,v,,0,,05,+,v,} and for a syndrome o, let
w(u,0;) = (0(o;:u,v),0(o:u,v,), olo:u,
;) 0, w(ou,,) ).

Lemma 1 For a system given by G = (V,E)
and 2 different syndromes o, and o,, u € V, if w(u,
o,), w(u,o,), then uis a faulty node.

Proof Suppose that, to the contrary, u is fault-
free. Since w(u,o,), w(u,o,), there exists some
w(o,:u,v,) such that w(o,:u,v,), w(o,:u,v,).
Without loss of generality, let w(o,:u,v,) = 1 and
w(oy:u,v,) = 0. w(o,:u,v,) = 1 implies v, is
faulty. On the other hand, w(o,:u,v,) = 0 implies v,
is fault-free, a contradiction complete the proof.

Now, Double-Syndrome diagnostic ( Algorithm 1)
is introduced as follows.

Algorithm 1 Double-Syndrome diagnostic

Require;

A system given by G = (V, E) with n nodes and 2 dif-
ferent syndromes ¢, and o,.
Ensure:.

A set of faulty nodes.

1) For eachnodev, e V(0 si<n-1), fw(v,,o;)
= w(v;,0,) , continue the Double-Syndrome diagnostic, oth-
erwise, mark v; with fault and continue the Double-Syndrome
diagnostic.

2) Output the nodes marked with fault.

Under the PMC model, the test result of one faulty
node testing the other nodes is unreliable'"”*'*’ . In oth-
er words, the value of w(u,v) is stochastic where v is a
faulty node. For convenience, the possibility of test re-
sult 1 (or 0) of each faulty node testing other nodes is
equivalent and let P(u,v:1) = a(P(u,v:0) =1 -
a) be the possibility of test result 1 (0) of one faulty
node u testing another node v(v can be faulty or fault-
free).

Definition 1 Let A be a event and P(A) be the
possibility of the event A happened.

Property 1 For a system given by G = (V, E)
suppose that u € Vis a faulty node with | I'ul = m.
For any 2 stochastic syndromes o, and o, , let P(u) be
the possibility that u is not marked with fault by Doub-
le-Syndrome diagnostic. Then P(u) = P(w(u,o,) =
o(u,0,)) =d x (1 —a) withl +k = m. Without
loss of generality, leta = 0.5, then P(u) < o™

Property 2 For a system given by 6 = (V,E)
with n nodes and ¢ faulty nodes. Let E( G) be the mean
number of faulty nodes which can be identified by
Double-Syndrome diagnostic. Let F = {v,, 0 <i<t -
1} be the set of the faulty nodes in the system, then

-1
E(G) = 2 izo[l - P(v,) .

Definition 2 A regular graph is a graph, in
which each vertex has the same number of neighbors.
Let D( G) be the number of neighbors of each vertex in
G =(V,E).

Property 3 For a system given by G = (V, E)
with n nodes and ¢ faulty nodes. If G = (V, E) is a
regular graph, then E(G) = t(1 - p(v)), wherev e
Vis a faulty node.

The lower bounds of E( G) under the n-dimension-
al hypercube with a different o are shown in Table 1.
Here, t denotes the exact faulty number in the system.

Table 1 The changes of E(G) of n-dimensional hypercube
E(G)= n=6 n=7 n=8 n=9 n
a=0.5 098 0.9 0.99:¢ 0.998: (1 -0.5")¢
a =07 0.8 0.918 0.942: 0.96: (1 -0.7")¢
a=09 047t 0.52t 0.57t 0.61t (1 -0.9")¢

For a system given by G = (V, E), average
E(G) faulty nodes can be identified by Double-Syn-
drome diagnostic correctly. For given 2 syndromes o,
and ¢, , there may exist some faulty nodes which can-
not be identified by Double-Syndrome diagnostic. In
next section, another diagnosable method is proposed
to deal with these unidentified faulty nodes.

2 Two-step (k, t)-diagnosable system

For a system given by G = (V, E) , under the as-
sumption that & -faulty nodes have been identified, it is
a very interesting problem to recognize the remaining
faulty nodes as much as possible. It is worth noting
that with the different distribution of the k-identified
nodes, the number of remaining faulty nodes which can
be identified may be different''”.

Definition 3 A system is one-step ¢-diagnosable
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if all faulty nodes can be recognized without replace-
ment provided the number of faulty nodes does not ex-
ceed 1.

Definition 4 Given a system by G = (V, E) and
a syndrome o, a set X © Vs called an allowable fault
set (AFS) of the system for syndrome o if for any 2
nodes i, j such that (i, j) e E, the following condi-
tions hold; ifi, j € V- Xthenw(o:i,j) =0, and if
ieV-Xandj € Xthenw(o:i, j) = 118.

It is worth noting that given a system by G = (V,
E), a syndrome g and a fault set F', then there must
exist an allowable fault set F', such that ¥ C F'. In
other words, there must exist a subset S C V such that
F U Sis an allowable fault set for syndrome ¢.

Definition 5 A system is two-step (k, ¢)-diag-
nosable if under the condition that £ faulty nodes have
been already recognized, the all remaining faulty nodes
can be identified provided the number of faulty nodes
in the system does not exceed k& + t.

It is worth noting that according to Definition 3
and Definition 5, a one-step (k +t)-diagnosable sys-
tem must be two-step (k, t)-diagnosable system, but
the inverse is not true. Now an example is given which
is two-step (k, t)-diagnosable but not one-step (k£ +
¢) -diagnosable.

Consider a system G = (V,E) shown in Fig. 1, it
is a two-step (2, 1)-diagnosable system. In fact, for
any given syndrome ¢ produced by the system in the
presence of the fault set F with| FI <3,ifl FI <2,
then the conclusion is true according to the definition.
We shall show it is also true when | F | = 3. Now we
only need to consider following 3 cases due to the sym-
metry of the system. Let F, C F be the possible identi-

fied faults set.
(n —()

Fig.1 An example of a two-step (2, 1)-diagnosable system

Casel F, = (v, v,].

There is only one faulty node in {v,, v,, v, vy}
and subgraph induced by {v,, v,, v5, v4} is connect-
ed. For the given syndrome ¢, there always exist 2 ad-
jacent nodes u, v € {v,, v,, vs, vy} such that at least
one of w(o:u,v) and w(o:u,v) is 1. Then the faulty
node belongs to {u,v} and L, 0, 05,0, 3-{u, v} are

all fault-free. Therefore, the remaining faulty node can
be identified by the test results of their neighbors tes-
ting them.

Case2 F, = {v,, vy}.

For any 2 adjacent nodes u, v € {v,, v, 05}, if
w(o:u,v) =0, then vy is the remaining faulty node.
Otherwise, v; is fault-free and v5 can be identified cor-
rectly. Furthermore, v,,v, can also be identified cor-
rectly.

Case3 F, = (v, v,].

Note that the subgraph induced by {v,, v;, vs,
vg | is isomorphic to the subgraph induced by {v,, v,,
vs, vg}. A similar argument of Case 1 can be used.

Above all, the system shown in Fig.1 is a two-
step (2,1)-diagnosable system. However, it is not a
one-step 3-diagnosable system due to the fact that | V'l
=6 <2x3+1.

With the definition of the two-step (k, t) -diag-
nosable system,the characterization of this kind of sys-
tem is presented.

Theorem 1 A system given by G = (V, E) is
two-step (k, ¢) -diagnosable if and only if for each
subset F, C Vwith| F,| = k and any 2 distinct subsets
S, I<e, 1 S, <twithl S;1<¢,1 8,1 <t, there
exists an edge from V-5, - S, - F to (S, - S,) U (S,
-S).

Proof Necessity: suppose that a system is two-
step (k, t)-diagnosable, there exist some F, C V with
| .| =k and some pair of subsets S,,S, C V - F, with
S, #S,, 1 S;1<¢,1S,1 < tsuch that there are no
edges fromV-S, =S, - F, to (S, -8S,) U (S, -S5,).
Consider a syndrome o such that for each (i, j) e E:
fi,jeV-S5 -8, -F  thenw(o:i,j) =0,ifi e
V-S§ -S, -F.andje F,US, US,, thenw(o:i,
Jj) =1, other possible test results can be arbitrary.

For such syndrome ¢ and the identified fault set
F.,bothF, US and F, U S, are all allowable fault sets
of cardinality at most ¢ + k, which is a contradiction to
the hypothesis.

Sufficiency: suppose that, to the contrary, the
system is not two-step (k, t)-diagnosable, implying
that there exists a syndrome o by which a k-node fault
set F, can be identified, and that there exist 2 distinct
subsets S;, S, C V — F_ of cardinality at most ¢ such
that F, U S, and F, U S, are allowable fault sets. No-
ting that there exists an edge fromV - S, = S, = F_ to
(S, -8,) U(S,-8,). Without loss of generality, let
ieV-8 -8 -F,,je (S -S,) with(i,j) e E.
fw(o:i,j) =1, then F, U S, is not an allowable
fault set. fw(o:t,j) =0, F, U S, is not an allowa-
ble fault set. This is a contradiction.
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Note that two-step (%, t)-diagnosable system can
be considered to be a generalization of t-diagnosable
system, since if k¥ = 0, two-step (k, t)-diagnosable
system corresponds directly to t-diagnosable system.

Corollary 1 If a system is two-step (k, ¢)-diag-
nosable, then the system is also two-step (k, ¢t —1)-
diagnosable.

Proof According to Theorem 1, the result is
true.

Corollary 2 If a system given by G = (V, E) is
two-step (k, ¢)-diagnosable, then the system is also
two-step (k —1, t)-diagnosable.

Proof Assume that, to the contrary, the system
is not two-step (k —1, t)-diagnosable, thus, there ex-
ist a subset F, C Vwith|l F1, =k — 1 and a pair of
subsets S;, S, CV-F, withS, #S,, | 5,1 <¢,1 5,1
< t, such that there are no edges fromV -S, - S, - F,
o (S, -S,) U(S,-S,). Letv e V-5, -85, -F,
and F', = F_ + {v]. Since there are no edges from V -
S, =S, -F t0(S, -S,) U(S,-=S,), there are also
no edges from V-8, =S, - F' 1o (S, - S,) U (S, -
S,) which is a contradiction to the assumption that the
system is two-step (k, t)-diagnosable.

Corollary 3 If a system given by G = (V, E) is
two-step (k, t)-diagnosable (k£ >2, ¢t >1), then the
system is also two-step (k —2, t + 1) -diagnosable.

Proof Assume that, to the contrary, the system
is not two-step (£ —2, ¢ +1)-diagnosable, thus, there
exist a subset F, C Vwith| F_| = k — 2 and a pair of
subsets S;, S, C V-F,withS, #S,, |1 ;1 <t +1,
| S,1 <t¢+1, such that there are no edges from V - §,
-S, - F, 0 (S, =S,) U(S, -5,). According to
Lemma 1, the system is two-step (k —2, ¢)-diagnos-
able, implying that either| S, | <t +1orl S,| <t + 1.
Consider the following cases.

Cased | Sl =¢+1landl S, =1+ 1.

LetveS -S,,ueS,-S,andF', =F, U {v}
Uiuf, S, =S, -1{v},S, =S5, - {u}. Note that
| F.l =kand S, #S',, 1 8,1 <¢,1 8,1 <1, and
V-8, -8,-F, =V-5-5-F, (5 -5,)
U (S, =-5)C(S -5,) UC(S,-3S,). Therefore,
there are also no edges from V - S', —=S', — F'_ to (S,
-8,) U (S, = S',) which is a contradiction to the
assumption that the system is two-step (k, t)-diagnos-
able.

Case5 | S, I<tandl S,1 =1¢ + 1.

IfS, €8S,, thenl S, NS, | = 1. Since a two-step
(k, t)-diagnosable system has at least ¢ + k nodes and
| F,US, US,| =t+k—1, there always exits a node
velV-S5-S,-F.letue S, NS,and F', = F,
Uivl Uful, S, =8, -1{u}, S, =S, -{u}. Note

that | F,| =kandS, #S,,1 8,1 <t,1S5,] <tand
V-8,-S8,-F_CV-S5 -5 -F, (5 -5,)
U (S, -5 =(S -5,) U(S,-3S,). Therefore,
there also are no edges fromV -S', - S', - F' 10 (S,
-S8",) U (S, = S',) which is a contradiction to the
assumption that the system is two-step (k, t)-diagnos-
able. And a similar argument of Case 4 can be used
when S, € S,.

Case6 | S|l =¢t+1andl S, <t

A similar argument of Case 6 can be used.

3 Two-step (k, t/t)-diagnosable system

In the previous section, the generalization of ¢-di-
agnosable system is discussed, namely the two-step
(k, t) -diagnosable system. Next we shall consider the
generalization of /i -diagnosable system, namely the
two-step (k, t/t) -diagnosable.

Definition 6 A system S is ¢/t -diagnosable if
given any syndrome and a positive integer ¢, the faulty
nodes can be isolated within a set of at most ¢ nodes
provided the number of faulty nodes does not exceed
0,

Definition 7 A system is two-step (k, /1) -di-
agnosable if and only if given any syndrome and a pair
positive integers ¢, k, under the condition that k faulty
nodes have been already identified correctly, all the re-
maining faulty nodes can be isolated within a set of size
at most ¢ in the presence of at most ¢ + k faulty nodes in
all. With the definition of the two-step (k, t/t) -diag-
nosable system, we shall present the characterization of
this kind of system.

Theorem 2 For a system S given by G = (V,
E) , the following 3 statements are equivalent.

1) Sis two-step (k, t/t) -diagnosable.

2) For each subset F, C Vwith| F_ | = k and for
any 2 distinct subsets S;, S, C V - F_with| §, | =
| S, 1 =t, there exists an edge fromV - S, - S, - F,
to (S, =8,) U(S, -S5)).

3) For each subset F, C Vwith| F_ | = k and for
any 2 distinct subsets S,, S, C V- F, withS, € S,, S,
S, 18 1<t 18,1<ti, there exists an edge from
V-S§ -5 -F (S -5,) U(S -5)).

Proof The proof is similar to the proof of Lemma
1 in Ref. [10].

According to Theorem 6, the following corollaries
can be concluded.

Corollary 4 If a system given by G = (V, E) is
two-step (k, t/t) -diagnosable, then the system is also
two-step (k, t — 1/t — 1) -diagnosable.

Corollary 5 1If a system given by G = (V, E) is
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two-step (k, t/t) -diagnosable, then the system is also
two-step (k — 1, t/t) -diagnosable.

Corollary 6 If a system given by G = (V, E) is
two-step (k, t/t) -diagnosable, then the system is also
two-step (k —2, t + 1/t + 1) -diagnosable.

Next section will analysis the specific situation by
using the theories of two-step (&, t) -diagnosable sys-
tem and two-step (k, ¢/t) -diagnosable system.

4 Combine to the Double-Syndrome diag-
nostic

For a system given by G = (V, E) and a fault set
F_ identified by Double-Syndrome diagnostic with
| F_ | =k, if there exists a node v € V such that v’
C F,, then the node v cannot be judged as faulty or
fault-free. Therefore, whether all the remaining faulty
nodes can be identified or not depends on the distribu-
tion of F,. Next it will be discussed that with the chan-
ges of distribution of F,, how many remaining faulty
nodes can be identified.

Definition 8 For a two-step (k, t)-diagnosable
system S and a fault set F, identified by Double-Syn-
drome diagnostic or other methods, the diagnosability
of the two-step (k, t)-diagnosable based on F_, deno-
ted by T(S, F,), is the maximum number of nodes
which is guaranteed to be identified as faulty correctly.
To facilitate the discussion, the following theorem is
equivalent to Theorem 1.

Theorem 3 For a system given by G = (V, E)
and a fault set F, € Vwith| F_| =k, then all the re-
maining faulty nodes at most ¢ can be identified if and
only if for any 2 subsets S,, S, C Vwith S, #S,, 1 S, |
<t,| S, I <tsuchthat I'(S, -S,) " ¢ F, US,or
F(Sz _Sl>_l o Fc U S]'

Corollary 7 For a system given by G = (V, E)
and a fault set ', with | F | =k, if for each subset U C
V — F with| Ul < 2t, there exists no such subset X C
Usuch that ’X™ CF U (U-X), then all the remai-
ning faulty nodes can be identified provided the num-
ber of remaining faulty does not exceed .

Proof For any distinct subsets S,, S, € V with
IS <¢, 1S 1<, letU =S5, US,andX = (S,
-S)U(S, =S,). if IX"' ¢ (F, U(U=X)), then
it is easily seen that the condition of the Theorem 1 is
satisfied.

The following theorem is equivalent to Theorem 2.

Theorem 4 For a system given by G = (V, E)
and a fault set F, with | F_ | = £k, all remaining faulty
nodes at most ¢ can be isolated within a set of size at
most ¢ if and only if for any 2 subsets S,, S, C V - F,

withS, €S,, S, &S,, 1 S, <¢,1S,1 <t, such that
rcs, _Sz)_l CZFCUSzOYF(Sz_Sl)_I CF US,.

Corollary 8 For a system given by G = (V, E)
and a fault set F, with | F,|1 =k, if for each subset S C
Vwith | S1 < 2¢, there exists no such a subset X C §
such that ’X™' C F, U (S = X), then all remaining
faulty nodes can be isolated within a set of size at most
¢ provided the number of remaining faulty does not ex-
ceed ¢.

A similar proof of Corollary 7 can be used.

Observe above theorems and corollaries, when the
neighbors of some nodes are all faulty, it cannot be
correctly identified such a node. Therefore the follow-
ing conclusion.

Theorem 5 For a system S given by G = (V,
E), if S ist' -diagnosable (but not t" + 1 -diagnosable )
and also two-step (k, t)-diagnosable (but neither two-
step (k, ¢ +1)-diagnosable nor two-step (k +1, t)-
diagnosable) (" = k) ), then its diagnosability satis-
fies the following inequality: T(S, F,) = t' where F,
CVandl F,| = k.

Proof According to Definition 4 and Definition
8, for any given fault set , € Vwith| F_ | =k, T(S,
F.) =t + k. Next, it can be shown that: + k = ¢'.
Otherwise, ¢ + k < t'. The system is neither two-step
(k, t +1)-diagnosable nor two-step (k + 1, t)-diag-
nosable implies that for some fault set F, € Vwith | F,
| = k there exists 2 distinct subsets S, ,S, C V - F, with
' Sil<t+1,1 85,1 <t+1, there exists no edge from
V-8 -5, -Ft0(S -5, U(S,-5,). LetU, =
F.US,U, =F, US,. Thenl U/l ,1 U, <t +k+
1. Note that there exists no edge fromV - U, - U, - F,
to (U, = U,) U (U, = U,). Therefore, the system is
not (¢t +#k +1) -diagnosable, which impliest + k& +1 >
t", this is a contradiction.

Note that the number of fault-free neighbors of
each node is related to the diagnosability of kinds of di-
agnosable systems '/, Ref. [20] considered the sit-
uation that each node has at least one fault-free neigh-
bor in the system and proposed the concept of condi-
tional diagnosability. The next section will extend the
concept of conditional diagnosability to two-step (k,
t)- diagnosable ( (k,t/t) -diagnosable ) system and
present the characterizations of conditional two-step
(k, t)- diagnosable (((k, t/t)- diagnosable ) sys-

tems.

5 Conditional two-step ( k-t)-diagnosable
and two-step (k, t/t)-diagnosable

The hypercube structure is a well-known network
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model for multi-processor systems. Fault-tolerant com-
puting for n-dimensional hypercube has been of interest

1719210 In this subsection, the

to many researchers'
conditional ¢/¢-diagnosability of n — dimensional hyper-
cube is studied.

Definition 9 For a system given by G = (V,
E), a subset S C Vis called a conditional subset if

there exists no such a node v € Vsuch that I'v™' C S.

Lemma 2 A system given by G = (V, F) is
conditionally ¢ -diagnosable if and only if for any 2 con-
ditional subsets S,,S, € Vwith S, # S,, | S, 1 <1¢,
| S, | <1, there exists an edge from V — S, = S, to (S,
- Sz) U (Sz - Sl):D:'

Definition 10 A system is conditionally two-step
(k, t)- diagnosable under the condition that k faulty
nodes have been already recognized, and all the remai-
ning faulty nodes can be identified provided the num-
ber of faulty nodes in the system does not exceed k + ¢
and each node of the system has at least one fault-free
neighbor.

Theorem 6 A system given by G = (V, E) is
conditional two-step (k, ¢)- diagnosable if and only if
for any conditional subset F, with | F,| = k and any 2
conditional subsets S,,S, C V- F withS, #S,,1 S, 1
<i¢, 1 S1<t, F, US, and F, U S, are conditional
subsets, there exists an edge from V - S, =S, - F, to
(S] - Sz) ) (Sz - S] )

Proof Necessity: suppose that a system is condi-
tional two-step (k, t) - diagnosable and for some condi-
tional subset F/,with| F_| = k and 2 conditional subsets
S, CV-F withS§ #85,, 15 I<t,1S5 1<,
F.US, and F, U S, are conditional subsets, there ex-
ists no edge from V-8, - S, - F 10 (S, = S,) U (S,
—S,). Consider a syndrome ¢ satisfying the following
conditions for all nodes i, jsuch that (i, j) e E. Ifi,
jeV-S8 -8, -F,  thenw(o:i,j) =0. fi e V-
S, =-S,-F,andj e S, US,, thenw(o:i,j) =1.1If
ie (S -5)U(S-5)andje F. U(S NS,),
thenw(o:i, j) = 1. Other possible test results can be
arbitrary.

According to Definition 3, that S, and S, are all al-
lowable fault sets. Therefore, it cannot be identified
that which one is the real fault set which is a contradic-
tion to the hypothesis.

Sufficiency Suppose that, to the contrary, the
system is not conditional two-step (£, ¢)- diagnosable.
Thus, there exist a conditional subset F, © V with
| F,| =k and?2 conditional subsets S,,S, C Vwith S,
#S,, 15 1<t,lS,I<t,and¥F US and F,_ US,
are conditional subsets, such that ¥, U S, and F, U S,

are all allowable fault sets. Noting that there exists an
edge fromV -S, =S, - F,to (S, -S,) U (S, -S,).
Without loss of generality, leti e V-5, =S, - F,, ]
e (S, -S,) with (i, j) € E. For a syndrome o, if
w(o:i,j) =1, then S, is not an allowable fault set,
otherwise, S, is not an allowable fault set which is a
contradiction to the hypothesis. Similarly, j € (S, -
S,) also leads to a contradiction to the hypothesis.

Definition 11 For a conditionally two-step (%,
t) - diagnosable system S and a fault set F', identified by
Double-Syndrome diagnostic or other methods, the di-
agnosability of the conditionally two-step (k, t)- diag-
nosable systems based on F',, denoted by T, (S, F.), is
the maximum number of nodes that are guaranteed to
be identified as faulty correctly.

Theorem 7 For a system S given by G = (V,
E), if S is conditionally ¢ -diagnosable ( but not condi-
tionally ¢ + 1 -diagnosable) and also conditionally two-
step (k, t) -diagnosable ( but neither conditionally two-
step (k, t + 1) -diagnosable nor conditionally two-step
(k +1, 1) -diagnosable) (¢' = k) ), then its diagnos-
ability satisfies following inequality; 7. (S, F,) =t
where F, € Vand | F | = k.

Proof A similar argument of Theorem 5 can be
used.

Lemma 3 Suppose that an undirected graph G
= (V, E) denotes a system and that each node in G =
(V, E) has at least one fault-free neighbor. For any
set S C Vwith| S| <3, if N(S) are all faulty nodes,

then each node of S can be identified correctly.

Proof letl S| =mandS = {v,:1 <i<ml.
Now discuss the following cases:
Case7 m = 2.

It is obvious that if v,(v,) is faulty, then
N(v,) (N(v,)) is all faulty nodes which is a contra-
diction to the condition. Therefore, v, ,v, are all fault-
free.
Case 8

There is at most 1 faulty node in S. Otherwise,

m = 3 and S can form a cycle.

there are at least 2 faulty nodes in S, without loss of
generality, assume that v,,v, are faulty nodes, then
N(wv;) are all faulty nodes which contradict the as-
sumption. It is easy to judge the state (faulty or fault-
free) of each node by observing the syndrome.

Case9 m = 3 and S cannot form a cycle.

Since each node has at least one fault-free neigh-
bor and N(S) are all faulty nodes, S is connected. The
middle node v, of S is fault-free, otherwise, N(v,) and
N(v,) are all faulty nodes, which is a contradiction to
the assumption. Furthermore, the other 2 nodes can be
identified correctly.
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5.1 n-dimensional hypercube
Lemma 4 LetG = (V, E) be the graph of a hy-
percube of n dimension and X € Vwith| X| =k, 1 <

k<n+1,then N(X) > kn—w+lm].

Lemma 5 n-dimensional (n = 5) hypercube is
conditional [4(n —2) + 1] -diagnosable' ™",

Next, the n- dimensional (n = 5) hypercube giv-
en by G = (V, E) is not conditional [4(n -2) +1]-
diagnosable. Let S = {v,, v,, v,, vy} where S can
form a cycle and S, = N(S) U {v,, v,}, S, = N(S)
U {v,, vy}. Note that| N(S)| =4(n-2) and S, =
S, =4(n -2) +2. For subsets S, , S,, there exists no
such a node v that N(v) © S, or N(v) € S,. And for
subsets S, S,, there exists no edge from V - S, - S, to
(S, =S,) U (S, -8,). Therefore, the system is not
conditional [4(n —2) + 2] -diagnosable.

Note that if a system is ¢ -diagnosable, then such

system must be /1 -diagnosable >’

. Therefore, n -di-
mensional (n = 5) hypercube given by G = (V, E) is
conditional (4n —7)/(4n —7) -diagnosable'**'. Fur-
thermore, the n-dimensional (n = 5) hypercube given
by G = (V, E) is not conditional (4n —6)/(4n - 6)
-diagnosable.

Theorem 8 n -dimensional (n = 5) hypercube
is not conditional (4n —6)/(4n — 6) -diagnosable.

Proof letS = {v,, v,, vy, v5] where S can form
acycle and S, = N(S) U {v,, v,}, S, = N(S) U
{v,, v;}. Note that| N(S) | =4(n-2) and S, = S,
=4(n -2) + 2. Now consider following syndrome ¢
under the condition that all nodes of N(S) are faulty.

1) The test results from S to N(S) are 1.

2) w(o:,, v,) =0, w(o:v,, 1) =0, w(o:
v, v3) =0, w(o:vy,0,) =0, w(o:w,, v,) =1,
w(o:w,, v,) =1, w(o:v,, v;) =1, w(o:v;, )
= 1.

3) The other possible test results are arbitrary.

For above syndrome ¢, the system cannot isolate
all faulty nodes within a set of size at most 4n — 6.
Therefore, the n -dimensional (n = 5) hypercube is

not conditional (4n — 6)/(4n - 6) -diagnosable.

5.2 Permutation star graph

Lemma 6 Let G = (V, E) be the graph of a
star graph of n(n = 4) dimension and X € Vwith | X
| = 8 and X can form an 8-node ring, then| N(X) | =
8n - 24.

Proof According to the symmetry of star graph,
each 8-node ring inn(n =4) dimensional star graph is
consider following case as

equivalent. Therefore,

Fig. 2, the 1234 A represents n -bit position of », and A

is a (n —4) -bit position which consists of 5, 6,---, n.
Let add (v,i, j) be the address of node v from number
i bit to number j bit. Note that in Fig.2, add(v,, 2,
4) # add(v;, 2, 4) wherei, j e [1,2---,7] and i #
J. Therefore, for each node of Fig.2, it has (n - 4)
private neighbors. Note that each node of n-dimension-
al star graph has (n — 1) adjacent nodes and for each
node of an 8-node ring, for example, v, has 2 adjacent
nodes in the ring and n — 4 private neighbors outside
the ring. Then the address of the last neighbor of v, is
2134 A which shows that last neighbor of v, is also the
private neighbor of v,. Similarly, the last neighbor of
node v, (v;+++vy) is also their private neighbors. Thus,
each node of an 8-node ring has n — 3 private neighbors

and let X be an 8-node ring, then| N(X) | =8n —24.

1234A  4231A

)
3214A @

2314A @

@ 2431A

@ 3421A
(__()

1324A  4321A
Fig.2 An 8-node ring of n-dimensional star graph
Lemma 7 In an n-dimensional star graph, there
are no odd cycles and there are even cycles with length
I wherel = 6,1 < n'®!,

Lemma 8 In an n -dimensional star graph, let u
be a node and let u,, u,---u, ; be n = 1 neighbors of
it Then every pair u,, u; and node u form a loop
with 3 other nodes which are unique.

Lemma 9 n-dimensional (n =5) star graph giv-
enby G = (V, E) is conditional [8(n - 3) +3] -di-

agnosable' .

Secondly, the n -dimensional (n = 5)
star graph given by G = (V, E) is not conditional (8n
—20) -diagnosable.

Theorem 9 n-dimensional (n = 5) star graph
given by G = (V, E) is not conditional (8n —20) -di-
agnosable.

Proof LetS = {v,, v,, vy, v,, vs, V5, U7, Vg|
where S can form a cycle in the clockwise and S, =
N(S) U {v,, vy, 05, 051, S, = N(S) U {vy, v, vy,
vg . Note that according to Lemma 9, | N(S) | =8n -
24 and | S, | =1 S, | = 8n — 20. For subsets S, ,S,,
there exists no such a node v that N(v) C S, or N(v)
C S,. And for subsets S,, S,, there exists no edge
fromV -5, -=S,t0 (S, =S,) U (S, -S,). Therefore,
the system is not conditional (8n — 20)- diagnosable.

Theorem 10 n-dimensional (n = 5) star graph
given by G = (V, E) is not conditional (8n —20/8n —
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20) - diagnosable.

Proof lLetS = {v,, v,, v5, vy, v5, V5, V5, Vg|
where S can form a cycle in the clockwise and S, =
N(S) U v, vy, v5, 161, S, =N(S) U {v;, v,, v;,
vg . Note that according to Lemma 9,1 N(S) | =8n -
24 and| S, =1 8,1 =8n -20. Now consider following
syndrome g under the condition that all nodes of N(.S)
are faulty.

1) The test results from S to N(S) are 1.

2) (1)(0':7]1,7)2) =0, w<0':vz, 711) =0, (1)(0':
vy, v,) =0, w(o:,, v;) =0, w(o:vs, vs) =0,
w(o:wg,vs) =0, w(o:w,, vy) =0, w(o:vg, v;)
=0, w(o:w,,v;) =1, w(o:v;,v,) =1, w(o:v,,
vs) =1, w(o:vs, v,) =1, w(o:ws, v;) =1,
w(o:w,,vs) =1, w(low,,v) =1, wlo:vg, v,)
= 1.

3) The other possible test results are arbitrary.

For above syndrome o, the system cannot isolate
all faulty nodes within a set of size at most 8n — 20.
Therefore, the n -dimensional (n = 5) star graph is not
conditional (8n —20/8n — 20) -diagnosable. The fol-
lowing is shown as Algorithm 2 and Algorithm 3.

Algorithm 2 Double-Syndrome conditional diagnosis ;
part 1

Algorithm; major neighbor
Require .

A system by undirected graph G = (V, E) with
N nodes denoted by {u,, u,, +,u,| and a subset F,
C Vwithl F, | = kanda, =0(1 <i <n).
Ensure ;

A set N .

1) For each nodev, e V(0 <i<k-1),ify
e N(v,) (1 <j<n),thena; =a; +1.

2) Let N, = {u; | a; = a; where 1 <j <nf.

3) Output the set N, .
Algorithm; depth-first search .
Require ;

A system given by undirected graph G = (V,
E) with N nodes and a nodev € V. Let S = {v}
Ensure .

Several node sets M;(1 < i < N).

1) DFS(v) :

For eachu e N(v)

fw(u, v) =w(v, u) = 0.

S=SU {ul and DFS(u).

2) Output the nodes set S.

Algorithm ; test neighbor:
Require .

A system given by undirected graph G = (V,
E) with N nodes and a subset X C V and three sets
T, F,and M. LetS = {v}.
Ensure .

The set T, F, and M.

1) Test (X, T, F,, M)

For each node of u € N(X)

If the test result from uto N(X) is O, then T =
TU {u} and test ({u}, T, F,). Otherwise F, = F,
U {ul and M = M - {u}.

2) Output the sets T, F, and M.
Algorithm; test component ;
Require ;
(v,

A system given by undirected graph G
E) with N nodes and three sets T, F, and M.
Ensure .

The set T, F,.

Test component (T, F,, M) ;

1) For each node w € M, if there exists a node

x € Msuch that N(x) "M = {w},thenT = T U
{w} and Test ({w}, T, F,, M).

2) If there exist 3 nodes u, v, w € M such that
the test results of them are all 0, then T = T U {u,
v, w} and Test ({u,vo,w}, T, F,, M).

3) If there exist 2 pair adjacent nodes {u, v},
{w, x| € M such that the test results of v, v (and
w, x)are all0, thenT = T U {u,v,w,x! and test
Hu,v,w,x}, T, F,, M).

4) Repeat step 1) to step3), until V.= T U
F.. Output the set T', F,.

Algorithm 3 Double-Syndrome conditional diagno-
sis: part 2

Require .

A system given by undirected graph G = (V,
E) with N nodes and a fault node set ¥, € V with |
F.1 = k obtained from Double-Syndrome diagnostic
or other methods. And a fault bound ¢ ( that the sys-
tem is conditional ¢-diagnosable ).
Ensure.

A faulty node set F', and a fault-free nodes set T
(TUF, =V).
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1) Ny = major neighbor (G, F,).

2) For each node u; e V—U;=ISJ. -F (u; e
N, is a priority).

Do DFS(u;).

S, = DFS(u;)

Il S 1l=¢-1 F 1+1,wherel <j<i.

T'=TUS,andF, = F, UN(T).

3) If V.= T U F,, then output the fault-free
node set T and faulty nodes set F,. Otherwise go to
step 4).

4) LetM =V -T-F, andM = {C;| C,is a
component of M| .

Test component (T, F., M).

Output the fault-free nodes set T"and the faulty
nodes set F..

5.3 Algorithms for conditional two-step (k, ¢)-
diagnosable systems

In the following, a diagnosis algorithm is proposed
called Double-Syndrome conditional diagnosis( DSCD)
which combines Double-Syndrome diagnostic and the
theories of conditional two-step (%, t) -diagnosable
system.

Consider step 4) in Algorithm 3, the neighbors of
the nodes of set M are all faulty. Note that in n -dimen-
sional hypercube, | M | < 4 with at most one faulty
node, in n-dimensional star graph, | M | < 8 with at
most 3 faulty nodes. A similar argument of Lemma 3
can prove the rightness of step 4) in Algorithm 3.

Theorem 11 The algorithm DSCD has a time
complexity O( Nlog,N) , where N is the number of the
nodes of the system.

Proof In Algorithm 3, step 1) costs O(kn) time.
Step 2) costs O( Nlog,N) + O(N) time. Step 3) and
4) costs O(1l) time.
O(Nlog,N).

Now the performance of the algorithm by computer

Hence the total time is

simulation is shown below. Run the algorithm 1 000
times and the faulty nodes are randomly distributed in
the system. Table 2 and Table 3 show the performance
of this algorithm applied to n- dimensional hypercubes
and star graphs.

Table 2 The number of faulty nodes identified by the algorithm

under the n -dimensional hypercube
Dimension 7 8 9 10 11 12
Faulty nodes number 21 25 29 33 37 41
Identified faulty nodes 21 25 29 33 37 41

Table 3  The number of faulty nodes identified by the algorithm
under the n- dimensional star graph

Dimension 7 8 9 10 11 12
Faulty nodes number 35 43 51 59 67 75
Identified faulty nodes 35 43 51 59 67 75

6 Conclusions

Under PMC model, a new method is proposed,
which is called Double-Syndrome diagnostic to diagno-
sis the faulty nodes by comparing the 2 syndromes. In
general , the average number of faulty nodes which can
be identified by Double-Syndrome diagnostic is much
larger than other methods. Furthermore, for a given
faulty node set F',, in order to deal with the remaining
faulty nodes in the system, two-step (k, t) -diagnos-
able strategy and two-step (k, t/t) -diagnosable strate-
gy are proposed. For a given ' -diagnosable system, its
two-step (k, t) -diagnosability has a minimum value
which is equal to ¢'. Meanwhile, with the purpose of
increasing the diagnosability, the concept of condition-
al two-step (k, t) -diagnosable system and the concept
of conditional two-step (k, ¢/t) -diagnosable system
are proposed. Similarly, for a given conditionally ¢’ -
diagnosable system, the conditional two-step (k, /1) -
diagnosability has a minimum value which is equal to

!

t.
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