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Abstract

Filtered-x least mean square ( Fx-LMS) algorithm is popular in many adaptive processes. As its

contradiction between convergence speed and stead-state error, the improvements of Fx-LMS algo-

rithm with variable step size (VSS) have been developed. To strengthen the robustness of variable

step size least mean square ( VSSLMS) algorithms to noise disturbance in active vibration control
(AVC) application, nine VSSLMS algorithms are introduced in detail. Then an improved VSSLMS
algorithm is proposed for better performance. At last, the performance of these VSSLMS algorithms

are compared in AVC experimental system with different noise level. The experimental results veri-

fies the effectiveness and robustness of the proposed VSSLMS algorithm in AVC application.
Key words: active vibration control (AVC) , filtered-x least mean square (Fx-LMS) , variable

step size least mean square ( VSSLMS) , robustness, flexible beam

0 Introduction

In the field of mechanical engineering, the in-
creasing flexible structures are applied for lightweight
and system stability''’. But it may introduce vibration
when working with uncertain load and external disturb-
ance. However, mechanical flexible structures often
incur unwanted vibration which can significantly de-
grade the performance and even result in catastrophic

2} Thus, to suppress the vibration of

system failure
flexible structure effectively is a significant issue'*’. A
lot of achievements have been obtained in theoretical
and practical researches on the active vibration control
(AVC) of flexible structure'™®’. While focusing on the
control method, the adaptive control has obtained wide
attention for its good adaptability to time-varying sys-
tem.

Filtered-x least mean square (Fx-LMS) is one of
the most popular adaptive algorithms in active vibration
control applications due to its robustness and easiness
to use. The block diagram illustrating Fx-LMS algo-
rithm in feedforward AVC system was presented ',

Although Fx-LMS algorithm has many advantages
in adaptive application, there are also some defects in
the tradeoff of convergence speed and steady-state error
caused by fixed step size of LMS algorithm. Specifical-

ly, large step size can get quick convergence, also get
large mean square error ( MSE) in steady-state. On
the other hand, small step size makes the convergence
slow. Therefore, many kinds of VSSLMS algorithms
were proposed’’.

Most of the VSSLMS algorithms were proposed in
applications of system identification. In AVC systems,
the step size may change to a big value when a sudden
disturbance occurs. Thus, the system may oscillate
near the steady-state, even be divergent. Therefore,
the robust to noise disturbance of VSSLMS algorithm
should be considered when they are used in AVC sys-
tem.

In this work, nine VSSLMS algorithms are re-
viewed in detail and an improved VSSLMS algorithm is
developed to get better robustness performance. An
AVC experimental system of flexible piezoelectric can-
tilever beam is set up to compare the performance of
these VSSLMS algorithms. The above 10 VSSLMS al-
gorithms are used in the feedforward filtered-x structure
and compared in AVC experimental system in different
noise level. The experiment results prove the robust to
noise of the developed VSSLMS algorithm.

The rest of the paper is organized as follows. Sec-
tion 1 reviews nine VSSLMS algorithms in detail. Sec-
tion 2 proposes an improved VSSLMS algorithm. Com-
plexity comparison of these VSSLMS algorithms is given
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in Section 3. An AVC experimental system of flexible
piezoelectric cantilever beam is set up in Section 4.
And the performance of these VSSLMS algorithms are
compared and analyzed. Some conclusions are drawn
in Section 5.

1 VSSLMS algorithms

The block diagram of Fx-LMS algorithm in AVC
was shown in Fig. 1. The residual error e(n) is ob-
tained through vibration response of disturbance and
control output. It can be expressed as

e(n) =d(n) =S(n) x [W(n)x(n)] (1)
where, n is the time index, S(n) is the impulse re-
sponse of the secondary path S(z) which includes the
digital-to-analog converter, reconstruction filter, power
amplifier, vibrational path from actuator to error sen-
sor, error sensor, and analog-to-digital converter and
so on. The coefficients of adaptive filter W is adjusted to
minimize the square of residual error through LMS algo-
rithm. The adaptive filter has the finite impulse re-
sponse (FIR) type:

W(n) = [wy(n) w,(n) wl‘q(n)]T (2)

And LMS algorithm updated the filter coefficients
according to the well-known formula® .

W(n+1) = W(n) +ux'(n)e(n) (3)
where, L is the length of the adaptive filter and yu is the
fixed step size. x'(n) is obtained by filtering reference

x(n) through S(z) , S(z) is the estimate of secondary
path S(z).

r(n)

x(n)

x'(n)
Fig.1 Block diagram of Fx — LMS algorithm in feedforward
AVC system

As the important part of Fx-LMS algorithm, LMS
algorithm has some weaknesses about its fixedstepsize.
For improving the effect of this algorithm, nine typical
VSSLMS algorithms were presented. These VSSLMS
algorithms are classified into 4 series by the character-
isticof their step size updating formulas. All symbols
used in this section have been listed in Table 1.

1.1 VSSLMS-A1l
Shan et al. """ proposed a VSSLMS algorithm in
1988 and simplified the original version in 1990. The

Table 1  List of symbols

Parameter Description

Error signal

Length of adaptive filter

Input signal

Step size

Scaling factor

Small positive parameter

Constant much less than input signal
Constant close to 0

Forgetting factor

Scalar step size

S
E T3 6 R QR EFE 2 &~ o

Upper limit of the step size

Momin Lower limit of the step size
v Dumping factor
Estimate of the correlation between input sig-
p nal and error signal
T Threshold parameter
& Constant close to 1
b Estimate of the gradient vector

simplified edition is currently known as correlation LMS
algorithm, which is given as
al p(n-1) 1
4
x'(n-1Dx(n-1) (4)
p(n+1) =2xp(n) + (1 - A)x(n)e(n) (5)
where, u(n) satisfies0 < u(n) <. ,p(n)isan

u(n) =

estimate of the correlation between input signal and er-
ror signal at time n. And the authors suggested that the
scaling factor o should be chosen experimentally, the
forgetting factor A got the value in the range of [0.9,
1]. The authors claimed their algorithm was robust in
the disturbance and the case of sudden changes of
noise level.

1.2 VSSLMS-A2
Ramadan et al. "> proposed this VSSLMS algo-
rithm in 2005 which is given as

o wlen(n) |
g+ Ale(n) |*+ (1-A) | x(n) |
(6)
7-1
ler(n) |* = ;'e(n—i)“ (7)
where, | e(n) | *is the square norm of the error vec-

tor, || e,(n) || *is the square norm of the error vector
with T length.

The authors claimed that their algorithm showed
better performance in the stationary environments and
especially in responding to an abrupt change in the un-

known system parameters.
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1.3 VSSLMS-B1

Karni et al. "' proposed VSSLMS algorithm in
1989 which is given as

p(n) = p,, (1 —exp(=v | x(n)e(n) ||*))

(8)

where, u(n) satisfies 0 < u(n) < gy

Ref. [ 13] suggested dumping factor v could get a
value larger than 1. If v — oo, the algorithm become
the conventional LMS algorithm and u = w,,..
Ref. [ 13] compared their algorithm with the 2-stage
method and got a faster convergence speed and a smal-

ler misadjustment.

1.4 VSSLMS-B2
Li et al. "'/ proposed VSSLMS algorithm in 2009.
The step size is updated as
, 1
w2 O e o e 1)
(9)
w(n) =a'(n-1) + (1 =A) 1l e(n-1)e(n) |
(10)
v(n) = /le(n)/e(n-1)| (11)
The hop dumping factor ¥(n) is initial as v, at the

beginning of adaptation. When the ratio of v(n)/v(n
— 1) is larger than a threshold 7, the hop dumping fac-
tor v(n) is jumped to v,.

1.5 VSSLMS-C1

Benveniste et al. ') proposed VSSLMS algorithm
in 1990. The algorithm was cited by many papers,
such as Refs [ 16,17 ]. Based on Ref. [9], the algo-
rithm is given as

w(n) = pln=1) +ye(x" (W (n) (12)
where u(n) < w,,. should be satisfied.

S(n+1) = p(n) - p(n)x(m)x" () b(n)

+x(n)e(n) (13)

where, 7y is a small positive value to control the conver-
gence speed and MSE, and ¢p(n) is an estimate of the
gradient vector.

1.6 VSSLMS-C2
Mathews et al. '"® proposed VSSLMS algorithm in
1993 which can use both individual and scalar step si-
zes. For the scalar step size case, it is given as;
p(n) =p(n-1)
+ye(n)e(n —1)x"(n - 1)x(n)
(14)
And u(n) should have the upper and lower limits
Moin < (n) < ... In this case, 0 < w(0) should be
satisfied.

Ref. [ 18] claimed that the value of y was not crit-
ical to choose. At the same time, considered their al-
gorithm could offer close to the best possible perform-

ance’ in the nonstationary conditions.

1.7 VSSLMS-D1

Kwong et al. "' proposed the following algorithm
n 1992

pu(n) =éu(n—1) +ne’(n-1) (15)

Ref. [19] claimed that the value of ¢ should be
between 0 and 1, and 0. 97 was the optimum in their
many simulations. 7 influences both the convergence
speed and MSE, it should be small. Also, the algo-
rithm has the upper limit w,, and lower limit u, ;..

The step size of the algorithm is correlated with
the square of the error. Then the algorithm can have
fast adaptation when the error is large. VSSLMS algo-
rithm also reduces sensitivity of the misadjustment to
the level of nonstationary. A significant feature of the
algorithm is that approximate formulas can be derived
to predict the misadjustment in both stationary and
nonstationary environments. These theoretical predic-
tions agree well with simulations of the algorithm.
Ref. [19] claimed that their algorithm performs at least
as well as when compared to the Harris” **’ algorithm.

1.8 VSSLMS-D2
Aboulnasr et al. *") modified the Kwong’ s'"*) al-
gorithm in 1995 in order to solve the problem that

Kwong’ s’

algorithm may be unstable in the instanta-
neous energy of the error signal. Aboulnasr et al. >
used the estimate of the autocorrelation between e(n)
and e(n — 1) to control the step size instead of e’ (n).

The algorithm is given as

p(n) =é&u(n—1) +np*(n -1) (16)
p(n) =Ap(n-1) + (1 =A)e(n)e(n -1)
(17)

where A is in the range of [0, 1] and close to 1.

& and 7 can take the same value as the Kwong’s""’
algorithm. Also, the same upper and lower limits can
be applied. Ref. [21] claimed that their algorithm got
better performance in the stationary environments and a
comparable performance in the nonstationary environ-
ments. But on the other hand, this algorithm has 3 pa-

rameters to be adjusted.

1.9 VSSLMS-D3
Huang et al. "' proposed VSSLMS algorithm in
2015. The step size is updated as
w(n) =éu(n-1) +ye’(n-1)e(n-2)
(18)
Ref. [22] claimed that the algorithm had a com-
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parable convergence ability and MSE with other VSS-
LMS algorithms. The obvious advantages are high com-
putational efficiency and tracking capabilities in both
stationary and nonstationary environments.

2 The proposed VSSLMS algorithm and
performance analysis

The step size of VSSLMS-D1'") is correlated with
the square of instant error. The amplitude of instanta-
neous error is oscillating. Besides, it is usually mixed
with measurement noise. Thus, it is sensitive to the
noise disturbance. Based on the insight gained from the
above VSSLMS algorithms, an improved one was de-
veloped. The idea is to make parameter n in VSSLMS-
D1 varying with the time for better performance. The
proposed algorithm is updated as follows

p(n) =é&u(n-1) +n(n)e’(n) (19)

n(n) = a x arccot(l e(n) |) (20)
B AE p(0) >

wln) = {u.o if w(n) < o (21)
w(n) otherwise

In the proposed VSSLMS algorithm, parameter
n(n) is related to the sequence of e(n), and parame-
ter o is used to adjust the scale of parameter n(n).
This algorithm can restrain influence of abrupt input
signal. It has better robustness compared to VSSLMS-
D1 in steady-state. The performance analysis of the
proposed algorithm will be a topic of future research.
In this work, abundant experiments with AVC system
are conducted to verify the effectiveness of the new al-

gorithm.
3 Comparison of complexity

For the algorithms mentioned above, majority of
them need upper limit to run. And some of them need
both upper and lower limits. In fact, the only algo-
rithms that do not require upper limit are VSSLMS-
B2'"*" and VSSLMS-D3'*/.

The upper limit should guarantee convergence as
well as not impose too much restrictions on the step

9 ..
). However, lower limit can be chosen very

size
roughly. Thus, the upper and lower limits could not be
counted as the number of parameters to be adjusted.
There is a small constant & in VSSLMS-A2""' to pre-
vent instability. It can be chosen as a small value
roughly as the lower limit. Also, the constant & could
not be considered as a parameter that should be adjus-
ted.

The comparison of complexity between the above
mentioned VSSLMS algorithms is made through 4 indi-
cators ; the number of parameters, the number of addi-
tions,, multiplications and divisions respectively in each
iteration. The results of comparison are shown in Table
2.

VSSLMS-B1, VSSLMS-C1 and VSSLMS-C2 only
need to adjust 1 parameter. This makes them more
convenient in practical application. The algorithms
needing more than 3 parameters to adjust are VSSLMS-
A2, VSSLMS-B2 and VSSLMS-D2. It is an obvious

disadvantage.

Table 2 Comparison of complexity between the above mentioned VSSLSM algorithms

Algorithm Parameter Addition Multiplication Division
VSSLMS-A1M 2(a, A) L+1 L+4 1
VSSLMS-A2 ] 3(A, m, T) 3T 3T 1
VSSLMS-B1M" 1(v) L 2L +2 0
VSSLMS-B2M* 4(v, vy, T, A) 3 5 1
VSSLMS-C1 1(y) 4L +1 2L +2 0
VSSLMS-C2M 1(y) L L+3 0
VSSLMS-D11! 2(£, 1) 1 3 0
VSSLMS-D2?" 3(&,m, A) 3 6 0
VSSLMS-D3[%! 2(&, 1) 1 5 0
VSSLMS-New 2(¢, a) 1 4 0

VSSLMS-D1 needs a minor computation cost: one
addition and 3 multiplications in each iteration. Also,
VSSLMS-D3 and VSSLMS-New have a competitive
computation. Conversely, the algorithms needing rela-
tively high computation cost are VSSLMS-A2, VSS-
LMS-B1, VSSLMS-C1 and VSSLMS-C2. It may influ-

ence the real-time performance.

The proposed VSSLMS-New has 2 parameters to
be adjusted before running. There are only 1 addition
and 4 multiplications in each interaction. It is competi-
tive both in number of parameters and computation in

the above VSSLMS algorithms.
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4 VSSLMS algorithm in active vibration
control

4.1 Experimental setup

In this work, an AVC experimental system of flex-
ible piezoelectric cantilever beam is established. To il-
lustrate the functionality of each components, a sche-
matic of the experimental setup is presented in Fig. 2.
There are 6 piezoelectric patches on the cantilever
beam. Two of them are used as sensors to measure the
vibration. The one nearing cantilevered base is named
as reference sensor, and the one near free end is
named as error sensor. The other four are used as actu-
ators. To strengthen the output of the actuators, every
2 piezoelectric patches are bonded on both sides of the
beam at the same location. The group closer to the
cantilevered base is named as the disturbance actuator.

Another group is named as the suppression actuator. In
this work, the control objective is to suppress the vi-
bration of the flexible piezoelectric cantilever beam
gathered by error sensor. For the sketch of flexible can-
tilever beam in Fig. 2, parts of parameters are given in
Table 3.

By using the real-time workshop toolbox in Simu-
link, two industrial computers ( ACP-4020, Advantech
@©) are combined as target PC and host PC respective-
ly. A DAQ card (PCI-6289, NIQ©)) is used for data
collection and implementation of control algorithms.
The control signal with 0 =10 V is amplified to 0 —300
V by the piezoeleciric power amplifier (E00. A4, XMT
©). And the piezoelectric actuator is used to suppress
the vibration. The sensor signals are amplified by the
charge-amplifier ( YE5852A, SINOCERA © ). The

picture of experimental system is shown in Fig. 3.
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Fig.3 Picture of AVC experimental system

Table 3 Parameters of the cantilever beam
Characteristic Value
Beam length 500 mm
Beam width 35 mm
Beam thickness 1 mm
Disturbance piezoelectric patches position 32 mm
Suppress piezoelectric patches position 200 mm
Modulus of elasticity 190 GPa

Poisson’ s ratio 0.29

4.2 Experimental results

Here, VSSLMS algorithms are implemented in the
feed forward filtered-x adaptive AVC system. As the
energy of the vibration is concentrated in first few or-
ders resonance frequency, a sine signal with the known
resonant frequency 20. 53 Hz is used as the disturbance
to excite vibration of the beam. Also, wideband noise

with different variances of 0. 001 and 0.0001 is com-
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bined respectively to compare the robustness of VSS-
LMS algorithms. All user parameters are adjusted very
carefully to let the VSSLMS algorithms have a fairly
competition. Moreover, the choice of these parameters
is also guided by the recommended values in their
work. The step sizes of all VSSLMS algorithms have
the same upper and lower limits if they need. The ini-
tial step size of all the VSSLMS algorithms are the same
value, such that all these algorithms present similar in-
itial convergence speed.

Performance comparison is made in terms of total
MSE. First, all these VSSLMS algorithms are adjusted
to a same MSE ( — 40 dB) in steady-state without
noise disturbance. Then, the disturbance signal with
different level noise are implemented to reveal the ro-
bustness to noise of these VSSLMS algorithms. The
MSE can be achieved from Eq. (22).

MSE(n) = E(e’(n)) (22)

It can manifest the overall performance of the al-
gorithms, including the convergence speed and the
stead-state error. With averaging 200 individual runs,
the results of simulations are shown in Fig.4, Fig.5
and Fig. 6. Fig. 6 presents the MSE curves of VSSLMS
algorithms without noise disturbance. Fig.6 and Fig.7
present the MSE curves of VSSLMS algorithms with dif-
ferent noise levels respectively.

Figs 4 (a) — (d) show the vibration suppression
performance of series A, B, C and D VSSLMS algo-
rithms respectively. VSSLMS-A1 has a slightly faster
convergence speed than VSSLMS-A2. VSSLMS-B1 is

== = = VSSLMS-Al

-10 ——— VSSLMS-A2

0 5 10
Interaction X10*
(a) Series A
0
== = = VSSLMS-C1
-10 ——— VSSLMS-C2

MSE(dB)

0 5 10
Interaction X 10*
(c) Series C

noticeably faster than VSSLMS-B2. VSSLMS-B1 has
the fastest convergence in all these VSSLMS algo-
rithms. It reaches stead-state in control time of 80 s.
VSSLMS-C2 gets a little faster convergence speed than
VSSLMS-C1. In series D VSSLMS algorithms, the 3
algorithms have an almost unanimous convergence
speed although VSSLMS-D2 has a little advantage.

As the same, Figs 5(a) — (d) and Figs 6(a) -
(d) show the vibration suppression performance of se-
ries A, B, C and D VSSLMS algorithms respectively in
lower and higher noise level. All the VSSLMS algo-
rithms obtain a worse MSE more or less, especially in
higher noise level. As the fastest algorithm in Fig. 4,
VSSLMS-B1 gets the worst MSE in noise disturbance
environment. It only reaches 38 dB in the higher noise
level. Also, in Fig. 7, the series C and D get a clearly
worse MSE than them in Fig. 4. It is not obviously dif-
ferent in the suppression performance of series D VSS-
LMS-D in the noise environments. VSSLMS-D2 has
some disadvantages in convergence speed than VSS-
LMS-D1 and VSSLMS-D3 in higher noise level.

To compare the performance of VSSLMS-New, the
fastest convergence algorithms are chosen from every
series. They are VSSLMS-A1, VSSLMS-B1, VSSLMS-
C2 and VSSLMS-D2. The vibration suppression per-
formance of VSSLMS-New compared with the above 4
algorithms are shown in Fig. 7. Fig.7(a), Fig. 7(b)
and Fig.7(c) are the MSE cureves respectively in zero

noise, lower noise and higher noise environment.

== = = VSSLMS-B1

-10 ——— VSSLMS-B2

0 5 10
Interaction xX10*
(b) Series B
0 b
e VSSLMS-DI
@ -10 —- — - VSSLMS-D2
~ VSSLMS-D3
B -20 \\
= \
S30F s
_40 i = —
0 5 10
Interaction X10*
(d) Series D

Fig.4 Comparison of MSE curves of VSSLMS algorithms without nosie
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== = = VSSLMS-Al

-10 ——— VSSLMS-A2

MSE(dB)

0 S 10
Interaction X 104
(a) Series A

== = - VSSLMS-C1

-10 ——— VSSLMS-C2

MSE(dB)

5 1
Interaction X104
(c) Series C

-- = - VSSLMS-B1
-10 ——— VSSLMS-B2

MSE(dB)

0 5 1
Interaction X104
(b) Series B
|
0 3
............ VSSLMS-D1
-10 -~ = - VSSLMS-D2
g s VSSLMS-D3
s
=301 N
-40 = )
0 5 10
Interaction X10%
(d) Series D

Fig.5 Comparison of MSE curves of VSSLMS algorithms with lower noise level (g =0.0001)

-- = - VSSLMS-Al
-10 ——— VSSLMS-A2

MSE(dB)

0 5 10
Interaction X 10#
(a) Series A

-- - - VSSLMS-C1
-10 ——— VSSLMS-C2

MSE(dB)

0 5 . 10
Interaction X104
(c) Series C

0
-- - - VSSLMS-B1
-10 ——— VSSLMS-B2
g
=
wn
=
0 5 10
Interaction X10*
(b) Series B
|
0"
------------ VSSLMS-D1
10 -- - - VSSLMS-D2
g
E{ 20! VSSLMS-D3
2] \
2 \
-30 .
~40 S
0 5 10
Interaction X104
(d) Series D

Fig.6 Comparison of MSE curves of VSSLMS algorithms with higher noise level (¢* =0.001)

In Fig. 7(a), VSSLMS-BI presents the advantage
in convergence speed than the other algorithms. VSS-
LMS-New gets the medium level in these algorithms. Tt
is better than VSSLMS-C1 and VSSLMS-A1. When in
the noise environments as Fig. 7 (b) and Fig. 7 (¢)
shown, VSSLMS-New presents lower MSE in stead-
state than others. It shows that VSSLM-New has a bet-

ter robustness to noise. It is gratifying that VSSLMS-
New obtains a better grade in convergence speed in
higher noise level. VSSLMS-D2 does not converge fast
as it in Fig. 6 (a). There is only VSSLMS-BI conver-
ging faster than VSSLMS-New. Unfortunately, the

stead-state performance is not good.
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0 —O— VSSLMS-Al
————— VSSLMS-B1
-10 VSSLMS-C2
- = = VSSLMS-D2

T VSSLMS-New

MSE(dB)

0 2 4 6 8 10
Interaction X104
(a) Without noise

0 —o— VSSLMS-AL
s VSSLMS-BI

-10 VSSLMS-C2
= = = VSSLMS-D2
VSSLMS-New

MSE(dB)

0 2 4 6 8 10
Interaction X104
(b) Lower noise level ( a2=0.0001)

0 —6— VSSLMS-Al
—————— VSSLMS-B1
-10 VSSLMS-C2
- - - VSSLMS-D2

— VSSLMS-New

MSE(dB)

0 2 4 6 8 10
Interaction X10*
(c) Higher noise level (o2=0.001)

Fig.7 Comparison of VSSLMS-New and the fastest VSSLMS
algorithms of series A, B, C and D for different noise

level

5 Conclusion

Nine VSSLMS algorithms are reviewed and the
compultational complexity of these VSSLMS algorithms
are compared. A new VSSLMS algorithm is proposed
for AVC of the smart cantilever flexible beam. The new
algorithm adopted a time-varying parameter based on
instantaneous error to improve the robust performance
to noise disturbance. As a result, the proposed algo-

rithm can effectively isolate the influence of noise on
step size. By an AVC experimental system of the flexi-
ble piezoelectric cantilever beam, the performance of
the proposed algorithm is compared with other VSSLMS
algorithms. Results show that the proposed algorithm
has better robustness to noise both in high and low
noise levels compared with other VSSLMS algorithms.

Reference

[ 1] Flores-Abad A, Ma O, Pham K, et al. A review of space
robotics technologies for on-orbit servicing[ J]. Progress
in Aerospace Sciences, 2014, 68(8) :1-26

[ 2] Zhu Q, YueJ Z, Liu W Q, et al. Active vibration control
for piezoelectricity cantilever beam: an adaptive feedfor-
ward control method [ J]. Smart Material Structures
2017, 26(4) :117-122

[ 3] Halim D, Luo X, Trivailo P M. Decentralized vibration
control of a multi-link flexible robotic manipulator using
smart piezoelectric transducers [ J ]. Acta Astronautica,
2014, 104(1) :186-196

[ 4] Pappalardo C, Guida D. Use of the adjoint method for
controlling the mechanical vibrations of nonlinear systems
[J]. Machines, 2018, 6(2) :1-21

[ 5] Kerboua M, Megnounif A, Benguediab M, et al. Vibra-
tion control beam using piezoelectric-based smart materi-
als[ J]. Composite Structures, 2015, 123(5) ;430442

[ 6] Amezquita-Sanchez ] P, Dominguez-Gonzalez A, Sed-
aghati R, et al. Vibration control on smart civil struc-
tures: a review[ J ]. Mechanics of Advanced Materials &
Structures, 2014, 21(1) :23-38

[ 7] Kuo S M, Morgan D R. Active noise control; a tutorial
review|[ J]. Proceedings of the IEEE , 2002, 87(6) :943-
973

[ 8] Widrow B, Glover J R, Mccool J] M, et al. Adaptive
noise cancelling: principles and applications [ J]. Pro-
ceedings of the IEEE, 1975, 63(12) :1692-1716

[ 9] Bismor D, Czyz K, Ogonowski Z. Review and comparison
of variable step-size LMS algorithms [ J ]. International
Journal of Acoustics and Vibration, 2016, 21(1) ;24-39

[10] Shan T J, Kailath T. Adaptive algorithms with an auto-
matic gain control feature[ J]. IEEE Transactions on Cir-
cuits & Systems, 1988, 35(1) :122-127

[11] Karni S, Zeng G. Comments with reply on ‘ Adaptive al-
gorithms with an automatic gain control feature’ by T. J.
Shan and T. Kailath[J]. IEEE Transactions on Circuits
and Systems, 1990, 37(7) :974-975

[12] Ramadan Z, Poularikas A. A robust variable step-size
LMS algorithm using error-data normalization[ C ]// Pro-
ceedings of the IEEE Southeast Conferences 2005, Lau-
derdale, USA, 2005 219-224

[13] Karni S, Zeng G. A new convergence factor for adaptive
filters[ J]. IEEE Transactions on Circuits and Systems,
1989, 36(7) :1011-1012

[14] Li X B, Fan Y Y, Ke P. A variable step-size LMS adap-
tive filtering algorithm[ C]// International Conference on
Wireless Communications, Networking and Mobile Com-
puting, Guilin, China, 2009. 14



52

HIGH TECHNOLOGY LETTERSIVol.26 No.1|Mar. 2020

[15] Benveniste A, Métivier M, Priouret P. Adaptive Algo-

[16]

[17]

[18]

[19]

[20]

rithms and Stochastic Approximations [ M]. Berlin Hei-
delberg: Springer, 1990

Kushner H J, Yang J. Analysis of adaptive step-size SA
algorithms for parameter tracking[ J]. IEEE Transactions
on Automatic Control, 1995, 40(8) . 1403-1410

Ang W P, Farhang-Boroujeny B. A new class of gradient
adaptive step-size LMS algorithms[ J]. IEEE Transactions
on Signal Processing, 2001, 49(4) . 805-810

Mathews V J, Xie Z. Stochastic gradient adaptive filter
with gradient adaptive step size[J]. IEEE Transactions
on Signal Processing, 1993, 41(6) ; 2075-2087

Kwong R H, Johnston E W. A variable step size LMS al-
eorithm [ J ]. IEEE Transactions on Signal Processing,
1992, 40(7) :1633-1642

Harris R, Chabries D M, Bishop F. A variable step
(VS) adaptive filter algorithm[ J]. IEEE Transactions on
Acoustics Speech & Signal Processing, 1986, 34 (2) .

[21]

[22]

date

309-316

Aboulnasr T, Mayyas K. A robust variable step-size LMS-
type algorithm: analysis and simulations [ J ]. IEEE
Transactions on Signal Processing, 1995, 45(3). 631-
639

Huang B, Xiao Y, Ma Y, et al. A simplified variable
step-size LMS algorithm for Fourier analysis and its statis-

tical properties[ J]. Signal Processing, 2015, 117 ; 69-81

Fang Yubin, born in 1990. He is a Ph. D candi-

in Electromechanical Engineering and Automation

Department of Shanghai University. He received his

B.S.

degree from China Jiliang University in 2013 and

M. S. degree from Lanzhou Jiaotong University in

2016. His research interests include the active vibra-

tion control and adaptive control.



