HIGH TECHNOLOGY LETTERSIVol. 26 No.2|June 2020 | pp. 160 ~ 167

doi:10.3772/j. issn. 1006-6748. 2020. 02. 005

NNL: a domain-specific language for neural networks®

Wang Bingrui(£3F%)@", Chen Yunji ™

(* School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China)
(™ Intelligent Processor Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China)

Abstract

Recent years, neural networks (NNs) have received increasing attention from both academia
and industry. So far significant diversity among existing NNs as well as their hardware platforms
makes NN programming a daunting task. In this paper, a domain-specific language (DSL) for NNs,
neural network language (NNL) is proposed to deliver productivity of NN programming and portable
performance of NN execution on different hardware platforms. The productivity and flexibility of NN
programming are enabled by abstracting NNs as a directed graph of blocks. The language describes 4
representative and widely used NNs and runs them on 3 different hardware platforms (CPU, GPU
and NN accelerator). Experimental results show that NNs written with the proposed language are,
on average, 14.5% better than the baseline implementations across these 3 platforms. Moreover,
compared with the Caffe framework that specifically targets the GPU platform, the code can achieve

similar performance.

Key words : artificial neural network (NN) , domain-specific language (DSL) , neural network

(NN) accelerator

0 Introduction

Generally, there are two evolving trends of neural
networks (NNs). The first is that the number of neural
network models has increased rapidly. One of the most
well-known neural networks is the multi-layer percep-
tron (MLPs). By increasing the number of layers,
MLPs are evolving to powerful variants, such as convo-
lutional neural networks (CNNs) that specify convolu-
tional and sub-sampling layers to handle 2D images'"’.
In the meantime, the dimensions and parameters of
NNs have also grown tremendously. For instance, the
runner-up in ImageNet Challenge 2014, VGGNet'?'
contains 16 layers with more than 140 M parameters.
Due to the wide variations in network topologies, learn-
ing algorithms, and parameters, general-purpose pro-
gramming languages (e. g. , C/C++, Python, and
Matlab) cannot efficiently prototype and compare dif-
ferent NNs. Moreover, it is a challenging task to evalu-
ate the performance of NNs on different hardware plat-
forms. Typically, it requires deep understanding of ar-

chitecture-level details, such as cache-line size, SIMD
widths, and the number of cores, to optimize the per-
formance. As an illustrative example, the performance
of different implementations of CNN for classifying ima-
ges on a multi-core processor can vary about 20 x be-
tween a tentative implementation and an optimized
one. In addition, as today’ s hardware architectures
are advancing towards more heterogeneous processing
units (multi-cores, GPUs, FPGAs, and specialized
accelerators) , various architecture-specific program-
ming models, such as OpenMP, Pthreads, and CU-
DA, further aggravate the burden of programming neu-
ral networks.

In this work, a domain-specific language (DSL) ,
called neural network language (NNL) , is proposed to
deliver both productivity of NN programming and porta-
ble performance of NN execution across different hard-
ware platforms. Its basic idea is to abstract the neural
network as a directed graph of blocks. A block basical-
ly describes (forward/backward) operations on a spe-
cific neuron topology, and thus it mainly consists of 3
components, i.e. , connection, forward operators, and

@D Supported by the National Key Research and Development Program of China (No. 2017YFA0700902,2017YFB1003101) , the National Natural Science
Foundation of China (No. 61472396,61432016, 61473275, 61522211, 61532016, 61521092, 61502446, 61672491, 61602441, 61602446, 61732002,
61702478) , the 973 Program of China (No. 2015CB358800) , National Science and Technology Major Project(No. 2018ZX01031102) , the Transforma-
tion and Transfer of Scientific and Technological Achievements of Chinese Academy of Sciences (No. KFJ-HGZX-013) and Strategic Priority Research

Program of Chinese Academy of Sciences (No. XDBS01050200).

@ To whom correspondence should be addressed. E-mail; wangbrsh@ mail. uste. edu. en

Received on Jan. 18, 2019

HIGH TECHNOLOGY LETTERS| Vol. 26 No. 2| June 2020

161

backward operators. The main intuition of such block
graph is that an NN can be regarded as the sequential
composition of operations applied to a group of struc-
tured neurons. Based on the block-graph abstraction,
the proposed NNL is enough expressive to rapidly pro-
totype most neural networks with various sizes.

To enable portable performance of NN executions
on different hardware platforms, the NNL compiler is
built to transform the NNL program to an efficient low-
level architecture with special designed code. More
specifically, the (default/forward/backward) opera-
tions applied to structured neurons are translated to
standard matrix/vector operations in order to take ad-
vantage of portable, high-performance libraries such as
Basic Linear Algebra Subroutines (BLAS) and Intel
Math Kernel Library (MKL). During the code genera-
tion, the compiler benefits significantly from the rich
semantics offered by NNL. For instance, the compiler
can easily reason about the boundary of matrices/vec-
tors. They are explicitly specified by the connection
component of a block. In short, the proposed domain-
specific language not only raises the productivity level
of NN programming, but also allows high performance
learning/prediction of NN on various platforms.

This study makes the following contributions ;

(1) A domain-specific language, NNL, is pro-
posed for programming neural networks. The proposed
NNL features show abundant expressiveness to effi-
ciently describe various types of neural networks.

(2) A compiler for NNL is presented to translate
the NNL to efficient architecture-specific implementa-
tions, allowing the NNL program to achieve portable
performance across different architectures.

(3) 4 representative and widely-used neural net-
works are described with the proposed language and ex-
ecuted on 3 different platforms, i.e. , CPU, GPU, and
For dif-
ferent types of neural networks, baseline implementa-

a neural network accelerator, DaDianNao'®'.

tions with general-purpose languages such as C ++ and
CUDA are provided. Caffe framework is used to build
networks for the CPU and GPU platforms. It is shown
that, on average, NNL code is 14.5% better than the
baselines across these 3 platforms.

1 Neural network programming dilemmas

Nowadays, neural network applications can be
programmed on different ways, including machine
learning libraries, neural network frameworks or do-
main-specific languages. To name a few, Pylearn2'*!
and DLPLib"’ are built on machine learning libraries.
There also exists several programming frameworks tar-

geting special neural networks such as CNNs, and Caf-
fe!®" and Tensorflow'”’ are two of those notable exam-
ples. Latte™®’ | OptiML" and Swift for TensofFlow'"’
are domain specific languages for deep neural networks
and general machine learning tasks. Some researchers
concentrate on the intermediate representation and low-
level virtual machine for machine learning DSLs,
e.g., Relay!"' and TVM'?!. Although all these
frameworks can be used for programming neural net-
works, the key drawback is that they cannot describe
different neural networks in a unified and flexible man-
ner, leading to considerable reimplementation efforts
when adapting to a new type of neural networks. On the
other hand, the semantics of Latte is general-purpose
and doesn’ t take advantage of the domain knowledge to
achieve productivity. Therefore, it is expected that a
programming language exactly targeting the domain of
general neural networks would be very helpful for NN
programming.

In addition, although stated programming frame-
works or languages have been widely used for neural
network programming, the underlying implementations
may not be compatible with a wide variety of hardware
platforms, let alone to fully exploiting their computa-
tional ability. In addition to CPU and GPUs, emerging
neural network accelerators, such as DianNao "’ | Da-
DianNao, ShiDianNao'"*! and Cambricon'”’, are at-
tracting more attentions. Thus, a neural network pro-
gramming model or language should be able to achieve
portable performance on CPUs, GPUs, and ASIC ac-
celerators.

2 Neural network language

This section presents the syntax of the proposed
neural network language and further illustrates it with
examples.

2.1 Language syntax

Fig. 1 shows the language syntax of the NNL. The
programming model of NNL is based on graph descrip-
tion, thus the syntax describes 2 primary components of
graph, that is, nodes and edges among them. NN lay-
ers are defined as blocks and the construction of layers
as topology. The whole program of NNL mainly compri-
ses the above 2 parts.

Program A program in NNL consists of at most
one-time declaration, a nonempty list of blocks, and a
blockinst. The time declaration is an assignment to a
variable named Cycle, which is required by neural net-
works with temporal behaviors, e.g., RNN and

LSTM!®)

162

HIGH TECHNOLOGY LETTERSIVol. 26 No. 2 |June 2020

Block A block declaration consists of the keyword
block , a block name, a list of variables, and the block
body. The variables are used as parameters of the
block body. The block body consists of a basicBlock or
a blockinst. The basicBlock declaration includes a non-
empty list of port, a connection, and a calculation. The
blockinst consists of a nonempty list of inst and topo.
Hence, the blockinst provides the instantiation of
blocks and creation of topo.

Port The ports are treated as the interface of
blocks, and a port of a block can be declared with its
name and omissible dimension expression.

Connection The connection declaration is com-
posed of the keyword connection, a nonempty list of
loops with at most one keyword share as the constraint
of the loop and a link. A loop declaration contains a
loop expression that can be denoted as (i;start;end;
step). The loop expression indicates that the variable i
increases from start to end (not included) with a stride
step. In addition, the keyword share means that the
loop locates in the share scope. The link declaration
specifies the In and Out with their shapes characterized
by the dimension expression expr. The connection be-
tween the In and Out is denoted by the symbol <->.
Apparently, the link declaration is the core of a con-
nection declaration.

Calculation The calculation declaration, which is
a part of the basicBlock declaration, consists of the
keyword once, forward or backward with a nonempty
list of statements. The statements in the forward/back-
ward pass define the forward/backward algorithms ap-
plied to a particular part of the neural network, while
the once statement is used for initialization, and it only
executes once.

Instantiation The inst is to instantiate the block
declaration with actual parameters expr. Furthermore,
a block instance can also be built in blocks denoted as
portblock () , passblock() and streamblock().

Topology The topo, which describes the direct-
ed connection relationship between ports of instantiated
blocks, is specified by a sequence of blocks with a port
and unidirectional arrows between neighboring elements
recursively. In order to describe the topo efficiently,
the ports in a block can be omitted and two different
kinds of symbols (-> and ") are used to represent the
arrows. For example, bl-> b2-> b3 is the abbrevia-
tion of b1 (Out)->b2(In) and b2(Out)->b3(In),
while bl “b2 is the abbreviation of bl (Out)-> b2
(Weight) , where Weight is an implicit port used for
blocks with connection.

Expression and statement The operators are clas-
sified into uop and bop. All the variables in NNL can be

program : 1= [time]{block}+{blockinat}
block :i= block id ({var}){[basicBlock|blockinat]}
basicBlock :i= {port}+[connection][calculation]
blockinst := {inst}+{topo}+
port ‘= portname {[expr]}
connection :i= connection {[share] loop }+link
loop 1= (variexpr;expr;expr)
link L1= In{[expr]}+<—> Out{[expr]}+
calculation 1= [once:{stmt}+][forward:{stmt}+][backward:{stmt}+]
s (D iyes -
| e
inst : 1= {id}+ = portblock()|passblock()|streamblock()[id ({expr});
topo : 1= id[(portname)][<expr>]{[->|*]topo}
time 1i= Cycle=N
expr : i= var|portname|(expr)func(expr)[uop expriexpr bop expr
uop =
bop T | %) &&e| 1| > <[> =] <=
func : 1= Exp(expr)|Sum(expr)|Mean(expr)|Max(expr)|Avg(expr)
| Log(expr)|4bs(expr)|sin(expr)|Cos(expr)|Sinh(expr)|Cosh(expr)|tanh(expr)
portname 1= In|Out|var
var 1= id|t|Cycle| N
const: N
name: id

Fig.1 The syntax of proposed NNL

scalar, vector or matrix. The scalars include constants,
declared variables, and results of reduction functions
such as Max() and Sum(). The vectors include de-
clared vector variables, which can only be port name
representing the data of ports. In addition, port names
with the prefix Delta represent the gradient port with
respect to the input port. Moreover, the vectors can al-
so be the result of mathematical functions such as Exp
() and Log(). The ¢ is a built-in vector variable, ele-
ments of which range from 1 to Cycle.

2.2 Block example

As shown in Fig.2, there are 4 types of basic
blocks, i.e., connection, calculation, conn-calc, and
common block.

Fig.2(a) shows the declaration of the connection
block. It describes connections between the neurons in
a specific part of the neural network. The sizel and
size2 are parameters of the block, and they are used to
specify the dimension of the ports such as In and Out.
The key of the connection block is the connection defi-
nition, and it is used for describing the connections be-
tween the In and Out.

Fig.2(b) presents the calculation block. This
block mainly contains 2 calculation passes, i.e. , for-
ward and backward pass, specified by the keyword for-
ward and backward, respectively. The forward pass
contains all the calculations that are used in the for-
ward algorithm of the neural network, while the back-
ward pass consists of all the calculations for the back-

HIGH TECHNOLOGY LETTERSIVol. 26 No. 2 |June 2020

163

ward algorithm of the neural network.

block connectionblock(sizel,size2, ...)
{ block calculationblock(p1,p2, ._.)
{

In[size1][... 1;

Out{size2][... I,

- forward:
Out = In"p1

In(ill ... 1<->0utij1[...]

(a) connectionblock

block conncalcblock(sizel,size2, ._)
{

In[size1][...];

Outfsize2][...]; :Jlock commonblock(sizel, ...)
connection IPort] size1][...]
OPort1[sizel][...]
(i;1;sizel;1) OPort2] size1 J[...]
(:1:size2;1)
share Once:
1Port = Expf2)
In[i]l ... J<->Out(j][... 1
Out=In OPort1 = IPort+OPort2

Delta_In= Out-In Delta_IPort = OPort1-OPort2

(¢) conn-calc block (d) commom block

Fig.2 Basic block construct

Fig.2(c) is the conn-calc block that contains both
the connection and the calculation, while Fig.2(d) is
an example of the common block. Actually, the calcu-
lation block is a special case of the common block, that
is, common block with only 2 ports, one for input and
the other for output.

2.3 CNN example

Fig. 3 shows the code example for building a typi-
cal convolution neural network. As shown above, the
programmers only need to provide three more block de-
clarations, i. e., convolution, pooling, and lrn. The
convolution is connected by the active operation acl,
while the pooling is connected by the active operation
acl and Irn. The lrn is further connected with the ac-
tive operation ac2 and ac3.

3 Implementation

This section iniroduces the language implementa-
tion and describes the techniques for compiling the
NNL programs to high-performance platform-specific
code. NNL uses domain-specific knowledge to reason
about programs at a higher level than a general purpose
language or a library, which allows to achieve portable
performance on various hardware platforms.

block data(x,y,z) { once: ... } // define data block

block parameter(x,y,z1,z2) { forward : ... backward : ... } // define parameter
block mlp(x1,x2) { In[x1] Out[x2] ... connection { ... } } // define connection
block active() { forward : ... } // define active operation

block loss() { forward : ... backward : ... } // define loss operation

block Convolution(xi,yi,fi,x0,y0,fo,...) /define convolution connection

{ In[xi][yi][fi]; Out[xo][yo][fo]; connection { ... } }

block Pooling(xiyi,fixo,yo,fo,...) // define pooling connection & calculation
{ In[xi][yi][fi]; Out[xo][yo][fo] connection { ... } forward : ... backward : ... }
block Lm(xi,yifixo0,yo,fo,...) // define lrn connection & calculation

{ In[xi][yi][fi]; Out[xo][yo][fo] connection { ... } forward : kemnel ... backward : ... }

synapsel = parameter(8,8,3,8); // parameters of convolution
bias1 = parameter(8,0,0,0) ; // parameters of convolution
synapse2 = parameter(32,10,0,0); // parameters of mlp
bias2 = parameter(8,0,0,0); // parameters of mlp

input = data(8,8,3); label = data(10,0,0); // input and label

conv = Convolution(8,8,3,4,4,8,...); // convolution connection

pool =Pooling(4,4,8,2,2,8,...); // pooling connection & calculation
Irn=1Lm(2,2,8,2,2,8,...); // Irn connection & calculation
full=mlp(32,10); // To generate mlp connection

acl, ac2, ac3, ac4 = active();
sft_loss = loss();
input->conv->ac1->pool->ac2->Im->ac3->full->ac4->sft_loss // neuron forward

// To generate active
// To generate loss

synapsel”~conv; // synapse connection
biasl->acl; // bias

synapse2™full; / synapse
bias2->ac4; // bias

label->sft loss; // label

Fig.3 Using NNL for constructing a CNN example

3.1 Compiler overview

Fig.4 shows the compiling framework of NNL.
The compiler mainly contains 4 main phases: the front-
end, intermediate representation (IR) generation, IR
analysis and optimization, and platform-specific code

generation.

I 'Prognm
block foo(...) { once: ... }
block bar(x,...) { In[x]; ... connection: { ... } }
block func() { forward: ... backward: ... }
datal, data2, data3 = foo(...);
conn1, conn2 = bar(,...);
1, 12 = func();
datat->conn1->f1->conn2->12;
data2*conn1;
data3”conn2;

Code generation Optimization ‘
Code for CPU |Code for GPU| | Code for ACC Data expansion Data merging

Fig.4 Compiling framework for NNL

To reduce the efforts required to construct the
front-end, NNL is implemented as an embedded DSL
within C + + language, so that it can reuse the front-
end of C + +. Moreover, the object-oriented features

164

HIGH TECHNOLOGY LETTERSIVol. 26 No. 2 |June 2020

of C + +, such as composition, inheritance, and oper-
ator overloading, allow the NNL to have a flexible syn-
tax. Nevertheless, NNL is not limited to C + +, and
other general-purpose languages (e. g. , Scala and Py-
thon) with such features can be used as NNL’ s host
languages as well.

In contrast to traditional embedded DSLs that are
constrained to the backends of host languages, NNL
employs an intermediate representation (IR), i.e.,
the directed graph of blocks or topology, in order to
conduct IR-based optimizations and target heterogene-
ous architectures. By analyzing the IR, compiler can
generate different tables for facilitating platform-specific
code generation. During the generation of tables,
based on the connection between different blocks, sev-
eral domain-specific optimizations are conducted to re-
duce the memory consumption and improve the execu-
tion efficiency. Details on topology generation, analysis
and optimization are discussed below.

The final stage is platform-specific code genera-
tion. NNL provide separate backends for different plat-
forms; C code for CPUs, CUDA/OpenCL code for
GPUs, and assemble instructions for the accelerator.
Since the basic operations of neural networks are matrix
(vector) -related computations, the key of code genera-
tion is to produce executable codes for different plat-
forms directly.

3.2 Topology generation

The graph topology is generated from the block in-
stances. More specifically, the block declaration first
provides the structural description of the neural network
components. Then, multiple block instances can be
created from the block declaration, sharing the same
parameters. Once all block instances are built, the to-
pology of different block instances can be intuitively
generated according to the symbol - > and ~. The to-
pology generation does not rely on any platform, and
the back-end will generate platform-specific code from
the topology-based IR.

3.3 Topology analysis

During the topology analysis, the compiler gener-
ates the port table, including the in-port and out-port
table. Such tables are generated from the in-ports and
out-ports (which are used for data exchange between
connected nodes) of the block declaration. Both the
in-port and out-port tables store the data information
such as address, size, and dimension, etc. Also, for
the sink block of the topology graph, the termination
status is added to the out-port tables. Once the termi-
nation status is set as false, the neural network needs

to undergo back propagation.

In NNL, there are 2 types of connection between
blocks, that is, - > for neuron transfer and ~ for syn-
apse transfer. If a block is connected to another one
with - >, the compiler would update the related entries
in the in-port table. The compiler would also add the
out-ports information of the block into the out-port ta-
ble. Therefore, the in-port and out-port table would
have overlapped data. Moreover, if more than one
blocks are connected to the same block with - >, addi-
tional information (i. e. , the default addition operation
applied to these out-ports data and in-port data) should
be attached to the corresponding entries in the in-port
and out-port table.

If two blocks are connected by ~, the synapse ta-
ble, which stores the corresponding synapses (or
weights) , would be created or updated. The synapse
table is only used for generating code for a basic block
containing connection declaration. This will be elabo-
rated in the following code generation section.

In summary, during the topology analysis, the in-
port table, out-port table and synapse table are genera-
ted for facilitating platform-specific code generation. To
initiate code generation, a start status is set in all the
tables to indicate whether the code generation should
start. Among these tables, only in-port and out-port ta-
ble are necessary for arbitrary network, while the syn-
apse table is needed for some neural networks such as

MLP and CNN.

3.4 Domain-specific optimization

During the generation of tables from the graph to-
pology, the compiler also conducts two domain-specific
optimizations, including the data merging and data ex-
pansion. In fact, such optimization can be easily im-
plemented with the help of various tables generated
from the topology-based IR.

Data merging In the so-called data merging op-
timization, duplicated data can be merged together to
reduce the memory consumption. There are a lot of da-
ta reuse due to the special structure of neural net-
works. The number of data reuse increases significantly
with the size of CNN kernel, and the percentage of re-
used data also increases with feature map size. One
more illustrative example is that, for two interconnect
blocks, the out-port data of the source block might be
the in-port data of the destination block. For all those
data reuses, the compiler only allocates memory spaces
for the reused data once. Therefore, the total memory
consumption can be significantly reduced. For in-
stance, for the workload LeNet-5'""! | the memory con-
sumption can be reduced by 12% by using the data

HIGH TECHNOLOGY LETTERS| Vol. 26 No. 2| June 2020

165

merging technique.

Data expansion The basic idea of data expan-
sion optimization is to expand scalar/vector/matrix as
matrices, so as to take advantage of highly efficient im-
plementations for matrix operations, which might be
compute-bound operations that can better exploit the
computation capacity of modern multi-/many-core ar-

8] on different platforms. More specifical-

chitectures
ly, the data expansion optimization is enforced on the
blocks connected to the original variables or other
blocks with the symbol ~. In other words, data expan-
sion only works for the blocks with synapses.

The compiler leverages rich semantics provided by
the NNL to efficiently conduct data expansion. In more
detail, as synapses only appear in the blocks with the
connection, the compiler can easily expand the data to
matrices by exploiting the structure specified by the
connection declaration and the synapse table generated
after the topology analysis. Apparently, during the data
expansion, more memory space is required to gain bet-
ter data parallelism. Our compiler carefully controls the
tradeoff between the data merging and data expansion
to balance the achieved performance and consumed
memory.

3.5 Executable codes generation

Based on the tables generated from the topology
analysis, the platform-specific code can be generated.
Moreover, for a neural network, the generated code
contains 2 parts, one for the prediction process, and
the other for the training process.

For the prediction process, the compiler should
handle the data in port tables and the operations in the
forward pass. For the data in the inport table, the com-
piler allocates corresponding memory space based on
the stored data information (e. g. , data size). For the
operations in the forward pass, the compiler can infer
what operations (i. e. , scalar operation or vector oper-
ation) should be conducted according to the calculation
expression. Also, there is a default matrix-vector oper-
ation applied to the connection phase for data from the
in-port and synapse table. Once all these operations
are processed, the outport table should be updated. In
this process, the compiler can dynamically optimize the
memory usage. Once the compiler completes the table
analysis, it determines whether a back propagation
should be conducted based on the termination status. If
the termination status is true, the compiler finishes the
code generation. Otherwise, the back-propagation
process is conducted for neural network training.

For the training process, the compiler also analy-
zes various tables for error propagation and parameter

updates. More specifically, the operations defined in
the backward pass of a block are applied to the param-
eters. Once the start status is detected, the compiler
terminates the backward code generation. In this case,
both the codes for prediction and training process are
generated through the IR.

For both the prediction and training process, the
compiler efficiently translates the (forward/backward)
operations to function calls of platform-specific librar-
ies, that is, BLAS for CPUs, cuBLAS for GPUs, and
the built-in library for the accelerator.

4 Experiments

This section evaluates a set of artificial neural net-
works written in NNL on different platforms, and com-
pares them to baseline implementations with existing
programming frameworks.

4.1 Platforms

The configurations of evaluated platforms (i. e.
CPU, GPU and the accelerator) are listed as follows.

CPU The CPU is an x86-CPU with 256-bit SIMD
support (Intel Xeon E5-2620, 2. 10 GHz, 64 GB memo-
ry). GCC v4.7.2 is used to compile all benchmarks
with options (-02 -lm -march = native) to enable
SIMD instructions.

GPU The GPU is a modern GPU card (NVIDIA
K40M, 12 GB GDDRS, 4.29 TFlops peak at a 28 nm
process) .

Accelerator The accelerator for evaluation is Da-
DianNao, a state-of-the-art NN accelerator exhibiting
remarkable energy-efficiency improvement over a GPU.

4.2 Benchmarks

Four representative and widely used NN tech-
niques, including MLP, CNN, LSTM, and LRCN, are
chosen as our benchmarks. The detailed configurations
of these NN are listed in Table 1. These benchmarks
represent state-of-the-art neural networks that are wide-
ly used in both academics and industry.

For all these benchmarks, the baseline is imple-
mented by using a general-purpose language, e. g. ,
C ++ for the CPU platform and CUDA for the GPU
platform. Due to the limitation of the framework, only
optimized implementations of the MLP and CNN for
both the CPU and GPU platforms can be obtained by
applying Caffe. As a comparison, all the NN bench-
marks are programmed with NNL and compiled targe-

ting CPU, GPU, and the NN accelerator.

166

HIGH TECHNOLOGY LETTERSIVol. 26 No. 2 |June 2020

Table 1 The NN benchmarks for evaluation (H stands for hid-
den layer, C stands for convolutional layer, K stands
for kernel, P stands for pooling layer, F stands for

classifier)

Techniques Network structure

MLP input(64) - H1(150) - H2(150) - Output(14)

input(1@32x32)-C1 (6@ 28x28, K. 6@ 5x5)-
S1(6@ 14x14, K. 2x2)-C2(16@ 10x10, K:16

CNN @ 5x5)-S2 (16 @ 5x5, K. 2x2)-F (120)-
F(84)-output(10)

LSTM input(26) - H(93) - output(61)
input(1@32x32)-C1 (6@ 28x28, K. 6@ 5x5)-

LRCN S1(6@14x14, K. 2x2)-C2(16@ 10x10, K:16

@ 5x5)-S2 (16 @ 5x5, K: 2x2)-F (120)-
F1(84)-F2(10)-H(93) -output(61)

Fig.5 shows the performance comparison of NNL,
Caffe and C + + code on the CPU, GPU and NN ac-
celerator. The experiment result shows that, on aver-
age, the executable program compiled from NNL code
is 14.5% better than the baselines across these 3 plat-
forms.

Fig.5(a) shows the performance comparison of
NNL, Caffe and C ++ code on the CPU platforms. All
these 3 implementations eventually invoke the native
BLAS libraries. The first observation is that the Caffe
code perform significantly better than the CPU base-
line, since the Caffe framework is highly tuned for the
CNN and MLP algorithm. The second observation is
that the NNL code performs much better than the CPU
baseline for the pool and MLP network. However, on
the rest 3 scenarios, i.e., conv, Istm, and lren, the
NNL code cannot outperform the CPU baseline. The
potential reason is that data expansion results in too
much off-chip memory access. The detailed analysis on
the aggressiveness of data expansion should be left as
our future work. Fig.5(b) compares the execution
performance of NNL code, Caffe code and CUDA code
on the GPU platform. It shows that both NNL and Caffe
significantly outperform the GPU baseline.
Caffe is a highly tuned library, it is natural that Caffe
obtains much better results compared with the baseline
for the conv, pool, and MLP networks. Moreover,
since NNL expands data to generate large matrix-matrix
operations to fully take advantage of the high parallel-
ism of the GPU platform, the performance of the NNL

code is comparable to that of the Caffe implementation.

Because

In fact, even on the Istm and Ircn network, where the
Caffe cannot handle flexibly, the NNL code performs

better than the baseline code.

o 2
g M Baseline # Caffe * NNL
g 15
g L
§ *
5 1 * * *
E B ~ * *
:é 0.5 * * B B
* 7 *
Z & . *x *
conv pool mlp Istm Ircn
(a) CPU
o 12
£ M Baseline #® Caffe * NNL
)5 1
©
£ 08 *
3 * *
5 0.6
% * *
N 04 * *
E & . * *
E 02 o W *
(Z: * x o * * x * *
g conv pool mlp Istm Ircn
(b) GPU
o 1.04
g I Assembly * NNL
< 1.03
K]
£ 102 x
£ 101 * *
g 1 * * *
£ 099 I * l * l *
=}
Z
% conv pool mlp

(e¢) NN accelerator

Fig.5 Execution time of NNL on different platforms

Experiments for the neural network accelerator are
also conducted and the results in Fig.5(c) show that
NNL code does not outperform the assemble instruc-
tions of the accelerator. This is because the accelerator
is specifically designed for CNN. It is not enough to
expand the data as a large matrix to benefit the hard-
ware for NNL, while the assemble instructions is highly
tied with the hardware to take full advantage of the ac-
celerator.

5 Conclusion

As the sizes and types of neural network models
continue to grow, how to efficiently build neural net-
work models for different platforms is very challenging.
In this paper, a neural network domain-specific lan-
guage, NNL, is proposed specifically targeting the NN
programming domain. NNL raises the productivity level
of NN programming by abstracting an NN as a directed
graph of blocks. Moreover, the NNL compiler enables
portable performance of NN execution across different
hardware platforms (e.g. , CPUs, GPU, and ASIC).
Experiments are conducted to show that NNL is effi-

HIGH TECHNOLOGY LETTERS| Vol. 26 No. 2| June 2020

167

cient and flexible for fast prototyping of various NNs,
and the execution performance is comparable to state-
of-the-art NN programming frameworks.

References

[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classi-
fication with deep convolutional neural networks [C] //
Advances In Neural Information Processing Systems,
Harrahs and Harveys, USA, 2012. 1097-1105

[2] Simonyan K, Zisserman A. Very deep convolutional net-
works for large-scale image recognition [EB/OL]. ht-
tp://arxiv. org/abs/1409. 1556 ; arXiv, 2015

[3] Chen Y, Luo T, Liu S et al. DaDianNao: a machine-
learning supercomputer| C] // Proceedings of the Annual
International Symposium on Microarchitecture, Cam-
bridge, UK, 2015: 609-622

[4] Goodfellow I J, Warde-Farley D, Lamblin P, et al. Pyl-
earn2 ; a machine learning research library[EB/OL]. ht-
tp://arxiv. org/abs/1308. 4214 . arXiv, 2013

[5] Lan HY, Wu LY, Zhang X, et al. DLPlib: a library for
deep learning processor[J]. Journal of Computer Science
and Technology, 2017, 32(2) ; 286-296

[6] Jia Y, Shelhamer E, Donahue J, et al. Caffe: convolu-
tional architecture for fast feature embedding [EB/OL].
http ://arxiv. org/abs/1408. 5093 ; arXiv, 2014

[7] Abadi M, Agarwal A, Barham P, et al. TensorFlow:
large-scale machine learning on heterogeneous systems
[C] // Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, Savan-
nah, USA, 2016 265-283

[8] Truong L, Barik R, Totoni E, et al. Latte; a language,
compiler, and runtime for elegant and efficient deep neu-
ral networks[C] // Proceedings of the 37th ACM SIGP-
LAN Conference on Programming Language Design and
Implementation, Santa Barbara, USA, 2016. 209-223

[9] Sujeeth A K, Lee H, Brown K J, et al. OptiML; an im-
plicitly parallel domain-specific language for machine
learning[C] // Proceedings of the 28th International Con-
ference on Machine Learning, Bellevue, USA, 2011.
609-616

[10] Lattner C. Swift for TensorFlow [EB/OL]. https://
github. com/tensorflow/swift: Google, 2018

[11] Roesch J, Lyubomirsky S, Weber L, et al. Relay: a new

IR for machine learning frameworks[C] // Proceedings of
the 2nd ACM SIGPLAN International Workshop on Ma-
chine Learning and Programming Languages, Philadel-
phia, USA, 2018 58-68

[12] Chen T, Moreau T, Jiang Z, et al. TVM; an automated
end-to-end optimizing compiler for deep learning[C] //
Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, Berkeley, USA,
2018 579-594

[13] Chen T, DuZ, Sun N, et al. DianNao; a small-footprint
high-throughput accelerator for ubiquitous machine-learn-
ing[C] // Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and
Operating Systems, Salt Lake City, USA, 2014 . 269-284

[14] Du Z, Fasthuber R, Chen T, et al. ShiDianNao: shifting
vision processing closer to the sensor[C] //Proceedings of
the 42nd Annual International Symposium on Computer
Architecture, Portland, USA, 2015; 92-104

[15] Liu S, Du Z, Tao J, et al. Cambricon: an instruction set
architecture for neural networks[C] // Proceedings of the
43rd International Symposium on Computer Architecture,
Seoul, Korea, 2016 393405

[16] Graves A, Schmidhuber J. Framewise phoneme classifica-
tion with bidirectional LSTM networks [C] // Proceedings
of the International Joint Conference on Neural Networks,
Montreal, Canada, 2005 2047-2052

[17] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based
learning applied to document recognition[J]. Proceedings
of the IEEE | 1998, 86(11) . 2278-2324

[18] You Y, Song S L, Fu H, et al. MIC-SVM: designing a
highly efficient support vector machine for advanced mod-
ern multi-core and many-core architectures [C] // Pro-
ceedings of the International Parallel and Distributed Pro-
cessing Symposium, Phoenix, USA, 2014, 809-818

Wang Bingrui, born in 1994. He received his
B. S. degree in physics from University of Science and
Technology of China in 2015. He is currently a master
candidate at School of Computer Science and Technolo-
gy, University of Science and Technology of China.
His research interests include computer architecture
and programming language.

