HIGH TECHNOLOGY LETTERSIVol. 26 No.2|June 2020 | pp. 178 ~ 187

doi:10.3772/j. issn. 1006-6748. 2020. 02. 007

Active micro-vibration control based on improved
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Abstract

The contradiction of variable step size least mean square (LMS) algorithm between fast conver-
gence speed and small steady-state error has always existed. So, a new algorithm based on the com-
bination of logarithmic and symbolic function and step size factor is proposed. It establishes a new
updating method of step factor that is related to step factor and error signal. This work makes an
analysis from 3 aspects: theoretical analysis, theoretical verification and specific experiments. The
experimental results show that the proposed algorithm is superior to other variable step size algo-
rithms in convergence speed and steady-state error.
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0 Introduction

Adaptive filtering is an optimal filtering method
developed on the basis of Wiener filtering and Kalman
filtering'"). Due to its stronger adaptability and better
filtering performance, it has been widely used in engi-
neering practice, especially information processing
technology field. The least mean square (LMS) algo-
rithm is a stochastic gradient algorithm and an adaptive
filter. It has the advantages of small computation,
strong robustness and easy engineering implementation.
It is widely used in system identification, adaptive
equalization, noise cancellation, active vibration con-
trol and other fields'>"’.

gence speed, tracking speed, steady-state error and

In LMS algorithm, conver-

steady-state misalignment are the main technical indi-
cators to measure the performance of LMS algorithm'*’ .

The step factor of fixed step size LMS algorithm is
invariable ; the algorithm can not meet the requirements
of fast convergence speed and small steady-state error
at the same time. In the research of active control of
micro-vibration, it is hoped that the algorithm will have
large step-size factor to accelerate convergence in the
initial stage and reduce steady-state in the later stage.
In order to solve this contradiction further, a variety of
variable step size LMS algorithms based on a fixed step
size are proposed.

The difference between these algorithms is the way

in which the step size is updated. Some algorithms get
the current step size by modifying the previous step
size, while others adjust the step size through a non-
linear function. In Ref. [5], a variable step size LMS
algorithm based on Sigmoid was proposed. It not only
has better convergence and tracking performance, but
also can obtain smaller steady-state error. Neverthe-
less, the function Sigmoid changes too fast when the
error tends to zero, which makes the algorithm still
have a large step in steady state, thus increasing the
steady-state error of steady-state misalignment. Based
on this, an improved algorithm was proposed in
Ref. [6], which makes the step size of the algorithm
in steady state very small, and solves the defect of
Ref. [6] to a certain extent. A variable step size LMS
algorithm based on probability function was proposed in
Ref. [6]. Although it can obtain faster convergence
speed, tracking speed, and smaller steady-state error
and steady-state misalignment simultaneously. Howev-
er, in the special environment, the convergence
speed, tracking speed and steady-state error of the al-
gorithm are not ideal. In Ref. [ 7], a variable step size
LMS algorithm based on genetic algorithm was pro-
posed. The algorithm has better convergence speed and
tracking speed, and can get smaller steady-state mean
square error. However, when the algorithm reaches
steady-state,, the instantaneous error will increase if the
parameters of the system are changed. In Ref. [8], a
new variable step size LMS algorithm was proposed,
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and a new non-linear function relationship between step
size factor and error is established by arctan function.
A new variable step size LMS algorithm is presented.
In Ref. [9], a VSS-LMS (variable step size LMS) al-
gorithm was proposed, which normalizes the reference
signal, enhances the anti-interference ability of the al-
gorithm and reduces the steady-state error of the algo-
rithm after convergence. However, the convergence
speed of the algorithm is also slow because of the slow
change of the step factor in the earlier stage of the algo-
rithm. In Ref.[10], in order to reduce the impact
caused by the sudden change of reference signal and
error signal, the step factor was correlated with them,
but the convergence speed of the algorithm is also
weakened. In Ref. [11], in order to prevent overshoot
of step factor updating, adjusting parameters was intro-
duced to further enhance the anti-jamming ability, but
the convergence speed of the algorithm in the early
stage lagged behind, and it cannot converge to a small
steady-state error in a short time.

Based on the characteristics and shortcomings of
variable step size LMS algorithm in the previous litera-
ture, a variable step size algorithm is proposed based
on the combination of logarithmic function and symbol-
ic function. The proposed algorithm not only guaran-
tees small steady-state error, but also improves the
convergence speed of the variable step size algorithm in

) That is, the algorithm has a large

the initial stage'
step factor to accelerate convergence when the error sig-
nal is large, and a small step factor to reduce steady-

state error after convergence.

1 Principle of LMS adaptive filtering algo-
rithm

The main idea of adaptive filtering is to apply the
same size and opposite direction control output to the
disturbance source, to achieve the vibration suppres-
Fig. 1 is the basic
principle of adaptive filtering . The filter compares the

sion of the controlled object'"™*).

Input signal
X A
Desired signal
———>  Filter ¥ Permzzme
Adaptive
method

Fig.1 Basic principles of adaptive filtering control

input signal processing with the desired signal, and
then feeds back the performance data of the adaptive
algorithm to the filter. The filter parameters are adjus-
ted to make the output tend to the desired signal.

Among many adaptive algorithms, least mean
square algorithm is widely used, because of its good
convergence, small computation and strong tracking
ability. The step size of LMS algorithm affects its con-
vergence speed and steady-state error, which directly
affects the performance of the algorithm. Therefore,
the step factor of variable step size algorithm is of great
significance for improving LMS algorithm'"’

The step factor of LMS algorithm plays a key role
in the performance of filtered-X LMS (FXLMS) algo-

11671 The rule of step size selection can be sum-

rithm
marized as follows: large step size factor satisfies the
characteristics of fast adaptive convergence, but will
produce excessive mean square error ( EMSE). If the
step size is too large, the system may lose the stability.
On the other hand, too small step size will lead to slow
convergence speed of system. Even if the mean square
error is small, it cannot be accepted by many practical
applications. Therefore, in order to ensure that the ex-
periment of active micro-vibration control has a good
effect, determining the appropriate step size is an im-
portant research content of LMS adaptive filtering algo-
rithm.

2 Modified variable step size LMS algo-
rithm

According to the law of adjusting step size, the al-
gorithm can be grouped into 3 categories: one is the
correlation between step size adjustment and input sig-
nal, the other is the correlation between step size ad-
justment formula and error signal, and the third is the
correlation between step size adjustment formula and
error signal at the same time. The rule of step size
change of variable step size algorithm is: always hoping
to have a large step size in the initial stage to acceler-
ate convergence; after convergence, the algorithm has
a small step size to ensure a small steady-state error.

Ref. [9] proposed a VSS-LMS algorithm in 1988
and gave its simplified version in 1990. The updated
formulas are

n) = al p(n) | |
u(n) T(n - D 1) (1)
p(n) = (1 -XMax(n-1)e(n-1) +A(n-1)

(2)

In the form of the algorithm, the input signal is
normalized, and the w is associated with the input sig-
nal and the error signal. Instead of the input g, the
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factor o is added. And the update of p(n) influences
the iteration process, according to the correlation be-
tween the reference signal and the error signal based on
the original value. Although a series of measures in the
above algorithm reduce the influence of the algorithm
when the signal mutates, it enhances the anti-jamming
ability of the algorithm. However, when the initial er-
ror signal is large, the step factor does not tend to be
larger. Therefore, the algorithm has the shortcomings
of insufficient step size factor and slow convergence
speed in the early stage.
Ref. [10] proposed a VSS-LMS algorithm in 1990.
The updating formulas of step factor are
p(n) =p(n-1) +ae(n)x (n)n(n)  (3)
n(n+1) = n(n) -u(n)x(n)x" (n)n(n)
+x(n)e(n) (4)
The condition that the step size factor satisfies is
Ponax (1) > i,
mw(n) =4p . uln) <0 (5)
w(n) others
The parameters that need to be adjusted in the
above algorithm are o, u,,, and w,;, , where w . and
Mo are the upper and lower limits of step size factor.
And o is the factor, whose values are usually small
positive numbers. The step factor updating formula cor-
relates the error signal with the input signal, which en-
hances anti-interference ability of the algorithm and re-
duces the influence caused by the signal mutation.
However, because the step factor follows the error sig-
nal linearly, it cannot get a larger value in the initial
operation of the algorithm, which results in the poor
convergence rate in the initial operation of the algo-
rithm.
Ref. [11] proposed another VSS-LMS algorithm
in 2005. The update formulas of step size are
B llex(n) |
e+l)e(n) |+ (1 =0 |x(n) |’
(6)

71

ler(n) | = 3 le(n=-0i)1° (7)
=0

In Eqs(6,7), the adjustable parameters are g and

w(n) =

&. The & is to prevent overshoot when the step size fac-
tor is updated. | e;(n) || * is the square norm of the
error sequence e(n). || e (n) ||* is the square norm
of the error sequence e,(n). Above all, the error sig-
nal and reference signal are normalized, which en-
hances the anti-jamming ability of the algorithm. While
£ can be seen as increasing the denominator value ,in
the formula, to reduce the steady-state error and the
steady-state misalignment. Nevertheless, the algorithm
also has the problem that the initial step size factor is

small, which leads to the convergence speed are not
fast enough.

In order to overcome the shortcomings of the above
algorithm, logarithmic function and symbolic function
are introduced to accelerate its convergence speed. To
enhance the anti-jamming ability, the input signal is
normalized and the step size is correlated with the input
signal and the error signal. The x(n - 1) input signal
in the modification (2) is replaced by sign(x(n —
1)). After introducing symbolic function, the value of
input signal changes to —1, 0 or 1, which accelerates
the convergence speed of the algorithm in the initial
stage and reduces the risk of overshoot. Since the in-
troduction of symbolic function increases the jumping
property of the algorithm value, the anti-jumping pa-
rameter B is added to the formula to reduce the steady-
state error and the steady-state misalignment. At this
point, p(n) becomes:

p(n) = (1 = A)Bsign(x(n -1))e(n -1)

+A(n-1) (8)

After these improvements, the steady-state error of
parameter B is greatly reduced, but the convergence
speed of initial stage is weakened. For enhancing the
convergence ability of the algorithm in the initial stage
further, the error signal e(n — 1) in the modification
(2) is replaced by In(1 =l e(n —1) | ). At the initial
stage of the algorithm, the error signal e(n — 1) is lar-
ger, while the value of 1 — | e(n — 1) | becomes a
very small number between 0 and 1. When the value of
1 -1 e(n — 1) | approaches 0, the value of In(1 -
| e(n —1) 1) will become smaller. The larger the
value of p(n) , the larger the step factor w(n). There-
fore, the initial convergence speed of the algorithm is
greatly accelerated. When the algorithm converges
quickly, the value of error signal e(n — 1) decreases
and the value of 1 —| e(n — 1) | approaches 1, so the
value of In(1 —=| e(n — 1) | ) decreases and tends to
zero. Furthermore, it ensures that the algorithm has
small step size factor, steady-state error and steady-
state misalignment after convergence. At this point,
p(n) becomes the following:

p(n) = (1 -A)Bsign(x(n-1))In(l -l e(rn-1)1)
+Ap(n -1) (9)

In the initial stage, due to the large error signal
e(n —1), the value of In(1 =l e(n —1) | ) tends to be
negative infinite, and there cannot be infinite value in
the operation of the algorithm. Therefore, on the basis
of the above, a lower limit factor constant §,,, is added
to limit the value of In(1 —| e(n —1) | ). The order is
the following

§=In(1-le(n-1)1) (10)

So far, the variable step size LMS algorithm based
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on logarithmic and symbolic functions is summarized as

e(n) =d(n) -y(n) (11)
) = @lp(n)l
w(n) x'(n-1Dx(n-1) (12)
p(n) = (1 - 2)Bsign(x(n - 1))
In(1 -le(n=1)1) +Ap(n-1)
(13)
8 =6,,,1f 8 <&, (14)

wn+1) =w(n) +u(n)e(n)x(n) (15)
Among them, w(n) is the weight vector of the
adaptive filter; x(n) is the tap input signal vector of
the adaptive filter; e(n) is the error signal; u(n) is
the step factor; y(n) is the output signal; d(n) is the
expected signal; ¢ is the scaling factor; A is the forget-

ting factor, and its range is [0.9,1]; §,,, is constant.

3 Performance analysis of improved varia-
ble step size LMS algorithm

3.1 Convergence analysis of algorithms

The convergence factor u(n) in variable step size
LMS algorithm determines the updating quantity of tap
weight vector in each iteration, which is a key parame-
ter affecting the convergence speed of the algorithm.
Therefore, the following will focus on the analysis and
derivation of w(n) and w(n). In order to simplify the
calculation, y is used instead of uw(n), and the noise
interference is ignored.

The updated formula of the weighted vector is as
follows :
w(n+1) =w(n) +m[d(n) —w(n) x(n)]x(n)

(16)

In the formula, the input signal x(n) is random.
Then, convergence of the variable step size LMS algo-
rithm must satisfy the following conditions ;

Ele(n)] -0 if n— o (17)
Orw(n) converges to the optimal Wiener filter;
LmE[w(n)] = w,, (18)

From the knowledge of probability theory and
mathematical statistics:
Elw(n)] = E[w(n -1)] + mE[e(n)x(n) ]
=Elw(n-1)] +mE{[d(n)
- x(n) Jx(n) |
=[1-mR]E[w(n-1)] + mr
(19)
In the formula R = E[x(n)x"(n)] and r =
E[x(n)d(n)].
When n = 1, the expected mean of the weight
vector updating formula becomes :
E[w(1)] = (1 -uR)E[w(0)] +pr  (20)
Whenn = 2, according to Eqs(16) and (17),

Eq. (21) is obtained.
E[w(2)] = (1 —=pR)E[w(1) ] +pr

= (1 -pR)*E[w(0)] +’uz_6(l —uR)r

(21)

From the recurrence of Eqs(19), (20) and (21),

when n = n, the mean value of the weight vector upda-
ting formula is

Elw(n)] = (1 -uR)"E[w(0) ] +u_"20<1 — uR)'r
(22)

Let the conjugate symmetric matrix R be decom-
posed into

R = U3U" (23)

In the formula, U is a unitary matrix and 3 is a
diagonal matrix .

Ay O 0
y=|% M 0 (24)
0 0 - Ay

In the formula, the diagonal element is the eigen-
value of the matrix R.
According to the Eqs(23) and (24), Eq. (22)

can be rewritten as

Elw(n)] = (1 - wUSU")"E[w(0) ]
“‘Z(l - uU3U")'r (25)
(1 —-pU3U")' = (UU" - pUusU")’

(U1 -p3)U"]

U(l -u3)U"-U(1 - pu3)U"
U(1 - p3)'U" (26)
If all eigenvalues A, satisfy condition| 1 —A; 1 <1,

then, under z (1 —u3)" = (u¥) ', these condi-
=0

tions, Eq. (26) can be rewritten as

n-1

lim Y (1 -pU3U")" = U(1 -p3)"'U"
e =0

(27)
Since all the diagonal elements of the diagonal
matrix 1 — Y are less than 1, then,
lim(1 —u3)" =0 (28)
Then Eqs(26), (27), (28) are substituted into
Eq. (25) and sorted out:
limE[w(n)] =0+ U3"'U'r =R"'r = w,,

(29)

From the formula, w,, is a bounded constant.
Therefore, it is shown that the updated weight vector
w(n) of the algorithm converges to the mean value and

to w,,. The condition is that all diagonal elements of

opt*
the diagonal matrix are less than 1.
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T — A, | <1 (30)
u is sorted out as
0 g (31)

When the above formula is convergence of the
mean value of the weight vector, the condition that
w(n) must satisfy is: the convergence of the algorithm
depends on whether the value of the step factor satisfies
Eq. (31). Assuming that the largest eigenvalue in the

diagonal matrix is A, = 1, as long as u satisfies the

max

following ;
0<u<2 (32)
The order of magnitude of u(n) after convergence
is @, which is a number far less than 1 and greater than
0, satisfying convergence condition of Eq. (32).

3.2 Steady-state error analysis of the algorithm
Steady-state error refers to the distance between

o after the algorithm

enters steady-state. It is another index to measure the

filter weight and optimal solution w

performance of LMS algorithm.

In order to describe the deviation between the
mean square error of LMS algorithm after convergence
and the mean square error obtained by Wiener’ s solu-
tion, an additional mean square error parameter, the
difference between the final value of mean square error
K( o ) and K, obtained by Wiener’ s solution, is in-
troduced ;

K.(n) = E{[e(n) -1(n) ]’} (33)

Written as K, (o ), definition of imbalance is

K, () compared with K, , that is
K, ()
M= (34)

It is a measure of the degree of difference between
steady-state solution and Wiener solution. Compared
with 1, the smaller the offset, the more accurate the
adaptive filter performed by LMS algorithm.

If the average eigenvalue of the correlation matrix
R is defined as the average of all eigenvalues and is de-
noted as A, , the learning curve of the algorithm can be
approached by the exponent of the time constant 7, ,

then the average time constant of the LMS algorithm is

1
Taw = ZMAGL, (35)
In the classical LMS algorithm theory deduced by
Widrow, the misalignment is as follows.

_wtr[R]
M =BT (36)

According to Eq. (35) and Eq. (36) , the malad-

justment is rewritten as

_ A, L
o= 2 4r, A1)
The following conclusions can be drawn from
Eq. (37).

1) For a fixed 7, ,
with the filter length L when the filter length is longer
than the unknown filter length.

2) The misalignment M is proportional to L, and

the offset M increases linearly

the time constant 7, is inversely proportional tou(n).

Therefore, the selection of step size is very impor-
tant in variable step size LMS algorithm. After conver-
gence, the anti-jump parameter 8 and logarithmic func-
tion can restrict . On the premise of guaranteeing con-
vergence, the algorithm keeps a smaller value, so that
the steady-state error and steady-state misalignment are
very small, which can satisfy the small steady-state er-
ror and steady-state misalignment.

3.3 The mechanism of the algorithm and the in-
fluence of parameters on its performance
In this work, In(x) and sign(x) are introduced to
improve the convergence speed and reduce the steady-
state error. The In(x) and | In(1 —| x| ) | function
curves are shown in Fig. 2.

4

" +
31 | B 0@ + |
+  [inqix)| 4

Step length factor

0 0.2 0.4 0.6 0.8 1
Error signal

Fig.2 Basic logarithmic function curve

It can be seen from Fig.2 that the change rule of
step size of In(x) curve is contrary to what is needed.
Further transform, replace x with 1 — x. In this case, if
% is the error signal , In(x) is the step factor. When the
error signal is large, the step factor also maintains a
larger value to ensure the accelerated convergence of
the algorithm; when the error signal is small, the step
factor decreases, so that the algorithm has a small
steady-state error. The purpose of taking absolute value
of x here is to ensure that the value of In(x) changes
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with x in accordance with the requirements. Here, in
order to see the rule of image change more clearly, the
image with absolute value of In(x) is shown as the |
In(1 =1 x1) | curve in Fig. 2.

It can be found that the change form of the | In(1
-l x1) | curve is in accordance with the rule that the
step factor follows the change of the error signal. Next,
the effect of introducing symbolic function on step size
factor is discussed. The updated formula of current
p(n) is as follows.

p(n) = (1 =A)e(n —1)sign(x(n-1))

+A(n-1) (38)

Second, by adding anti-jump factor 8, the step-
size factor of the algorithm changes smoothly in the lat-
er period, to reduce the steady-state error. Therefore,
the logarithmic function is introduced, which is Eq. (9).

When the absolute values of In(1 | e(n) | ) and
Bare5.0,4.0,3.0,2.0, 1.0 and 0. 5 respectively,
the change of step factor and error signal is shown in
Fig. 3.

14
0 O
Pk =05 *
12165 # or

—_
(=3

O¥%+Avy -

(=)}

Step length factor

Error signal

Fig.3 Function curves with variable parameters after
introducing logarithmic and symbolic functions

From Fig. 3, it can be found that the step size is
adjusted by symbolic function and logarithmic function,
and the step factor curve shows good convergence and
stability. The step size factor is also associated with the
input signal and the error signal, which enhances the
anti-interference ability of the algorithm.

In order to verify the superiority of the improved
algorithm further, the new algorithm is used in the ex-
periment of active micro-vibration control.

4 Active micro vibration control experi-
ments based on new algorithms

4.1 Construction of experimental platform
In this experiment, the 3 DOF active micro-vibra-
tion control unit is designed and fabricated to verify the

control algorithm.

The active vibration isolation structure of three-de-
gree-of-freedom micro-vibration is shown in Fig. 4,
which mainly includes base, vibration-starting module,
vibration-suppressing module and loading platform.
The base is mainly used to load and fix the whole isola-
tion model structure. The starting module is used to
simulate the micro-vibration response of the structure
caused by external disturbances. The vibration sup-
pression module can suppress the micro-vibration
caused by the starting module through active vibration
control. The vibration suppression module is fixed to
the platform, and the vibration response of the platform
is measured by capacitive displacement sensor.

Displacement
sensor
> = LS R
Loading & o
stage & Starting
module
.
Vibration o*
suppression _ =
module \9’

Fig.4 Pitcure of the 3 DOF active micro-vibration control unit

The 2 computers are connected by cross-network
to construct xPC real-time system. Two NI-6289 data
acquisition boards are inserted into the PCI slot of the
target computer as A\D input and D\ A output of the
experimental system. Before the experiment, the C
code generated by the control program on the host com-
puter is downloaded to the target computer. In the ex-
periment, the target machine outputs a disturbance sig-
nal of 0 =10 V to the power amplifier (E00. D6, XMT
©) , which is amplified to 0 = 150 V. The excitation
module simulates the external disturbance to generate
the perturbation response.

On this basis, based on high performance comput-
er, D\A and A\D card, signal conditioner, power am-
plifier related measurement and control instruments,
and the development environment of Matlab/Simulink
software, a multi-degree-of-freedom structural model
active vibration isolation experimental system is con-
structed for experimental analysis and verification of
structural active vibration control methods. The specif-
ic structure of the experimental system is shown in

Fig.5.
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Fig.5 Block diagram of the 3 DOF active micro-vibration control system

Displacement transducer ( E509. C1, XMT ©)
collects vibration signal of the carrier platform, and af-
ter signal conditioner ( E09. C1, XMT ©) condition-
ing, it becomes 0 — 10 V voltage signal and enters the
target machine for real-time processing. Through the
operation of the controller in the target machine, the

control signal of 0 —10 V is output. After amplification
of the power amplifier, the vibration suppression mod-
ule is driven to act to suppress the micro-vibration of
the platform. The experimental system of active vibra-
tion isolation for micro-vibration of three-degree-of-
freedom model structure is shown in Fig. 6.

Micro vibration Signal NI-
model structure conditioner 6289Junction
device box

Target Host

Power

amplifier computer

computer

Fig.6 Experimental setup of the 3 DOF active micro-vibration control system

After the experimental platform is built, the per-
formance of the new algorithm will be verified by the

micro-vibration active control experiment.

4.2 Active control experiment of micro-vibration
For the convenience of experiment, the x-direc-
tion is chosen as the direction of the experiment. In
this experiment, the sampling frequency is set to 1 000
Hz, the order of adaptive filter is set to 24, and the
value of noise is set to 0. The total time of this experi-
ment is 100 s. The time of applying disturbance signal
at 0 s and suppressing signal is at 5 s respectively.
4.2.1
For comparison of algorithms, the parameters of

Convergence verification experiment

each algorithm are adjusted experimentally, and the
convergence speed of each algorithm is compared under
the same steady-state error condition. Here, the sum of
the steady-state errors of algorithms in the experiment
from 95 s to 100 s is made. And the sum of the above-
mentioned steady-state errors is recorded as errorsum.

If the errorsum of each algorithm is equal, it is consid-
ered that each algorithm finally reaches the same steady
state error. In the experiment, the values of ¢ and A
are 1 020. 988 and 0. 97, respectively, and the lower
limit factor &,;, is — 465. From the comprehensive
comparison of experiments, in addition to the above 4
algorithms, a fixed step size algorithm is added. For
the comparison of the intuitive, experiment compare
the micro vibration effect of the algorithm with the other
4 algorithms in the time, as shown in Fig. 7.

As can be seen from Figs.7(a) — (d), the im-
proved algorithm curve (the algorithm in this paper)
and the other curves (the other 4 algorithms) almost
coincide in the last 5 s of the experiment. Compared
with the other 4 algorithms, the new algorithm reduces
the steady-state error by 95% in the shortest time.
That is, under the same degree of inhibition, the con-
vergence speed of the improved algorithms curve is ob-
viously faster than that of the other 4 algorithms.
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i 5 l— Shan algorithm I
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Time(s)
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Time(s)
(a) Steady-state error changes of the proposed
algorithm and algorithm of Ref.[9]
10
g_ 5 Benveniste algorithm |
g o0
i3 i . .
0 20 40 60 80 100
Time(s)
10 -
§_ 5 | Improved algorithm
g 0
| 5 )
0 20 40 60 80 100
Time(s)

(c) Steady-state error changes of the proposed
algorithm and algorithm of Ref.[16]

Fig.7 Comparison of steady-state errors between

To observe the overall convergence rate of each al-
gorithm from the beginning of vibration suppression to
the end of this process, the mean square error ( MSE)
of this algorithm and the 4 algorithms mentioned above
are drawn in the graph. MSE is defined as

MSE(n) = E(e’(n)) (39)
where, MSE is the value of the mean of the square of
e(n). The MSE results of each algorithm are shown in
Fig. 8.
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Fig.8 MSE curve of each algorithm
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(b) Steady-state error changes of the proposed
algorithm and algorithm of Ref.[11]
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(d) Steady-state error changes of the proposed
algorithm and algorithm of Ref.[10]

the proposed algorithm and other algorithms

Under the same steady-state error, the MSE
curves of each algorithm in Fig. 8 can be seen. In the
experimental process, improved algorithm in this paper
not only has small steady-state error, but also has a
faster convergence speed than the other 4 algorithms.
The above results show that the convergence speed of
improved algorithm has been greatly improved.

4.2.2 Steady-state error verification experiment

The next step is to verify the steady-state error of
improved algorithm. The verification method is to let
each algorithm run in the same time and get the steady-
state error of each algorithm in the final time.

For the convenience of experiment, 3 000 sam-
pling points with time interval of 5 —8 s are selected in
this paper. The steady-state error changes of each algo-
rithm in the same time interval are shown in Fig. 9.

Between 5 s and 8 s, Fig. 9 shows that the new al-
gorithm has a fast convergence speed in the experimen-
tal. And after 5.1 s, the convergence speed of improved
algorithm is much smaller than the other 4 algorithms.
By the end of 8 s, the steady-state error of this algo-
rithm is also much smaller than that of other algo-
rithms. It is concluded that, compared with other algo-
rithms mentioned above, the proposed algorithm not
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only has fast convergence speed, but also has small
steady-state error after convergence.
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Time(s)
Fig.9 Steady-state error curve of each algorithm

Table 1

In order to increase the comparative intuitiveness
of experimental data of each algorithm, the vibration
suppression rate and steady-state error results of each
algorithm in the experiment of 20 s are taken to make
Table 1. In order to compare the fairness of the experi-
mental results, the sum of the steady-state errors in the
last 5 s of the experiment is approximately the same.

Under the same steady-state error, the perform-
ance of each algorithm is analyzed by comparing the re-
sults of vibration suppression rate and steady-state error
at 20 s. From Table 1, it can be seen that the maxi-
mum vibration suppression rate of the proposed algo-
rithm is 91. 48% at 20 s, which is much higher than
that of the other 4 algorithms at this time, and the
steady-state error of the proposed algorithm is also the
minimum of 0. 0341, which is much lower than that of
the other 4 algorithms at this time.

Data comparison of each algorithm

The sum of steady-state

Vibration suppression Steady-state error at

Name errors' in the last 5 s cate at 20 s 205 (wnit: %20 )
(unit; x20 pm)
Fxlms algorithm 21.1002 50.00% 0.2000
Shan algorithm 21.7943 85.00% 0. 0600
Ramadan algorithm 21.0970 60.00% 0. 1600
Benveniste algorithm 21.2615 30.00% 0.2800
The proposed algorithm 21.1883 91.48% 0.0341

From the analysis of the above experimental data
and charts, it can be seen that the proposed algorithm
is applied to the experiment of active micro-vibration
control, which verifies the superiority of the algorithm
in convergence and steady-state error.

5 Conclusion

The traditional algorithm and the existing variable
step size LMS algorithm are thoroughly analyzed, and
then a new adaptive filtering algorithm based on input
signal and error signal is proposed. In the proposed al-
gorithm , logarithmic function and symbolic function are
introduced to establish the updating method of step fac-
tor. When the steady-state error is large, the new step-
size factor will be updated to a larger value to acceler-
ate the convergence of the algorithm to the steady-
state. On the contrary, when the steady-state error is
small after the convergence, the step-size factor will
keep a smaller value to reduce the steady-state error.
Then the convergence and steady-state error of the new
algorithm are deduced theoretically. After that, the in-
fluence of parameters on the step size factor is ana-

lyzed. And the performance of the existing variable
step size algorithm is improved. Finally, in order to
verify further the superiority of the algorithm, it is ap-
plied to the micro-vibration active control experiment.
The experimental results show that the proposed algo-
rithm is superior to other algorithms in convergence and
steady-state error. It shows that the proposed algorithm
has good performance and practical application value.
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