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Abstract

Image captioning models typically operate with a fixed vocabulary, but captioning is an open-

vocabulary problem. Existing work addresses the image captioning of out-of-vocabulary words by la-

beling it as unknown in a dictionary. In addition, recurrent neural network ( RNN) and its variants

used in the caption task have become a bottleneck for their generation quality and training time cost.

To address these 2 essential problems, a simpler but more effective approach is proposed for genera-

ting open-vocabulary caption, long short-term memory (LSTM) unit is replaced with transformer as

decoder for better caption quality and less training time. The effectiveness of different word segmen-

tation vocabulary and generation improvement of transformer over LSTM is discussed and it is proved

that the improved models achieve state-of-the-art performance for the MSCOC02014 image captio-

ning tasks over a back-off dictionary baseline model.
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0 Introduction

Problems combining image and language under-
standing like image captioning continue to inspire con-
siderable researches at the boundary of computer vision
and natural language processing. In these tasks, it is
reasonable to perform some fine-grained visual process-
ing, or even multiple steps of reasoning to create high
quality outputs. As a result, visual attention mecha-
nisms have been widely adopted in image captio-
ning'"*!. These mechanisms improve image captioning
performance by extracting salient and useful image fea-
tures.

However, this problem can also be addressed from
a language perspective. Image captioning is more than
an image processing problem and a fine-grained method
for generating high-quality captions is proposed in this
paper. Image captioning has recently shown impressive
resulis'?! by backing off words with a frequency below
5. The training vocabulary of neural models is usually
limited in 10 000 —30 000 words on MSCOCO"’ image
captioning training data, but caption generation is an
open-vocabulary problem, and especially for images
with massive visual parts, image captioning models re-
quire a mechanism that generates more detailed and in-

formative words.

For previous word-level caption models, the gen-
eration of out-of-vocabulary words is impossible and
these models generate some common words with fixed
sentence form. It is observed that such methods make
assumptions that often do not hold true in a practical
scene. For instance, there is not always a 1-to-1 corre-
spondence between training image and corresponding
up to 5 captions in that not all descriptive information
is involved in the captions. In addition, word-level
models are unable to generate captions unseen before.

In this work, image captioning models that train

on the level of subword units'®

is investigated. The
goal is to build a model which can handle open-vocab-
ulary problem in the encoder-decoder network itself.
The model is able to make the captions generation mod-
el more fine-grained and achieve better accuracy for the
translation of rare words than back-off dictionaries. It
is showed that the neural networks are able to learn
rare descriptive words from subword representations in
experimental analysis.

To make the image captioning process simpler,

"] instead of recurrent neural network

transformer
(RNN) or its variants is used as decoder part. Trans-
former, as a backbone architecture, has been applied

to a large amount of natural language processing
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891 " Transformer is a novel neural network archi-

tasks
tecture based on a self-attention mechanism proposed
by Google that has been proved particularly well suited
for generation tasks, such as machine translation and
text-to-speech. So it can also contribute to image cap-
tioning. The transformer outperforms both recurrent
and convolutional models on academic English to Ger-
man and English to French translation benchmarks.
The transformer proposed by Google also complies with
sequence-to-sequence structure, consisting of encoder
and decoder. The encoder is made up of multi-head at-
tention layer and feed forward layer for extracting fea-
tures from source and the decoder part consist of
masked multi-head attention layer, multi-attention lay-
er and feed forward layer. The decoder part of the full
transformer model is employed for decoding visual in-
formation. In transformer based image captioning
(TIC) model, bi-direction long short-term memory
(LSTM ) decoder is replaced by transformer decoder
for less training time and better captions generation.

This paper has 2 main contributions ;

(1) Open-vocabulary image captioning is feasible
by encoding (rare) words via subword units is proved.
Moreover, byte pair encoding ( BPE)'®! is utilized for
the task of fine-grained word segmentation and caption
generation. BPE allows for the representation of an
open vocabulary, which makes it suitable for word seg-
mentation in neural network architecture.

(2) Transformer based image captioning model is
proposed, it adopts a self-attention based neural net-
work to the task of image captioning. Other than taking
advantage of the full transformer model, the decoder
part of transformer is extracted for the generation of
sentence and the experimental results show that the
proposed method outperforms baseline model.

1 Related work

2 .
! encode an image

Most modern approaches'"
using a convolutional neural network (CNN) , and feed
this as input to a recurrent neural network or its vari-
ants, typically with some form of gating or memory
mechanism. The RNN can generate an arbitrary length
sequence of words. Within this common framework,

kU1 explored different encoder-

many research wor
decoder structures including attention-based models.
Multi-kinds of attention mechanism are applied to the
output of one or more layers of a CNN, by predicting
weights distribution on CNN output of the input image.
Whereas, choosing the optimal number of image re-
gions invariably leads to an unwinnable trade-off be-

tween coarse and fine levels of detail. Moreover, the

arbitrary positioning of the regions with respect to im-
age content may make it more difficult to detect objects
that are poorly aligned to regions and to bind visual
concepts associated with the same object.

Comparatively few previous works have considered
addressing caption generation problem from a language
perspective. Sennrich et al. '* proposed byte pair en-
coding to segment words, which enable the encoder-de-
coder machine translation model to generate open-vo-
cabulary translation. Applied originally for neural ma-
chine translation (NMT) , BPE is based on the intui-
tion that various word classes are made of smaller units
than words such as compounds and loanwords. In addi-
tion to making the vocabulary smaller and the length of
sentences shorter, the subword model is able to pro-
ductively generate new words that are not seen at train-
ing time.

Neural networks, in particular recurrent neural
network, has been the center of leading approaches to
sequence modeling tasks such as image captioning,
question answering and machine translation for years.
However, it takes long time to train an RNN model in
that it can only process the input data step by step.
The transformer proposed by Google has received much
attention in the last two years. In contrast to RNN-
based approaches, the transformer used no recurrence,
instead processing all words or symbols in the sequence
in parallel while making use of a self-attention mecha-
nism to incorporate context from words or features far-
ther away. By processing all words in parallel and let-
ting each word attend to other words in the sentence
over multiple processing steps, the transformer was
much faster to be trained than recurrent models. Re-
markably, experiments on machine translation tasks
show these models to be superior in quality while being
more parallelizable and requiring significantly less time
to be trained. Transformer achieves state-of-the-art
performance on the machine translation task. Besides,
given large or limited training data, the transformer
model generalizes well to other sequence modeling
problem. However, on smaller and more structured
language understanding tasks, or even simple algorith-
mic tasks such as copying a string (e. g. to transform
an input of ‘abc’ to ‘abcabc’ ), the transformer does
not perform very well. In contrast, models that perform
well on these tasks fail on large-scale language under-
standing tasks like translation and caption generation.

2 Approach

Given an image [, the image captioning model
takes as input a possibly variably-sized set of k image
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features, VI = {v,,--,v,}, V, € R”, such that each
image crop feature encodes a sematic region of the im-
age. The spatial image features V can be variously de-
fined as the output of bottom-up attention model, which
extracts multi crop features under the architecture of
Faster R-CNN'"/,
followed to implement a bottom-up attention model and

the details are described in Ref. [1]. In Section 2.1,

the practical use of BPE algorithm for captions segmen-

The same approach in Ref. [1] is

tation is demonstrated. In Section 2.2, the architec-
ture of TIC model is outlined.

2.1 Byte pair encoding

Byte pair encoding is a technique designed for
simple data compression. BPE iteratively replaces the
most frequent pair of bytes in a captioning sentence
with a single, unused byte. This algorithm is adopted
for subword segmentation. Instead of merging frequent
pairs of bytes, it uses merge characters or character se-
quences. Following the work of Ref.[6], the BPE
preprocess consists of 2 stages: learning BPE and ap-
plying BPE.

First of all, in learning BPE stage, the symbol vo-
cabulary is initialized with the character vocabulary,
and each word in image caption sentences is represen-
ted as a sequence of characters, plus a special end-of-
word symbol ¢ -’ which allows it to restore the origi-
nal tokenization after caption generation. All symbol
pairs are iteratively counted and replaced each occur-
rence of the most frequent pair (‘A’, ‘B’) with a
new symbol ‘ AB’. Each merge operation produces a
new symbol which represents a character n-gram. Fre-
quent character n-grams (or whole words) are eventu-
ally merged into a single symbol, thus BPE requires no
shortlist. The final symbol vocabulary size is equal to
the size of the initial vocabulary, plus the number of
merge operations, the latter is the only hyperparameter
of the algorithm. For efficiency, pairs that cross word
boundaries are not taken into consideration. The algo-
rithm can thus be run on the dictionary extracted from
a text, with each word being weighted by its frequen-
cy.

After learning BPE stage, a fixed dictionary is
completed. In applying BPE stage, all words in all
sentences from training data are substituted for subword
units according to the BPE dictionary. Then this dic-
tionary is used to represent each subword units. At
last, the one-hot vector x for each word is acquired.
The embedding model embeds the one-hot vector into a
Dol
in one sentence are combined into a matrix L X d,,, as

dimensional vector. All these embedding vectors

the input to the transformer decoder, where L is the

length of the sentence.

Two methods of applying BPE are evaluated:
learning encodings only for image captioning training
dataset, or learning the encoding on the union of the
MSCOCO02014 image captioning training dataset and
VQA v2. 0 dataset ' (which is called expand BPE).
The former has the advantage of being more compact in
terms of text and vocabulary size, whereas the latter
leads to accurate semantic units by taking the larger vo-
cabulary into account.

2.2 Transformer based image captioning

Transformer based image captioning model con-
tains 2 parts, the encoder and the decoder, as is shown
in Fig. 1.

Output
probabilities

Add & Norm
ROI features
T Multi-head
attention
RPN proposals t ¢
A
Add & Norm
ResNet-101 Masked
multi-head
attention
1
Positional
embedding

+
embedding
Output
(shifted right)
Fig.1 The framework of the proposed TIC model

Most image captioning models are made up of the
encoder-decoder structure. The encoder used in this
work is a bottom-up attention model borrowed from
Ref. [1]. Bottom-up attention model utilizes Faster R-
CNN for mapping an image to a context feature VI. This
process is shown as

VI = Faster R-CNN(I) (1)
where , I is vector of input image, VI = {v,,-+, v,} is
the image features processed by Faster R-CNN based
bottom-up attention model.

Faster R-CNN is an object detection model de-
signed to localize and recognize objects in a project giv-
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en image with bounding boxes. Objects are detected by
Faster R-CNN in 2 stages. The first stage, described
as a region proposal network (RPN), predicts object
proposals. Then the predicted top box proposals are se-
lected as input to the second stage for labels classifica-
tion and class-specific bounding box refinements. In
this work , ResNet-101 CNN is used as feature extractor
in Faster R-CNN model. The final output of the model
is selected as the input caption model. For each select-
ed region i, VIis defined as the mean-pooled convolu-
tional feature from this region, such that the dimension
D of the image feature vectors is 2 048. Faster R-CNN
is served as a ‘ hard’ attention mechanism using this
fashion, as only a relatively small number of image
bounding box features are selected from a large number
of possible configurations.

The decoder part of the transformer with stacked
attention mechanisms is taken to decode the encoded
image feature into the sentence. The transformer model
composes of a stack of NV identical layers and contains
no RNN structure. Note that each layer has 3 sub-lay-
ers. The first sub-layer uses the multi-head self-atten-
tion mechanism. The multi-head attention is shown as

h, = Awtention(QW?, KWS, VW!) (2)
H = Concat(h, -, h,) (3)
0 = HW, (4)

where the projections are parameter matrices W¢ e
dmodel X3 K
Rwota*% 7! Q e

Lxd, Lxd Lxd -
R™molel K g R™modl Y g RV“medl are the inputs of

the multi-head attention. Attention is the scaled dot-

Rdmode]Xdk’ W e R%modaxds

i

product attention. Concat is the concatenating func-
tion. h, € R"™" is the output of the scaled dot-product
attention. n scaled dot-product attention is concatena-
ted to generate H ¢ R”"%) | W, g R **md i ysed
to project H into the output O e R"*md,

Fig. 1 shows that the inputs of this layer are fixed
to output embedding plus positional embedding. This
sub-layer makes use of a masked mechanism for pre-
venting this model from seeing the future information,
which ensures the generation of the current word with
only the previous generated words. In contrast to the
first sub-layer, the second sub-layer is a multi-head at-
tention layer without the masked mechanism in that it
takes all the image features into consideration in every
time step. The multi-head attention is employed over
preprocessed image features and the output of the first
sublayer. This sublayer is vital importance to blend the
text information with the image information using atten-
tion mechanism. The third sublayer is a position-wise
fully connected feed-forward network aiming at selec-
ting the most relevant information for generating image

captions. In addition, a residual connection is utilized
around each of the 3 sub-layers in the transformer de-
coder, followed by layer normalization. Finally, a full
connected layer and a softmax layer is used to project
the output of the transformer decoder to the probabili-
ties distribution of the vocabulary. Using the notation
¥1.r to refer to a sequence of words (y,,---, y;), at
each time step ¢ the conditional distribution over possi-
ble output words is given by

Py | yi.) = softimax(W,hi +b,) (5)
where, W, e R and b, e R'™ are learned weights
and biases.

Given a target ground truth sequence y,, and a
captioning model with parameters @, the training of the
model minimizes the following cross entropy loss;

Ly (6) =~ Z}log(l)e(yz* l yl*:t—l)) (6)

For fair comparison with recent work'"™) | results
optimized for CIDEr is also reported. Initializing from
the cross-entropy trained model, the training seeks to
minimize the negative expected score :

Lz (6) =_Ey1:T~pg|:r(y1:T):| (7)
where , ris the score function (e. g. , CIDEr). Follow-
ing the approach described as self-critical sequence
training ( SCST) , the gradient of this loss can be ap-
proximated :

ngR(0> i [r()’;:r) - r(&];T) ] V ,log Pe(y;,r)
(8)
where , ¥} ,is a sampled caption and r(y, ,) defines the
baseline score obtained by greedily decoding the cur-
rent model. SCST (like other reinforce' ™’ algorithms )
explores the space of captions by sampling from the
policy during training. This gradient tends to increase
the probability of sampled captions that score higher
than the score from the current model.

3 Experiments and results

3.1 Datasets

The MSCOCO02014 captions dataset”’ is employed
to evaluate the proposed transformer based image cap-
tioning model. For validation of model hyperparameters
and offline testing, this paper uses the ‘Karpathy’

160 that have been used extensively for reporting

splits
results in prior work. This split contains 113 287 train-
ing images with 5 captions each, and 5 K images re-
spectively for validation and testing. To explore the
performance of BPE, all sentences are converted to
lower case, tokenized on white space, and substituted
words with subword units according to BPE vocabulary.

To evaluate caption quality, this work uses the stand-
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ard automatic evaluation metrics, namely SPICE'"
CIDEr, METEOR, ROUGE-L"® and BLEU"/.

To evaluate the proposed expand BPE model, the
recently introduced VQA v2.0 dataset'™ is used. VQA
v2.0 is proposed to minimize the effectiveness of learn-
ing dataset priors by balancing the answers to each
question, but in the experiment this dataset only takes
advantage of expanding BPE corpus with 1.1 M ques-
tions and 11.1 M answers relating to MSCOCO images.

3.2 Experiment settings

For fair comparison with bottom-up and top-down
baseline model, TIC model takes the same pretrained
image features of bottom-up and top-down baseline
model as inputs. To pretrain the bottom-up attention
model, Anderson et al. '’ initialized Faster R-CNN
with ResNet-101 pretrained for classification on Ima-
geNet, then trained it on visual genome'”’ data. For
the six-layer-stacked transformer model, this work sets
the model size which is d,,,; to be 512 and the mini-
batch size to be 32. The Adam method is adopted to
update the parameters of transformer. The initial learn-
ing rate of the transformer is 4 x 10 ™*. The momentum
and the weight-decay are set as 0.9 and 0.999 respec-
tively. All implements of neural networks are based on
PyTorch deep learning framework. In evaluation stage,
the beam search size is set to 5 for high-quality caption
generation at the sacrifice of decoding time.

3.3 Image captioning results

Table 1 shows single-model image captioning per-
formance on the MSCOCO Karpathy test split. TIC +
BPE-10K-exp stands for expanding BPE trained on
MSCOCO02014 captions dataset and VQA v2. 0 dataset
with a dictionary of 10 000. The TIC model obtains
similar results to baseline, the existing state-of-the-art
on this test set. TIC plus BPE training model achieves
significant (2% —7% ) relative gains across all met-
rics regardless of whether cross-entropy loss or CIDEr
optimization is used, which illustrates the contribution
of transformer and BPE algorithm to image captioning
task.

In Table 1 the performance of the improved TIC
model and the existing state-of-the-art bottom-up and
top-down baseline is demonstrated in comparison to
SCST approach on the test portion of the Karpathy
splits. For fair comparison, results are reported for
models trained with both standard cross-entropy loss,
and models optimized for CIDEr score. Note that the
SCST! takes advantage of reinforcement learning to
optimize evaluation metrics. And it also uses ResNet-
101" encoding of full images, similar to the bot-
tom-up and top-down baseline model and TIC model.
All results are reported for a single model with no fine-
tuning-of the input ResNet/Faster R-CNN model.

Table 1 Performance of different models on MSCOC02014
XE loss CIDEr optimization

BLEU-1 BLEU4 METEOR ROUGE-L CIDEr SPICE BLEU-1 BLEU4 METEOR ROUGE-L CIDEr SPICE
SCST: Atr2in[14] - 31.3 26.0 54.3 101.3 - - 33.3 26.3 55.3 111.4 -
SCST: Atr2all[ 14] - 30.0 25.9 53.4 99.4 - - 34.2 26.7 55.7 114.0 -
Baseline 75.7 35.T 27.6 56.2 112.0 20.4 79.8 36.3 277 56.9 120.1 21.4
TIC 75.9 35.8 27.6 56.4 112.9 20.4 80.1 36.3 27.6 57.0 119.6 21.4
TIC + BPE-10K 76.0 36.9 27.8 56.9 113.8 20.7 80.2 37.4 28.5 58.2 126.0 21.9
TIC + BPE-20K 75.8 36.0 21.5 56.6 113.4 20.5 80.2 36.8 28.3 58.0 124.9 21.7
TIC + BPE-30K 75.7 35.8 27.3 56.4 114.0 20.4 79.8 36.8 28.4 57.7 123.7 21.6
TIC + BPE-10K-exp 76.2 36.9 27.8 56.8 115.2 20.9 80.3 37.3 28.8 58.5 126.7 22.3

Compared to the bottom-up and top-down baseline
model, TIC model obtains slightly better performance
under both cross-entropy loss and CIDEr optimization
loss, which shows the feasibility of replacement of
RNN with transformer.
word-level model with a back-off dictionary, BPE sub-

word units model brings improvements in the generation

Moreover, instead of using

of rare and unseen words and outperforms the bottom-
up and top-down baseline by 0.1 — 1.2 BLEU4 and
0.9 -3.2 CIDEr under XE loss training. Regardless of
whether cross-entropy loss or CIDEr optimization is
used, Tabel 1 shows that TIC models acquire improve-

ments across all metrics using just a single transformer
decoder model and BPE method. The TIC model
achieved the best reported performance on the Karpathy
test split as illustrated in Table 1.

In addition, the results about the effect of the dif-
ferent sizes of BPE dictionary is explored. Three differ-
ent sizes are implemented to find the appropriate set-
tings. The TIC + BPE-10K model means that BPE dic-
tionary size is set to 10 000. From these scores in Ta-
ble 1, it can be implied that all TIC with BPE model is
improved over the baseline model. And when the vo-
cabulary size is set to 10000 and trained on multi-
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dataset, the TIC + BPE-10K-exp model gets the best
performance. According to these scores, it can be in-
ferred that fixed dictionary size is necessary for the
generation common description. Whereas, it is be-
lieved that larger dictionary size is needed given larger
image captioning dataset.

4 Conclusions

This work proposes a novel transformer image cap-
tioning model which is improved by training on subword
units. It is shown that image captioning systems are ca-
pable of open-vocabulary generation by representing
rare and unseen words as a sequence of subword units.
The transformer decoder with multi-head self-attention
modules enables the caption model to memorize de-
pendencies between vision and language context. With
these innovations, performance gains have been ob-
tained over the baseline with both BPE segmentation
and transformer decoder. The state-of-the-art perform-
ance is achieved on the test portion of the Karpathy
MSCOCO02014 splits. In addition, the proposed models
can be taken into consideration in vision to language
problems like visual question answering and text-to-
speech.
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