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Abstract

Performance models provide insightful perspectives to predict performance and to propose opti-
mization guidance. Although there has been much researches, pinpointing bottlenecks of various
memory access patterns and reaching high accurate prediction of both regular and irregular programs
on various hardware configurations are still not trivial. This work proposes a novel model called
process-RAM-feedback (PRF) to quantify the overhead of computation and data transmission time
on general-purpose multi-core processors. The PRF model predicts the cost of instruction for single-
core by a directed acyclic graph (DAG) and the transmission time of memory access between each
memory hierarchy through a newly designed cache simulator. By using performance modeling and
feedback optimization method, this paper uses PRF model to analyze and optimize convolution,
sparse matrix-vector multiplication and sn-sweep as case study for covering with typical regular ker-
nel to irregular and data dependence. Through the PRF model, it obtains optimization guidance with
various sparsity structures, algorithm designs, and instruction sets support on different data sizes.

Key words: performance model, feedback optimization, convolution, sparse matrix-vector

multiplication, sn-sweep

0 Introduction

In recent decades, modeling has been employed
to optimize performance of computational kernel and
verify the validity of proposed optimization meth-

[14]
ods" ™.

ware and software features as a reference, it can be

Depending on whether the model uses hard-

roughly divided into 2 categories. One is *black box’
model that uses a fitting or machine learning method to
predict the performance by extracting characteristics of
the target machine and collecting data of application.
This method collects a large amount of application data
to build a model by statistics or mathematical model.
The model is not universal and does not reflect the real
implementation inside architecture. The other is  white
box’ model, which uses a simplified machine model to
describe the matching relationship between application
and hardware. The simplest white-box model was the

1 [5]

Roofline model proposed by Ilic et a , which can

be used to bound floating-point performance with a

function of machine peak performance, peak bandwidth
and arithmetic intensity. However, the Roofline model
cannot describe detailed bottlenecks beyond memory
bandwidth and peak performance. It only shows the up-
per limits of the performance. A more detailed machine
model with memory hierarchy was the execution-cache-
memory (ECM) model proposed by Datta et al.'®.
Based on ECM model, stencil'”! loop kernel®! and mi-
crobenchmark """ have been modeled and optimized.
It divides the machine into in-core and out-core phase,
and reflects the time of instruction execution on proces-
sor core and data transfer between cache and memory
by an address-based cache simulator ( pycachesim) or
proportion analysis by Kerncraft'''!. But mapping real
application to address sequence requires a medium and
none of these tools have yet been provided. Also this
model ignores the impact for possible occurrence of da-
ta dependence and the differences between regular and
irregular memory access. So it cannot accurately pre-
dict performance when the application has pipeline stall
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and stride or random memory access. Therefore, it
cannot give specific feedback based on the incomplete
information. Moreover, for specific applications, opti-
mization methods are very different with different in-
structions and data sizes, the existing models cannot
give fine-grained optimization guidance. In addition,
there have been many work based on hardware per-
11245] - Although these methods can
also obtain the load characteristics by the number of

formance counters

monitored events, they need to monitor at runtime with
unacceptable overhead.

This paper proposes a new performance model
called process-RAM-feedback (PRF). It deeply con-
siders the diversities of the pipeline and the cache lay-
ers as a ‘ white box” model. So that it can predict the
instruction overhead and the cache misses for regular,
irregular and data dependence applications. In this
sense, the proposed model largely broadens the appli-
cation domain of performance modeling. More impor-
tantly, the proposed model can give feedback guidance
for the optimization, which is not available in existing
performance models. In order to realize this functional-
ity, the proposed model consists of 3 fundamental
steps. Firstly, the proposed model abstracts the impor-
tant hardware parameters, such as the calculation unit,
access unit, instruction cost, the associativity and the
size of each memory level (cache and DRAM). Sec-
ondly, based on these parameters, this paper con-
structs a directed acyclic graph (DAG) to predict in-
struction overhead and a cache simulator to predict the
cache miss as the overhead of data transmission. Last-
ly, the proposed model can use the obtained informa-
tion in the previous 2 steps, reveal the bottlenecks,
compare the effects of different optimization methods,
and then provide optimization guidances. In this way,
the optimized kernels are obtained. This work’ s main
contribution is reflected in 3 aspects.

1) In the proposed PRF model, this paper consid-
ers comprehensive factors which may affect the kernel
performance, e. g. , the probability of instruction pipe-
line stall and cache line transmission between different
levels of RAM, and the execution time of instructions
for both calculation and memory access. Based on the
theoretical and model-based analysis for specific cases,
the proposed model can produce a much more accurate
performance prediction and extend the application do-
main to the context of irregular memory access and data
dependency issues.

2) In order to get the number of cache misses at
all cache layers for irregular case, this paper develops
a multi-level cache simulator which can be easily built
on the target hardware and quickly get the needed in-

formation for the specific kernels. As an indicator of
data transmission, improvement of prediction accuracy
for cache miss is a crucial factor which affects the ac-
curacy of performance prediction in the proposed mod-
el.

3) According to the different performance bottle-
necks, the proposed model feeds back developers to
select the best optimization method and informs per-
formance expectation with various data inputs, instruc-
tions support and data sizes.

From regular memory access to irregular and data
dependence, this paper selects 3 cases ( convolution,
sparse matrix-vector multiplication and sn-sweep ) to
verify the correctness of the model. The experiments
show that, for modeling the convolution algorithm as
the regular case, the PRF model could feed back the
best optimization suggestion for various data sizes under
current instruction support. For the irregular memory
access, by running SpMV with 3 673 sparse matrices

from the Florida collection''®’

, the average error rate:
ABS(predicted _ value-measured _ value) / measured
_ value of PRF model is about quarter than the ECM
model. Further, for sparse matrices, feedback optimi-
zation guides developer to select the parameter (i.e. ,
block size ) for the block compressed sparse row
(CSR) sparse matrix format by using the output of the
PRF model and it highly matches the best block size
manually selected from exhaustive experiments. As for
sn-sweep, PRF model constructs the DAG through its
calculation process, and analyzes the data dependency
relationship between instructions to reveal the problem
of pipeline with out-of-order execution support, and fi-
nally guides to solve data dependence issue and its per-
formance improvement is about 192% in single-core
pipeline with linear scalability for multi-core.

1 Related work

Performance modeling is a very useful technique
for optimization of parallel applications on high per-
formance computing (HPC) platforms. All of the cur-
rent architecture can be divided into the instruction
part and the memory part. As shown in Fig. 1, it re-
sults different abstract methods can build various per-
formance models. Next this paper begins to introduce
the differences between 4 performance models.

The Roofline"®’ model is a visual analytical model
used to pinpoint performance bottlenecks. For the in-
struction part, the Roofline model abstracts it as a
black box, this model describes the peak computing
performance as the upper limit of the instruction part,
which constraints the best performance of which pro-
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gram can achieve. Same as before, the Roofline model
also abstracts memory part as the peak memory band-

er, the model gives little detail information, and lacks
accuracy of performance prediction for target applica-

width. It can also be applied to any program. Howev- tion.
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Fig.1 PRF model and comparison with Roofline, cache-aware Roofline and ECM

As a refined model on Roofline, cache-aware
Roofline''"! joins the implications of the cache hierar-
chy, and the transmission bandwidths of cache are
But this model has the same dis-
advantages as Roofline by low accuracy.

The ECM'®) model considers the time for execu-

ting the instructions with data coming from the L1

used as boundaries.

cache as well as the time for moving the required cache
lines (CLs) through the cache hierarchy. It also cal-
culates the time for executing instructions of loop ker-
nel on the processor core (assuming no cache miss)
and transferring data between its initial location and the
L1 cache. The in-core execution time T _ core is deter-
mined by the unit that takes the most cycles to execute
the instructions. The time needed for all data transfers
required to execute one work unit is expressed as T _
trans. The in-core execution and transfer costs must be
put together to arrive at a prediction of single-thread
execution time. By simulating execution of CPU in-
struction, the model has a good prediction accuracy for
regular memory access pattern. But ECM could predict
performance in the memory part of a sort, it divides
memory part into an undifferentiated cache layer and
main memory, making it hard to model data locality.
Therefore, for irregular application, these 3 mod-
els are difficult to give accurate prediction, and the er-
ror mainly occurs in the memory access phase, and
there is a considerable gap between the size of data
transfer and the data reuse of irregular application by

these model predicts and real situation. Also the ECM
model ignores the effect of pipeline stall. This is also
the main focus of the proposed model. Here this paper
realizes a pipeline DAG with more realistic memory hi-
erarchy, and designs a cache simulator to output ap-
proximately real cache miss for irregular case. With the
abstract method, PRF model can achieve better predic-
tive accuracy, while also covering more irregular and
data dependence cases. The comparison of all models
is shown in Fig. 1.

Cache simulation has been used to evaluate mem-
ory systems for decades. Fei et al. '™®' examined the
topic for multiprocessor memory-systems. Liu et al. L
investigated an x86 cache simulation framework in the
Llatser
discussed many intersection properties for

specific context of multiprocessor systems.
et al. 1
caches using different replacement policies, and Dey et
al. "' studied coherency protocols between different
caches in a shared memory system. These simulators
are constructed by configurations, such as cache size,
sets, cache associativity, block size, replacement poli-
cy according to a specific application. However, for
program optimization, these cache or memory simula-
tors are not efficient enough since the cost for lots of
hardware emulation functions. Thus applying them in
real-world applications will lead to new performance
bottlenecks. This paper designs a light weight cache
simulator that can simulate all levels of cache miss with
a very low overhead for all memory access patterns.
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As for regular memory access pattern, convolution
operation in convolution neural networks is the most
time-consuming function. Brechet et al. ">’ used the
vectorization instruction or designed the unique hard-
ware structure to speed up the calculation, but this op-
timization is case by case, since the effective optimiza-
tion method for different data sizes and machine struc-
tures is quite different, so the proposed model is to find
a set of methods to optimize the regular memory access
applications in different architectures and guides the
developer to obtain higher performance.

Sparse matrix-vector ( SpMV, ¥ = Ax) multiplica-
tion is an important computational kernel with an irreg-
ular memory access patterns. The SpMV operation does
not contain any dependencies and has relatively high
parallelism. Buttari et al. '**! used a modeling method
to optimize the SpMV by blocking. But this model fits
machine characteristics and predicts performance by
fill-in the dense matrix to achieve the best block sizes.
Li et al. "™ used register-level tiling opportunities to
select parameters for BCSR by model. However, these
parameters tuning are time-consuming and none of
these methods can reflect real execution on the current
architecture of SpMV. Then this paper quantifies in-
struction and memory transmission for various parame-
ters, and selects the best block size and predicts opti-
mized performance.

Sn-sweep is a typical regular application with very
low performance as data dependence. It is the largest
time-consuming function for numerical simulation of ra-

diation transport in high energy density plasma phys-
ics'®. As sn-sweep can be seen sweep the radiation
flux from the source across the grid in the downstream
direction, so grid decomposition method makes task
parallelization easier. Liu et al. '’ described message
passing implementations of sn-sweep algorithms within
a radiation transport package to increase expandability.
The proposed model focuses on bottlenecks within a
task and exposes the cause of the instruction pipeline
stall to guide optimization.

2 The PRF performance model

The PRF divides model into 3 parts: process
phase, RAM phase and feedback optimization phase.
The process phase corresponds to the instruction part,
which predicts the cost cycles within the CPU core by
executing internal instruction with pipeline, while the
RAM phase corresponds to the memory part, which de-
scribes the connected relationship and predicts the time
between memory hierarchy. The feedback optimization
phase collects the output of each phase, analyzes exe-
cution bottlenecks and potential opportunities, and pro-
vides developer optimization guidance. In Fig.2, this
paper visualizes these 3 phases, and sets the time of
process phase when all instructions and datas are in the
L1 cache, the time of RAM phase is the transfer time
between the memory hierarchies. The outputs of model
are evaluated, analyzed and directed by feedback opti-
mization phase.

Process phase RAM phase
T3
Cost of T3:L2L1
Computation Ins. DAG of Computation Ins. Regular Data Cache

Data 59 . T4: L3L2

Memory Access * Irregular Dat: Simulator

Ins. Hazard Cost of Memory rregular Data
= Access Ins. T5: MEM->L3
Feedback Optimization phase
Key: Model component Ins. and data Functional unit Time overhead

Fig.2 Three components and workflow of the PRF model

For process phase, this paper first divides the in-
struction into computation instruction and memory ac-
cess instruction, and builds a DAG to describe data
dependencies. Through the implementation of the pipe-
line, it outputs the overhead for 2 kinds of instruc-
tions. Then this paper labels the cost time of calcula-
tion and memory access instruction as T1 and T2. For
the RAM phase, due to the principle of locality, differ-
ent inputs and applications will result in different cache
miss, so memory access instruction does not definitely
cause datas transfer (if datas are in cache). Also this

paper founds that the current Intel processors have a
prefetching mechanism for the regular memory access,
resulting in almost no cache miss at some cache levels.
So this paper separates the regular and irregular data,
and the time of transmission for regular data can be
calculated by format which will be described in detail
later, and also builds a multi-level cache simulator for
irregular data, then simulator can output the number of
cache misses at all levels. Therefore this paper can ob-
tain the time of all the data transfer and label the trans-

mission time of 3-level cache as T3, T4, and T5. The
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feedback optimization phase abstracts 4 performance
bottlenecks, uses the output of the model to point out
the key factors which affects performance most, and
guides developer to improve performance which optimi-
zation can bring.

2.1 Process phase

Instruction is mainly divided into 2 types: compu-
tation ( addition and multiplication) and memory ac-
cess (load and store) instruction. The 2 kinds of in-
structions are scheduled independently in core internal
and can properly implement instruction-level parallel-
ism without data dependence. Although current proces-
sor has out-of-order execution mechanism, when data
dependency occurs, the instruction which depends on
the previous results will also cause performance
stall )

In order to model the pipeline, this paper designs
a DAG module, which is constructed as shown in the
Fig.3. It uses a blank circle representing read without
write, a solid line with an arrow representing the direc-
tion and load a data, and the grid circle representing
read after write. By analyzing the code of an applica-
tion to build the DAG, execution flow of the DAG
shows pipeline analysis of data dependence. For exam-
ple, on a 3-stage pipeline processor, R3 occurs data
dependence for read after write, resulting in one stall
for data dependence.

R3=R1+R2
R4=R3+R1

Data dependence

Fig.3 DAG for modeling data dependence

As an example, this paper builds the PRF model
on an Intel Haswell architecture. This microarchitec-
ture can execute one addition and one multiplication
operation or 2 fused multiply add ( FMA) operations
per cycle, while supporting 2 load operations and one
store operation per cycle. All details will be introduced
in the Section 3. So if the numbers of addition, multi-
plication, FMA , load and store instruction are A, M,
FMA, L and S respectively for an application, then the
time spent on process phase can be calculated by

Eq. (1).
T (process phase)

- MAX(DA(;(A,M,FZﬂ), pac( L, s))
(1)

2.2 RAM phase

RAM phase converts cost of data transmission into
overhead between each level of cache and main memo-
ry. As the size of each level of memory hierarchies are
very different for various architectures, data may ap-
pear in any of them, resulting in complicated data
transfer time. When a CPU requests memory access, it
will seek a data block as cache line from L1, 12 and
L3 caches to main memory in turn. If the former search
is missing, this cache line will transfer from the lower
level of memory hierarchy to the upper level. At the
same time, the current cache has a perfect prefetching
mechanism for the regular memory access, resulting in
a significant reduction in transmission time.

Therefore, as in Fig.2, RAM phase model parti-
tions memory accesses into regular and irregular memo-
ry access. For regular memory access, it is to access
continuous memory address or cache line, or visit fixed
stride memory address. For the Haswell core this paper
used to model, the L1 cache cannot implement pre-
fetching operation as the first level of cache by lots of
experiments. Then for other cache levels, when data is
read from L2 cache to L1 cache, the adjacent data
which will be accessed is transferred from L3 cache to
L2 cache, and since the transmission bandwidth of L3
to L2 is half than 12 to L1, it leads to a half overlap.
At the same time, other adjacent data which will be ac-
cessed is transferred from the main memory to L3
cache, and the bandwidth of main memory to L3 is
lower than the cache, so there will be a delay by the
differences.

Assuming that the internal bandwidth of cache
which data appear is C, the bandwidth between the
main memory and the last level cache is M, and the
regular data size to be accessed is Amount _ regular,
the time spent on regular memory access pattern is giv-
en in Eq. (2).

T(RAM _ phase _for _regular)
_ Amount _regular
~ Amount _regular < Last _ Cache _ Size?C:M
(2)

For irregular memory access, cache prefetcher

cannot work well when accessing disordered address,
the data which needs to be accessed may appear on any
of the memory hierarchy, so loading these irregular da-
ta will produce unexpected cache misses. In order to
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get these cache misses, this paper designs a cache sim-
ulator, which could simulate cache groups and cache
lines, and use index number ( similar to the address)
to distinguish each cache line. Then the simulator
builds memory access sequence based on the user’s
input data and memory access process, and finally out-
puts cache misses. It also simulates the replacement
mechanism.

Unfortunately, the Intel smart cache replacement
policy is confidential, so this paper carries out a large
number of experiments and obtains some conclusions;
L1 cache uses least recently used (LRU) policy, 12
and L3 are based on the LRU policy with relatively
perfect prefetching operation for regular memory ac-
cess.

Therefore, the process of building the cache simu-
lator can be described as follows. (1) Detect the size
and group associative of the cache at all levels, and as-
sign corresponding tags which could mark block num-
ber and valid bit. (2) Build the mapping relationship
at all levels. (3) Set its replacement strategy.

The internal work-flow of the cache simulator is as
follows. (1) Detect current physical machine and
build the cache simulator. (2) Partition the input data
which will be accessed to corresponding cache lines
and mark it as regular or irregular. (3) The cache
simulator reads cache lines by marking the cache block
valid nor not, prefetchs regular cache lines and records
the miss numbers. (4) Finally, through the known da-
ta transfer rate, the cache simulator will output cache
miss and cost at any of the memory hierarchy. If the 3
cache misses is L1 _miss, 1.2 miss and 1.3 miss re-
spectively and the size of cache line is CL, the time

spent is given in Eq. (3).
T(RAM _ phase _for _irregular)
(L1 _miss + [2 _miss) x CL)

(L3 miss) x CL
C +

M

(3)

The sum of process part and RAM part shows the
overall completion time of the program. It can be cal-
culated by Eq. (4). And giga floating-point operations
per second ( GFLOPS) can be calculated by Eq. (5).

T(PRF) = T(process _phase + RAM _phase — overlap)

MAX(DAG(A,M,%), pac(L s)
+ T(RAM _ phase))

MAX(DAG(A,M,FZM), pac( L. s)

+ T(RAM _ for _regular)
+ T(RAM _for _irregular))
GFLOPS( PRF)
= (A + M) x CPU _ Frequency/T(PRF)
(5)

(4)

2.3 Feedback optimization phase

According to Fig.2 and Eq. (4), this paper splits
the time for each stage from T1 to TS5. As shown in
Fig. 4, the abscissa indicates the data size, and the or-
dinate indicates the GFLOPS. The line T1 represents
floating-point  performance without memory access
time, and the line (T2 + T3 + T4 + T5) represents
floating-point performance without calculation time. So
the final execution time is the minimum value of line
T1 and line (T2 + T3 + T4 + T5). This paper enumer-
ates 4 different possibilities and shows how to discover
the bottleneck and optimized code.

cn“ N , '\ bt Before optimization
2 % 2L | 4 OO0~ Affter optimization
S S Decreasing the time of = \ S
(‘-'5 = calculation instruction 5 \ ) \
SIMD 3 | O T1' T1 Ol \11
PEAK o 75, Decreasing cache miss
Decreasing the time of Decreasing the time of 73,
calculation instruction memory access instruction 'W,l
SCALAR T 5
PEAK 1247
; 13474y 247
T L2473,,| 213,45 Ts 73*"’“7;
: > : > — > —
MAX MAX' Data volume MAX' MAX Data volume MAX MAX' Data volume MAX MAX' Data volume

(a) Eliminating dependence (b) Increasing SIMD

(c) Aligned vector access (d) Increasing irregular data reuse

Fig.4 Four different optimization opportunities

As shown in Fig.4(a), it can be observed the
line T1 cannot reach scalar peak performance without
data transmission, so feedback optimization guide de-
veloper to choice intermediate variable to reduce the
data dependence for addition and multiplication opera-
tion. Then the arrow represents the reduction of T1 and
improvement of GFLOPS by decreasing the time of cal-
culation instruction. Through the changes of feedback

optimization, the line with cycle performance line can
be upgraded to the line with triangle performance line
with the data size increasing. As same for Fig.4(b),
the line T1 cannot reach floating point peak perform-
ance without data transmission, so feedback optimiza-
tion guide developer to choice the single instruction
multiple data (SIMD) to increase calculation speed. If
T2 has spent much more time and become a bottle-
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neck, it presents the data access instruction that has
become worthwhile optimization. Feedback optimiza-
tion informs developer to redesign data structure or in-
crease the redundant space to reduce the time of memo-
ry access instruction, and the optimization effect is
shown in the Fig.4(c). If this paper finds that the
memory access part is bottleneck, then feedback opti-
mization will warn developer to increase cache utiliza-
tion and reduce the transmission time by using new data
format or cache-based block design in the Fig.4(d).

Next, this paper will use 3 cases to implement the
whole process of modeling.

3 Experimental testbed

This paper uses an Intel Xeon E5-2680 v3 proces-
sor ® with the SSE, AVX and AVX2 support for vali-
dating the proposed model. Each core can execute one
multiply and one addition in floating point or 2 FMA
instructions per cycle without data dependency. The
memory hierarchy consists of 3 on-chip SRAM data

%) the memory read

caches. For the scalar instruction
and write instruction (load and store) is only one
kind, and the data is always aligned. For the vector
instruction, memory access instruction is divided into
load, loadu, store and storeu by respectively accessing
aligned and unaligned data, and the time spend on un-
aligned data is twice as large as for aligned data. All

the specifications are listed in Table 1.

Table 1 Special machine parameters
Machine parameters Details
Intel Xeon E5-2680 V3
CPU 12 cores/24 threads 2.5 GHz

with turbo mode off

L1. 8 way 32 x12 kB

12, 8 way 256 x 12 kB

L3: 20 way 30 MB

64 Byte, 2 x256 bit FMA

2 %32 Byte load +32 Byte store
64 Byte/32 Byte

4-channel DDR3-1866 up to
42.6 GB/s

Intel ICC 15. 0. 2/-opt-prefetch =
3-03

Cache

Cache line, FPU width
L1D bandwidth/cycle
12/1.3 bandwidth/cycle

Memory channels

Compiler/ Compile options

4 Validation

4.1 Convolution
4.1.1
Convolution operations have been widely used in

Convolution operation

denoising, extraction, structure smoothing, filtering,
detection, image enhancement and many other image
processing applications. The information of images is
encoded in the spatial domain rather than the frequency
domain, thus the image convolution operation is ex-
tremely essential and useful in image processing. For
real-world applications, 32 bit floating point is usually
selected for rapid training. For 1D convolution, the
convolution filter is a 1-dimension structure, as hori-
zontal filter with size of 1 x N. 1D convolution opera-
tion simply rotates the convolution kernel 180 degrees
before multiplying the input data. Fig.5 illustrates an
m X n input data convolved with a 1 X 16 kernel size
and its DAG. Each pixel in the window is multiplied
by their corresponding kernel coefficients and finally
generate the whole output data.

(k=0;k<m:;k++){
(=0<nit+){ ° @
double tmp=0.0;
(m=0;m<kernel_size;m++){ -
tmp+=In.vals[k][j+m]*Kemel[m];

L~

Fig.5 DAG of 1D convolution

)
Out.vals[k][j]=tmp;}}

4.1.2 Performance prediction for naive code

From the proposed example, it can be seen that
the 1D convolution requires reading 16 kernel data and
16 input data to perform 16 addition and multiplication
calculations. This paper can easily find out data is re-
use access, along one dimension for 1D convolution.
The next iteration operation will reuse 15 elements from
the previous iterations.

For this program, the kernel array has good locali-
ty, and it can always be stored in L1 cache. Reading a
cache line of in and out data separately will update 16
values of out, and contains both 16 x 16 addition and
multiplication instructions, and therefore it also pro-
duces 16 x 16 load and 16 store instructions. For the
current architecture, each cycle can execute an add
and mul instruction, so the cost cycle of all of those
addition and multiplication instructions is 16 x 16 =
256, and a cycle can perform two load instructions and
one store instruction. So the cost cycle of access in-
struction is 256/2 =128, For [2- > L1 and [3->12,
a cycle can transfer one cache line and half of a cache
line respectively, namely data transmission requires 1
or 2 cycles for a cache line, For MEM- > L3, a cycle
can transmit 1/5 cache line, finally this paper can infer
the GFLOPS performance in different data sizes which
are shown in Table 2, for example, the GFLOSP = (16
x 16 x2)/ (max(256,128 +2/4/10)/2.7) Gflops.
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Table 2 GFLOPS performance in different data sizes for naive code, and comparison
with PRF, ECM and measured

12 L3 MEM
T1. add and mul 256 256 256
T2 . load and store 128 128 128
T3/T4/TS . memory hierarchy 0/0/0 2/0/0 2/4/0 2/4/10
Prediction GFLOPS by PRF 5.4 5.4 5.4
Prediction GFLOPS by ECM 5.4 5.4 5.4
Measured GFLOPS 5.22 5.28 5.28 5.27

From the performance analysis given above, it can
be seen that, regardless of the data at any memory hi-
erarchy, the largest cost of a 1D convolution is the
computational instruction (T1). Next, this paper will
introduce different optimization methods, and analyze
the optimized performance.

4.1.3 Optimization method and modeling analysis

By comparing the overhead of each phase, this
paper can see that the T1 becomes a bottleneck. From

the Fig.4, the performance reaches the scalar peak
which means there is no data dependence in the calcu-
lation process, so the optimal GFLOPS can be achieved
when using SIMD by feedback optimization phase in
Fig.4(b). For the current machine platform, it sup-
ports SSE for 128 bit and AVX2 for 256 bit. So this pa-
per will implement optimized version for AVX2 instruc-
tion with unaligned data and give the performance pre-
diction. The pseudo-code is given in Algorithm 1.

Algorithm 1 AVX2 unroll unaligned

Input; IN[ ], length, KERNEL[ ], kernel _ length;
Output: OUT[ ]
Input: IN[ ], length, KERNEL[ ], kernel _ length;
Output: OUTY ]

data _ block «— _mm256 _loadu _ps(in + data _of fset +1 +m);
acc0 < _mm256 _ f madd _ ps(kernel _reverse[ k + 1 + m], data _block, acc0) ;
data _ block «— _mm256 _loadu _ps(in + data _of fset +1 +m +8);

accl < _mm256 _f madd _ ps(kernel _reverse k + 1 + m], data _block, accl) ;

1. _ m256 kernel _reverse[ kernel _ length | (aligned) ;
2. for i =0; i <kernel _length; i + + do
3. kernel _reverse[i] «— mm256 _broadcast _ss
4. (& KERNEL] kernel _length —i —1])
5: end for
6. for i =0; i < (length — kernel _length +1); i + =16 do
7. acc0, accl«—_ mm256 _ setzero _ps( ) ;
8. for k =0; k <kernel _length; k+ =16 do
9. data _of f set — 1 + k;

10; for [=0;1l<4;1+ + do

11. for m=0; m<16; m+ =4 do

12,

13;

14,

15

16: end for

17. end for

18 end for

19. _ mm _ storeup s(out +i, acc) ;

20: end for

For 16 iterations of the program, it will produce
16 x2 addition and 16 x 2 muliiplication instructions.
It also produces 16 x2 loadu and 2 storeu instructions
and 7 additional addition operations. Therefore, the
cost cycle of all addition and multiplication instructions

is 16 x2 +7 =39. By using AVX2 instruction and data
is unaligned, the cost cycles of access instruction is 16
x2 x2/2 =32. The GFLOPS performance is given in
Table 3.
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Table 3 GFLOPS performance in different data sizes for naive code, and comparison

with PRF, ECM and measured

L1 12 L3 MEM
T1. add and mul 39 39 39 39
T2 . load and store 32 32 32 32
T3/T4/TS . memory hierarchy 0/0/0 2/0/0 2/4/0 2/4/10
Prediction GFLOPS by PRF 35.45 35.45 35.45 28.80
Prediction GFLOPS by ECM 35.45 35.45 35.45 28.80
Measured GFLOPS 34.48 34.27 34.28 27.53

4.1.4 Optimization guidance

After the previous experiments, this paper finds
that the best optimization scheme depends on the sup-
ported instruction set and size of the image data set.
From Fig. 6, this paper extends to predict performance
from SSE to AVX2 with aligned memory access or not
for different data sizes. Then this paper can clearly ob-
serve that the SSE instruction set can achieve good
scalability. When using the AVX2 instruction set, data
transmission begins to affect performance with the in-
crease of data size, then there is no way to achieve the
peak of floating-point calculation, therefore, using
AVX2 instruction set cannot linearly improve perform-
ance. As aligned memory access needs addition data
storage, the method is only efficient with a small
amount of data size. So the feedback guideline recom-
mend developer to use vector instruction with unaligned
access and increase the memory transmission optimiza-
tion with AVX2 support.

40
i =)= naive
1 C H === SSE_Aligned
O Oy i (with 4 times data size)
359 : —C= SSE_Unaligned
4 i =Cm AVX2_Aligned
e e (with 8 times data size)
30 avxz == AVX2_Unaligned
 aligned ) . I
E AVX2 is better than SSE t
superior I H
25+ \ H i
»n o ;
£ | |
20 - N H
;.T].. 20 PRIty
Qo N \ OOy
15 o B ma
SSE N B
1 atignda NI ;
10 —| superjor N i
Sg—o—o—o—f=o=g
§ ] O o o e e }
0 L i |
L1 12 L3 MEM

Image data size

Fig.6 Modeling and prediction of various instruction

support and date sizes

4.2 SpMV

In this section, this paper will use 3 627 matrices
in the Florida sparse matrix library''*! to verify the PRF
model and compare with ECM model (as ECM releases
Kerncraft and Pycachesim, so this paper could only use
these 2 tools and the idea of the ECM paper as much as

possible to model SpMV) , find bottlenecks and pro-
pose optimization scheme. Finally, this paper chooses
the optimal implementation with some randomly select-
ed matrices.

4.2.1

The sparse mairices this paper used to model cov-

Test matrices

er all the Florida sparse matrix library. And these ma-
trices come from a wide variety of applications with dif-
ferent sparse distribution characteristics. Similar to
earlier work on SpMV, the CSR kernel also use row
decomposition, loop unrolling and software prefetch-
ing. Some randomly selected matrices are used in pre-
vious papers””'’ | and the bar matrix is extracted from a
real case of the actual problem. In real-world applica-
tions, 64 bit floating point is usually selected for better
precision.
4.2.2 Performance prediction and bottlenecks

The pseudo-code for CSR-based SpMV is given in
the left of Fig. 7. For process phase, this paper builds
data dependence DAG on pseudo-code, and by using
multiple registers, compiler can generate independence
code as shown in the right of Fig.7. Then almost all

instructions can execute pipeline.

(k=0:k<A numRows:k++){
double tmp=0.0;

(=A.row_ptr[k];j<A.row_p
tr[k+1];j++){
tmp+=A_vals[j]*X[A CO]J)[['D]-

I:

}
©2C
) Q

Fig.7 Pseudo-code and DAG for CSR-based SpMV

For a sparse mairix, its row, column and nnz is
R, C and NNZ, then the size of integer array A. row _
ptris (R +1) x4 Byte, the size of integer array A. col
_index is NNZ x 4 Byte, the size of double array
A. value is NNZ x 8 Byte, the size of the double array
for vector X is C x 8 Byte. The red place in pseudo-
code is multiplication and addition, respectively.
There are NNZ ADD and NNZ MUL instructions, while
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the upper place indicates memory access, A.row _ pir
needs (R + 1) LOAD instructions, A. col _ index
needs NNZ LOAD instructions, A. value needs NNZ
LOAD instructions, vector X needs NNZ LOAD in-
structions, the output vector B needs R STORE in-
structions , it has a total of NNZ ADD, NNZ MUL, 3 x
NNZ LOAD and (R + 1) STORE instructions. Mean-
while, all instructions can execute pipeline. By
Eq. (1), the time spent on calculation units is NNZ
cycles and the time spent on memory access units is 1.
5 x NNZ cycles. The floating-point operations is NNZ
(ADD) + NNZ(MUL) =2 x NNZ.

For RAM phase, the main uncertain time cost
needs to model is varieties data transmission of vector
X for kinds of sparse matrices. Then, this paper di-
vides the data of matrix and vectors by the size of cache
line and mark, as regular and irregular respectively.
According to the RAM phase mentioned in Section 2,
this paper builds a cache simulator by reading hardware
parameters of the target machine, such as cache sizes

Prediction-GFLOPS-ECM

and group associations. The simulator reads the marked
data blocks in turn and records the cache misses.
Therefore it simulates regular memory access of the
CSR matrix with prefetching and out-of-order access of
the vector.

The GFLOPS of a special matrix is finally obtained
by Eq. (5). As shown in Fig.8, the abscissa of all
sub-graphs represents the degree of sparsity of the ma-
trix, and it is sorted from small to large in order, and
the ordinate of Fig.8(a) represents the error rate of
simulated values to measured data for GFLOPS. When
the real value is the same as the predicted value, the
error rate is 0% , so the neighborhood of 0% repre-
sents that this model can produce fairly accuracy pre-
diction. The ordinate of Fig.8(b), (c¢) and (d) re-
presents the ratio of simulation to measured data for L1
miss, L2 miss and L3 miss and the rate of 1 represents
perfect prediction. The measured L1, [2, and L3

cache misses used PAPI’ s'* statistics.

ERROR_RATE

Prediction-L2_miss-PRF

« Prediction-L.2_miss-ECM

PRECISION

Prediction-L1_miss-PRF * Prediction-L1_miss-ECM

PRECISION

(b) T3 : Predicted L1_miss

“sparsity

+ Prediction-L3_miss-ECM
o i ===

Prediction-L3_miss-PRF
o X3 y

.t :!-E“ .

100

PRECISION

(c) T4 : Predicted L2_miss

’ mS;;:sliy B

Sﬁar’sny

(d) TS : Predicted L3_miss

Fig.8 Single core PRF model for SpMV on 3 627 sparse matrices

Through the observations, for Fig.8(a), when
the sparsity is less than 0. 0002 or greater than
0.00045, about half of the points appears between 0. 5
and 1.5 which is slightly better than ECM. When the
sparsity is between 0. 0002 and 0. 00045, the predic-
tions are significantly better than the ECM model, and
the error rate of prediction is more than twice as small
as the ECM. For sub-graph Fig.8(b), (c¢) and (d),
it is found that most of the prediction data are concen-
trated near the rate of 1, which is obviously contrasted
with ECM, and it is also the main reason why GFLOPS
prediction accuracy is better than ECM. But there are
several reasons for the predictions not to exactly agree
with measurement. (1) The real cache replacement

policy is unknown. (2) The actual throughput is not a
constant. However, the proposed method can also
achieve high prediction accuracy with Eq. (5) and
cache simulator.
4.2.3 Feedback performance optimization

Analyzing the performance of SpMV, this paper
found that the max time and the bottleneck is (T3 + T4
+T5). As the CSR format matrix results in a large
number of repeated data transmission of slice vector X,
by changing the format of sparse mairix, this paper can
increase locality of vector X and reduce matrix index
transmission, thus it can reduce the time of data trans-
mission and increase the efficiency of floating-point op-
eration.
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So this paper randomly selects 12 matrices and
one engineering matrices-bar. Through modeling, this
paper finds that the CSR format causes a high L1 and
L2 cache miss, then T3 is about 1. 8 times than T4 and
T4 is about 3. 9 times than TS, resulting in a large
time of data transfer. So this paper thinks of ways to
optimize (T3 +T4).

For many solutions for cache optimization, register
blocking is a typical technique for improving data re-
use. The sparse matrix is logically divided into blocks
and those blocks usually contain at least one non-zero.
SpMV computation proceeds block-by-block. For each
block, this paper can reuse the corresponding elements
of the vector X by keeping them in registers to increase
temporal locality. Register blocking uses the blocked
variant of compressed sparse row storage format and it
is also called BCSR for short. Blocks within the same
block row are stored consecutively, and the elements of
each block are stored consecutively in row-major order.
BCSR potentially stores fewer column indices than CSR
(one per block instead of one per non-zero). The
effect is to reduce memory traffic by reducing index
storage overhead and reusing the vector slice. Then the
T3 and T4 and even TS5 can be reduced. However, a
uniform block size may require filling in explicit zero
values, resulting in extra computations and data traf-
fic. Based on the above principle, the feedback opti-
mization is implemented based on BCSR format.

Now, this paper applies the PRF model to the BC-
SR format. By reading the mairix to cache simulator,
this paper can get the cache misses and increase zero
elements calculation, and finial put forward the optimal
block shapes, then the partitioning scheme is given. In

Fig. 9, this paper models BCSR format for selected 18

5 E==] Hand tunning by BCSR
EZZ PRF tunning by BCSR E
EZA original B g F
% =
H o Bk
23] o HE HEE
= K o 4 H b 5
524 [ =kl N OB R KR E
1 K e o] I 4 % B R RK 5
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Fig.9 Overall speedup of test matrices by optimization suggestion
of PRF model and hand tuning by BCSR format

matrices, gives recommendation with an average speed-
up of 173. 79% and compares with hand tunning for
BCSR. For the rail4284 matrix, modeling result find
that the matrix does not have blocking characteristic,
so traditional CSR can achieve better performance.
Compared to the direct select optimal parameter by 64
SpMV time, the method greatly saves the overhead of
selecting the optimal parameter by 12 SpMV time, so
the model greatly improves the efficiency of feedback
optimization.

4.3 Sn-sweep
4.3.1

In particle transport simulations, radiation effects
are often described by the discrete ordinates (sn) form

Sn-sweep operation

of Boltzmann equation. In each ordinate direction, the
solution is computed by sweeping the radiation flux
across the grid. Sn-sweep operations have been widely
used in radiation transport, radiation effect and many
other high energy density plasma physics applications.
For scanning algorithm, sn-sweep is an essential exam-
ple of calculating the relationship between the influ-
ences of adjacent elements. The main process flow of
sn-sweep is to sequentially calculate the influence of
neighboring elements and update the surrounding ele-
ments. The left side of Fig. 10 shows a core function of
sn-sweep, it needs to multiply the left and upper ele-
ments by 2 weights and add the sum to the current ele-
ment, then one iteration is to complete corresponding
calculation of all the mesh.

(n=0; n<ncells; nt++){
filindex] = (qnw[index0]
+cl*fi[index i up]
+c2*fi[index j up]
+qs[index1])*(cO+sgm_t[index1]);{
} Data dependence

Fig.10 Pseudo-code and DAG for sn-sweep

4.3.2 Performance prediction and bottleneck analysis

In the process phase, the pseudo-code is trans-
formed into a DAG, and it is calculated by the line or-
der in each iteration. This paper can see that when cal-
culating the next element, the result of the previous el-
ements must be calculated. This will lead to the pipe-
line stall. Fortunately, the out-of-order engine compo-
nent of the current processor can only mitigate the re-
strict of data dependency to some extent. For this
case, the calculation of an element requires 4 addi-
tions, 3 multiplications, 5 loads and 1 store instruc-
tion. Since the pipeline needs to wait for the result of
previous elements, it still takes 3 cycles to get an addi-
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tion or multiplication result in the worst case. In RAM
phase, all data access is regular and the data is gener-
ally small, it does not cause any data transmission, so
RAM phase time is 0.

By Eq. (5), the worst GFLOPS is (3 +4) x2.7
/max((4 x3),2.5) = 1.575 Gflops and actual
measurement of 1. 79 Gflops with out-of-order enable.
Then this paper uses ECM to model sn-sweep by Kern-
craft or Intel architecture code analyzer (IACA), it
predict the GFLOPS is (3 +4) x2.7 / max((4 x1),
2.5) =4.725 Gflops with the ideal instruction through-
put. The reason is the data dependencies between in-
structions are stored in an index _ i _ up array which

ECM fails to find and model it. Then from Table 4,
this paper extends to predict performance with different
data size from L1 to MEM by PRF and ECM model.
The calculation of one point requires data transfer of
5th-8th of the cache line. This paper can clearly ob-
serve that the prediction accuracy of the PRF is better
than the ECM when the amount of data is less than the
L3 cache size. So this paper uses the modeled time to
apply the feedback optimization phase, and it can be
seen that the performance cannot reach the scalar peak
as the T1 takes extra time, so the model feedback
pipeline is the primary bottleneck which needs to be
optimized by Fig.4(a).

Table 4 GFLOPS performance in different data sizes for naive code,

and comparison with PRF, ECM and measured

L1 12 L3 MEM
T1: add and mul 4x3 4x3 4x3 4x3
T2 . load and store 5/2 5/2 5/2 5/2
T3/T4/T5 ; memory hierarchy 0/0/0 % x (2/0/0) % x (2/4/0) % x (2/4/10)
Prediction GFLOPS by PRF 1.575 1.575 1.575 1.512
Prediction GFLOPS by ECM 4.725 4.725 3.024 1.512
Measured GFLOPS 1.790 1.773 1.821 1.623

4.3.3 Optimization method and feedback

By comparing the overhead of each phase, this
paper can see that the computation instruction becomes
a bottleneck, and the optimized GFLOPS can be
achieved when the instruction pipeline is optimized; (3
+4) x2.7 / max((4 x1),2.5) = 4.725 Gflops.
This paper found that there is no data dependence be-
tween the diagonal elements and that the calculation or-
der does not affect the final result by analyzing the
DAG. As shown in Fig. 11, this paper improves the al-
gorithm to optimize the instruction pipeline by using the
diagonal calculation order, and rearranges partial in-
struction with adding some calculation of subscripts,
then the optimized GFLOPS is 4.43 Gflops. Based on
this optimization, this paper can continue model sn-
sweep, analyze bottlenecks by feedback optimization
and increase SIMD operation to boost performance.
Then this paper accelerates the addition and multiplica-
tion instructions by AVX2, and achieves a certain de-
gree of vectorization and reaches the optimal perform-
ance of 10. 53 Gflops. Through the experiment, this
paper finally converts a data dependence problem into
memory access instruction bottleneck. At the same
time, the inaccurate model prediction will affect the
developer to select the corresponding optimization
method, resulting in the selected method does not have
any optimization effect. This discovery also shows that

the bottleneck will change under different optimization
methods, so this paper needs to model optimized kernel
and explore more in-depth optimization. That is the
meaning of feedback optimization.

oo &
DH_T
S
e

Fig.11 The computational order of eliminating data dependencies

by feedback optimization
5 Conclusion

The PRF model is described in this paper which
provides an insightful perspective to predict compute
performance and to generate targeted optimization guid-
ance. This work introduces the PRF performance mod-
el, and described in detail about the process phase,
RAM phase and feedback optimization phase. Then
this paper applies the model to convolution, SpMV and
sn-sweep which are typical representatives of regular to
irregular memory access and data dependence. It can
continue to cover more applications. Table 5 compares
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with Roofline model and ECM model, the proposed
PRF model greatly improves predict accuracy for data

dependence and irregular memory access by newly de-

signed DAG and cache simulator, and achieves com-

prehensive feedback ability.

Table 5 Comparison with 3 performance models from different perspectives

Method Instruction count Dependence analysis Regular Irregular Feedback

Roofline X X X X X
ECM v X 4 - X
PRF v v v v v

The hook indicates the model has this function, the fork represents the model does not have this function and the bar represents

incomplete function
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