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Abstract

Parallel vector buffer analysis approaches can be classified into 2 types: algorithm-oriented par-
allel strategy and the data-oriented parallel strategy. These methods do not take its applicability on
the existing geographic information systems ( GIS) platforms into consideration. In order to address
the problem, a spatial decomposition approach for accelerating buffer analysis of vector data is pro-
posed. The relationship between the number of vertices of each feature and the buffer analysis com-
puting time is analyzed to generate computational intensity transformation functions ( CITFs). Then,
computational intensity grids ( CIGs) of polyline and polygon are constructed based on the relative
CITFs. Using the corresponding CIGs, a spatial decomposition method for parallel buffer analysis is
developed. Based on the computational intensity of the features and the sub-domains generated in
the decomposition, the features are averagely assigned within the sub-domains into parallel buffer
analysis tasks for load balance. Compared with typical regular domain decomposition methods, the
new approach accomplishes greater balanced decomposition of computational intensity for parallel
buffer analysis and achieves near-linear speedups.
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0 Introduction

A buffer in geographic information systems ( GIS)
is defined as the zone around a geometric geographic
feature , measured in units of distance or time''’. Buff-
er analysis plays an important role in many applications
of GIS, such as environmental measurement and man-
23) " human health™*]

planning'®” | geographic data processing and represen-

agement , landscape and urban
tation.

According to the parallel sirategies for spatial
analysis, existing studies can be classified into 2 cate-
gories: the algorithm-oriented parallel strategy and the
data-oriented parallel strategy.

The first is the algorithm-oriented parallel strate-
gy, a strategy that generally changes the current spatial
algorithms to make full use of the parallel computing
framework to achieve better parallel performance "’ .
Some researchers proposed a parallel buffer algorithm
based on area merging and message passing interface

(MPI) to improve the performance of buffer analysis
on processing large datasets. A visualization-oriented
buffer analysis method which was developed based on a
fully optimized hybrid-parallel processing architecture
was proposed by Ma et al. [’
ficient spatial-index-based buffer generation method to

, they put forward an ef-

generate the results.

The second category is the data-oriented parallel
strategy, which mainly focuses on data partition and
data organization to suit the corresponding parallel
framework. Some researchers developed a distributed
spatial index based on Apache Storm, which is an
open-source distributed real-time computation sys-
tem''. There are many great improvements in spatial
index and data skew in Hadoop. A cluster-computing-
oriented parallel vector buffer generating algorithm was
proposed by Shen et al. [*! | which contains a data par-
tition method based on Hilbert space filling curve.

These parallel approaches mentioned above have
obtained high performance of spatial operations. How-
ever, the improvement of each existing algorithm is a
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very complex work, and it requires vast redevelopment.
In order to address the problem, a spatial decomposi-
tion approach for vector buffer analysis is proposed.

The rest of the paper is organized in the following.
Section 1 articulates the spatial decomposition ap-
proach. Section 2 presents a series of experiments to
demonstrate the effectiveness and performance of the
new approach proposed by this paper. Conclusion and
future work are given in Section 3.

1 Methods

1.1 Construction of computational intensity model
The relationship between the computing time and
the number of a feature’ s vertices for the retrieve,
buffer and write steps of polyline and polygon buffer
analysis can be represented by linear model ™",
Thus, these models can be used to generate the com-
putational intensity transform functions ( CITFs) , so as
to estimate the computational intensity of generating a
group of polyline and polygon buffer analysis results.
First, the sub-CITFs of the single polygon or polyline
feature can be built, as shown in Eq. (1) and Eq. (2).

CL(x) = (a, +a, +a;)x + (b, +b, +b;)

(1)

CP(x) = (a, +as +ag)x + (b, +bs +b)

(2)
where, CL, CP are the computing time of the polyline
and polygon buffer analysis respectively; x is the num-
ber of vertices of a polyline or a polygon feature; a,,
a,, a;, a,, as, ag are the slope of the functions of 3
steps respectively; and b,, b,, by, b,, bs, by are the
intercept respectively.

Then the overall CITFs can be constructed for a
group of polylines and polygons.

WL = >  CL(x,) (3)

WP = Zi=1CP(xi) (4)
where, WL is the overall computing time for a group of
polylines, WP is the overall computing time for a group
of polygons, n is the number of polylines or polygons,
%; 1s the number of vertices of the polyline or polygon
feature i.

The CITFs can be used to estimate the computa-
tional intensity of generating buffers for a group of poly-
lines or polygons. It is significant for the spatial repre-
sentation of buffer analysis computational intensity.

1.2 Spatial representation of computational intensity

In order to ensure the effectiveness of the parallel
scheduling method, the spatial distribution of computa-
tional intensity of buffer generation must be properly re-

presented. In this research, the computational intensity
surface (CIS) approach proposed by Wang et al. "*/ is
exploited to solve this issue. The spatial computational
domain of a vector layer is divided into a group of regu-
lar lattices so that a computational intensity grid ( CIG)
for buffer analysis can be generated. A 4 x4 CIG of
polygon dataset is shown in Fig.1, where W is the
computational intensity of the lattice at row ¢ and col-
umn j in the grid. W, can be calculated by Eq. (3) and

Eq. (4) for polylines and polygons respectively.

Wi | War | Wi | Wy

Wy, Wy, W, W,
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Fig.1 A 4 x4 CIG for the polygon buffer analysis

1.3 Spatial decomposition for parallel buffer analysis

The ideal decomposition for parallel buffer analy-
sis is to ensure that every task has similar computation-
al intensity, so that all the parallel tasks can be com-
pleted simultaneously. However, regular decomposition
strategies only pay attention to decomposing sub-do-
mains evenly in areas. Vertical decomposition ( VD)
method divides the whole domain to equally sized col-
umn-like sub-domains (Fig.2(a)), while horizontal
decomposition (HD ) generates equally sized row-like
sub-domains (Fig.2(b) ). And the vertical and hori-
zontal decomposition (VHD) generates the block-like
sub-domains by both columns and rows (Fig.2(c)).
These regular decomposition methods do not take the
spatial distribution of the features in the dataset into
consideration, and just decompose the computational
domain to sub-domains evenly in areas. If the features
are not homogeneous in space, the regular decomposi-
tion methods may result in great load imbalance among
sub domains. Therefore, the spatial decomposition
strategy based on computational intensity is proposed to
address the problem.

The spatial decomposition (SD) method is based
on HD or VD method. This approach can effectively
divide spatial computational domain into sub-domains
with same computational intensity. As shown in Fig. 3,
after CIG is formed, the sum (W,, W,, W,, W,) of
the computational intensity of the lattices is firstly com-

puted for each row. W, can be calculated as the over-

total

all computational intensity, and W, can be calculated
as the computational intensity of each sub task. Then,
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the computational intensity grid needs to be scanned
row by row, the computational intensity of each row
All of the rows will be

should be compared with W,

ask *

scanned and all sub-domains with same computational
intensity will be generated.

Sub-domain 4
Sub-domain 4 | Sub-domain 3
— o o < X
.g § .§ .§ Sub-domain 3
S8 |3 |3
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Sub-domain 1 | Sub-domain 2
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(2) VD method (b) HD method (c) VHD method

Fig.2 Three regular decomposition methods
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Fig.3 The workflow of the SD method

2 Experiments

2.1 Experimental environment and dataset de-
scription

In order to evaluate the performance of the pro-

posed method, a group of experiments are conducted in

the parallel buffer analysis framework on QGIS plat-

forms. SD is compared with regular decomposition

methods. The computing nodes are composed of 2 Intel
Xeon E5620 8-core CPUs at 2.4 GHz and 16 GB of
memory. And the experiments are conducted by QGIS
SDK 3.4.8.

Aiming to demonstrate the availability and effi-
ciency of proposed SD methods, 2 real-world vector
datasets are adopted in the experiments ( Table 1).
Dataset A and dataset B present the same geographic
objects with different feature type.

Table 1  Description of vector dataset
Dataset name Feature type Number of features Number of vertices Size (MB)
Dataset A polygon 93 368 3994 495 127
Dataset B polyline 100 574 3 994 495 134

2.2 Experiments and performance assessments
Firstly, the API of QGIS is selected to conduct the

parallel buffer analysis task with varying numbers of

threads. The sub-domains of parallel buffer analysis

task are generated by VD, HD and SD respectively.
The VD and HD methods divided the computational do-
main by area. These methods can be easily realized,
but they will lead to great load imbalance. In this
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work , 32 x32 CIGs are used to conduct a group of ex-
periments. Three various 8 sub-domains decomposition
results of dataset A and dataset B are shown in Fig. 4

and Fig.5. The decomposition results of VD and HD

are uneven in computational intensity, while the com-
puting load of sub-domains generated by SD is almost
equal.

|
1

N EEw
N BN

Fig.4 Three types of decomposition for dataset A

| 5 I [0 1 G 5

(& VD (b) HD

(c) SD

Fig.5 Three types of decomposition for dataset B

A serial buffer analysis program using dataset A
and dataset B is conducted to offer the benchmark for
assessing the performance of the parallel program. The
computing time of serial buffer analysis of dataset A is
23076.335 ms, and that of dataset B is 50 272.347 ms.
A set of experiments are carried out by using the paral-
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lel buffer analysis program with various numbers of
threads (2 — 8). As shown in Fig.6, the computing
time decreases with the increasing number of threads,
and SD achieves the best performance. Fig.7 shows that
SD achieves near-linear speedups on dataset A and

dataset B, and the speedups are greatly higher than that
35000
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Fig.6 Computing times of 3 decomposition methods
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Fig.7 Speed-ups of 3 decomposition methods

of VD and HD methods. The reason of near-linear
speedups of SD is that the spatial distribution of com-
putational intensity is taken into consideration. The
new approach ensures that the workload is averagely
assigned to parallel computing nodes.

3 Conclusion

With the growing volume of spatial data, existing
vector buffer analysis algorithms cannot meet the de-
mands of fast data processing. In this work, a spatial
decomposition for vector buffer analysis based on spatial
computational intensity is proposed, so as to generate
balancing sub-domains in parallel environment.

With the relationship between the number of verti-
ces and the buffer analysis computing time, the CITFs
are generated to estimate the computational intensity.
Based on the CITFs, CIGs of polyline and polygon are
constructed to represent the spatial distribution of com-
putational intensity for buffer analysis. The computa-
tional domain can be effectively divided by the spatial
decomposition approach developed in this work.

Future work will focus on how to partition the vec-
tor features distributed in the adjacent area of 2 sub-do-
mains, so as to further address the balance partition
problem for vector data spatial analysis.
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