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Abstract

In the uplink grant-free non-orthogonal multiple access (NOMA ) scenario, since the active us-
er at the sender has a structured sparsity transmission characteristic, the compressive sensing recov-
ery algorithm is initially applied to the joint detection of the active user and the transmitted data.
However, the existing compressed sensing recovery algorithms with unknown sparsity often require
noise power or signal-to-noise ratio (SNR) as the priori conditions, which greatly reduces the algo-
rithm adaptability in multi-user detection. Therefore, an algorithm based on cross validation aided
structured sparsity adaptive orthogonal matching pursuit ( CVA-SSAOMP) is proposed to realize
multi-user detection in dynamic change communication scenario of channel state information (CSI).
The proposed algorithm transforms the structured sparsity model into a block sparse model, and with-
out the priori conditions above, the cross validation method in the field of statistics and machine
learning is used to adaptively estimate the sparsity of active user through the residual update of cross
validation. The simulation results show that, compared with the traditional orthogonal matching pur-
suit (OMP) algorithm, subspace pursuit ( SP) algorithm and cross validation aided block sparsity
adaptive subspace pursuit (CVA-BSASP) algorithm, the proposed algorithm can effectively improve
the accurate estimation of the sparsity of active user and the performance of system bit error ratio
(BER) , and has the advantage of low-complexity.

Key words: non-orthogonal multiple access (NOMA ) , multi-user detection, cross validation

structured sparsity (SP) , orthogonal matching pursuit ( OMP)

0 Introduction

Multiple access technology has been regarded as
one of the key technologies of each generation of wire-
less communication system. Specially, orthogonal mul-
tiple access (OMA ) is used in current 4G systems,
and that is orthogonal frequency division multiple ac-
cess (OFDMA). In OMA, the number of supported
users is strictly limited by the available orthogonal re-
sources, which is difficult to meet the requirements of
large-scale connections in the future communication

") In order to meet this challenge, non-or-

systems
thogonal multiple access (NOMA ) has been actively
studied"'*!,  which

through non-orthogonal resource allocation. The uplink

can achieve system overload
transmission is scheduled by the base station (BS) in
the request permission process, there will be a large
number of transmission delay and signaling overhead

problems. In the large-scale connections, these prob-

lems becomes more worse or even unacceptable.

In order to solve the problems above, the grant-
free transmission is expected in the uplink NOMA sys-
tem, where users can send data randomly and BS does
not know which users are active, so the active status of
users must be detected. Because of the characteristics
of sporadic communication in the Internet of Things
(IoT) , the active user presents sparsity, and the com-
pressive sensing (CS) theory”’ can be introduced to
recover the sparse signals. Therefore, the multi-user
detection ( MUD ) problem can be converted into a
sparse signal recovery problem. However, in these CS-
based MUD schemes, signal detection is typically de-
tected independently at different time slots, where the
correlation of active user at different time slots is not
considered, and the number of active user must be the
same at several consecutive time slots. Therefore,
Ref. [4] proposed the joint signal detection at several
consecutive time slots in a frame, which can improve
the system multi-user detection performance by utilizing

(D  Supported by the National Natural Science Foundation of China (No. 62001001 ).
2 To whom correspondence should be addressed. E-mail; xulei@ ahu. edu. cn

Received on Feb. 12, 2020



HIGH TECHNOLOGY LETTERSI Vol. 27 No. 1|Mar. 2021

11

frame-by-frame sparsity. Ref. [5] proposed a multi-
user detection iterative support detection (ISD) algo-
rithm. Based on the multi-user ISD algorithm, Ref. [6]
proposed the structured iterative support detection
(SISD) algorithm, which uses the structured sparsity
of active user to jointly detect the number of active user
and the transmitted data in the uplink grant-free NOMA
system. An approximate message passing and expecta-
tion maximization joint ( Joint-EM-AMP) detection al-
Based on Ref.[6],

Ref. [ 8] focused on the impact of the active user num-

gorithm was proposed in Ref. [7].

ber and the system overload rate on the multi-user de-
tection performance of the system, and made some cor-
Ref. [9]

combined cross validation method in statistics and ma-

responding in-depth analysis. effectively
chine learning with the estimation of sparsity in the
compressed sensing recovery algorithm. A cross valida-
tion aided block sparsity adaptive subspace pursuit
(CVA-BSASP) algorithm was proposed in Ref. [10].
The CVA-BSASP algorithm realizes the adaptive sparsi-
ty estimation of active user by using the cross validation
method in the statistics and the machine learning when
the noise power or the signal-to-noise ratio is not re-
quired as a priori condition. However, CVA-BSASP
algorithm assumes that the channel state information
(CSI) of muliiple time slots in a frame remains un-
changed, which is not in accordance with the actual
communication scenario. Moreover, when the maxi-
mum sparsity is satisfied, the iteration is stopped, so a
large number of unnecessary iterations need to be con-
tinued after the algorithm estimates the actual sparsity
of active user. This not only greatly increases the com-
plexity of the algorithm, but also reduces the adaptabil-
ity of the algorithm.

In this paper, the CVA-SSAOMP algorithm is pro-
posed combined with the actual communication scenar-
io in which the intra-frame multiple time slots channel
state information ( CSI) dynamically changes, and
based on the structured sparsity model of the active us-
er at the transmitting end. This algorithm transforms
the structured sparsity model into a block sparse struc-
tured model equivalently. For the situation that the
sparsity of active user is unknown, the cross validation
method is used to realize the adaptive estimating the
sparsity of active user. When the cross validation meth-
od estimates the actual sparsity of active user, the cor-
responding cross validation residual is minimum. This
feature can be used as the condition for early termina-
tion of the iteration. In addition, combined with the
low-complexity advantages of OMP algorithm, the over-
all complexity of multi-user algorithm can be reduced,
and the adaptability of the algorithm can be further im-

proved. Simulation results show that the proposed algo-
rithm achieves good multi-user detection performance.
Notation; uppercase and lowercase bold letters re-
()"
b

|, respectively represent

present matrices and vectors respectively.
()" ()" and |
transpose, conjugate transpose, matrix pseudo-inverse
and norm. supp( * ) denotes a support set.

1 System model

A classic uplink NOMA system framework with
one BS and K users'® is considered, where both the
BS and the users are equipped with a single antenna.
The transmission symbol x, of user k£ is modulated onto
a spreading sequence s, of length N. Considering the
overload of N < K system, the overload rate is K/N,
and the number of users can be greater than the length
of the spreading sequence. After that, the signals from
all active user are superimposed, and then transmitted
through NV orthogonal OFDM subcarriers. The received

signal at BS can be expressed as
K
y=YGsx, +v =Hx +v (1)
i

where, y = [y,, v,, "+, ¥y]" denotes the received
signal on the N OFDM subcarriers. G, = diag(g,),
g = [Eas Gops s g‘w]T denotes the channel gain
of the corresponding user k on the N OFDM subcarri-
ers, obeying the complex Gaussian distribution with the
mean of 0 and the unit variance. s, = [s,,, $,,,"",
sN,,ﬁ]T is the spreading sequence of the k-th user, and
the length is N. Where H = [Gs,, G,s,, -, G |
is the equivalent channel matrix and the value of its el-
ements in the n-th row and k-th columns is h,, =
8nkSnpe X = [xli Xpyne

ted by all K users. v = [v,, v,,*+, vy]" denotes the

, %c] " is the signal transmit-

Gaussian noise vector on N OFDM subcarriers.

It is assumed that the active user and the inactive
user are completely synchronized in the entire intra-
frame data, in which case the active user set of consec-
utive time slots in one frame remains unchanged.
Therefore, the frame structured sparsity model of the
active user can be obtained'*'. Defining x"/' = [«x,,
%,,°+, x| as the signal transmitted by all K users at
J-th time slots, the active user support set of the j-th
time slots is supp(xm ), then there are

supp(x'"’) = supp(x"*') = -+ = supp(x"’)

(2)

The assumed x”' maximum level of sparsity (i.e. ,
the number of non-zero elements of x" ) is S, then the
support set X/ is defined as

TV = {k: b e 11,2, Kb, 2/ 20} (3)
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this denotes an index set of non-zero elements in x'/'.
According to the statistics data of mobile traffic'"’
even during busy hours, the number S of active user is
usually much smaller than the number K of all potential
users.

Consider reconstructing J time slots active user
1] , x[Z] o x[l] J
received signal [ym R ym TR yUJ 1, at J consecutive
time slots (e.g., J = 7 is considered in the LTE-ad-
vanced standard"'?') | so

YU = HOSU oy 212,00, ] (4)
Whelrey[jJ e ¥

transmit signal [ x' from J time slots

is the active user transmit signal at

NxK - .
C ™" is the equivalent

j-th time slots received. H"
channel matrix at j-th time slot, which is obtained by
multiplying the channel matrix and the spreading ma-
trix, and the channel matrix dynamically changes at

m~ Nx1

different time slots, which v/l e C ™! is the noise vec-

tor at j-th time slot.

2 Cross validation aided structured sparsi-
ty adaptive orthogonal matching pursuit
algorithm

The CVA-SSAOMP algorithm proposed in this pa-
per contains two parts.

Part one is structured sparsity model recombine.
The received signal [yt y2 e ] of T time
slots in Eq. (4) is connected end to end according to
the elements of each row, and then converted into one-
dimensional signal. At the same time, the equivalent
channel matrix [H'", H"™,---, H"' ], the transmis-
[1] , x[z} Lo xm ]
«, 1] of J time slots are adjusted ac-

sion signal [ x , and the noise signal
[v[ll , v[2] ,
cordingly.
Part two is signal reconstruction algorithm. Divide
the recombined J time slot received signals in part one
into data of length N, and N,. Data of length V,, is used
to adaptively estimate the sparsity of active user, and
data of length NV, is used for signal reconstruction. The

specific content is as follows.

2.1 Structured sparsity model recombine

Firstly, the structured sparsity model is recom-
bined to convert multiple time slots signal detection in-
to single time slots signal detection. The received sig-
nal [y, y'' o) y'7 of the J time slots in one
frame is rearranged to obtain a recombination signal Y,
and the corresponding adjusted equivalent channel ma-
wix [H" , H® - H' ] is rearranged to obtain P,

[1] [2]

rearranged signal [x"', x'°' -, x"'] to be recom-

bined to obtain X, rearranged noise signal [#t, »™2,

-+, ¥'17 to be recombined to obtain V.

The specific recombination method is as follows.
Recombining received signal of J time slots into

] [
Y =[5 5 e oo e 7T
(5)

Recombining the transmit signal of J time slots in-
to
[1] [2] [ (11 (2] 19t
X = [l &8 e 4U1 .. gIN G0 L 0N
(6)
Recombining the noise signal of J time slots into
(] 2] [J] (1] [2] Jiqr
V=1[o o Y ooy vy vy ]
(7)
Recombining the equivalent channel matrix of J

time slots into

[1] [1]
hy, 0 0 hyey 0 0
o . 0 - 0 . 0
[J1 L]
0 0 hL1 0 0 hl,K
P = : * -
[1] (]
h'y 0 0 hye, 0 0
o . 0 - 0 " 0
[J1 [
0 0 hI’N 0 0 hiV’K

(8)

Therefore, after the structured sparsity model is

recombined, the mathematical model obtained is ex-
pressed as

Y=PX+V (9)

~ NJx1
where Y e C "V~

P - ‘/C NJxKJ]

is the received signal of J time slots,
is the equivalent channel matrix of J time
slots, X e C "' is all the data transmitted by the K us-
ers at J time slots in one frame, and V e C"* is a
noise vector.

So far, the structured sparsity model has been re-
combined into a block sparsity structure. The multiple
time slots structured sparsity signal reconstruction in
Eq. (4) are converted into the reconstruction of the
single time slots structured sparsity in Eq. (9), and it
provides necessary preliminary preparation for the

CVA-SSAOMP algorithm designed below.

2.2 CVA-SSAOMP algorithm

The specific steps of the CVA-SSAOMP algorithm
are as follows.

Step 1 Recombine the structured sparsity model
to obtain the block sparse structure.

Step 2 Selection of training data and validation
data. The block sparse structure is segmented into
training data and validation data by cross validation.
The received signal Y after recombination takes vector
Y, e C" of length N, as validation data, vector Y,

e C " of length N, = JN — N,, as training data, cor-
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responding extended channel coefficient matrix is divid-
g  NepxJK N, xJK o e
edintoP, e C"**and P, e C"* and noise is di-
: ; ~ Nyxl Ny
vided intoV, e C** and V,, € C . Eq. (10) can

be obtained.

Yoa_ P v,
[Y] - [pw]X ¥ [V] (10)

Step 3

initial support set I is an empty set, and the initial re-

Initialize the iteration parameters. The

sidual r is received signal Y,. The initial sparsity of ac-
tive user is S =1, and the initial iteration number is n
=il

Step 4 Calculate the correlation matrix and find
the support set corresponding to the largest correlation

" ~ JKx1
coefficient. The vector w, w e C /**

is obtained by
calculating the inner product of the equivalent channel
matrix P, and the residual signal r of the n-th iteration
by Eq. (11). Then divide w into K groups and calcu-
late the energy of each group separately. All atomic in-
dexes corresponding to the largest energy group are
added to the support set T'.

w =Pl (11)

Step 5 The estimated signal € is recovered by
the pseudo-inverse matrix of Eq. (12) using the alter-
native support set I'.

() = (P(I)'Y, (12)

Step 6 Backtracking the update support set. Using
the recovered estimated signal C, select all the atomic
indexes corresponding to the S group with the largest
energy to obtain the updated support set A.

Step 7 The estimated signal X is recovered by
the pseudo-inverse matrix of Eq. (13). The backtrack-
ing updating support set A is used to recover the esti-
mated signal X whose sparsity is S, and the estimated
signal under this sparsity is stored.

X(A) = (P(A)TY, (13)

Step 8 The estimated signal residual r is upda-
ted by the Eq. (14) using the training data.

r=Y -P xX (14)
Step 9 If the updated residual value satisfies
| 7" < r" | ,, the support set is updated, the

number of iterations is increased by one, and the
process returns to Step 4 to continue the loop iteration
under the current sparsity with the new residual value,
otherwise Step 10 is executed.

Step 10 The cross validation residuals ¢ is cal-
culated using the validation data by Eq. (15), the
cross validation residual is stored, and S =S + 1, re-
turning to Step 4, continuing the iteration with the new
sparsity. The iteration is stopped when the cross vali-
dation residual is successively smaller than the subse-
quent four cross validation residuals.

c=Y -P,xX (15)

Step 11 Find the sparsity corresponding to the
minimum value of the cross validation residuals is the
actual sparsity of active user, and the estimated signal
corresponding to this sparsity is used as the recovery
signal.

The proposed algorithm has the following charac-
teristics. (1) Adaptive estimation of sparsity. In many
applications, residual-based iterative stop conditions
are widely used in compressed sensing recovery algo-
rithms with unknown sparsity. However, the residual
margin decreases monotonously, making it difficult to
determine the optimal termination point. By contrast,
the proposed CVA-SSAOMP algorithm can use cross
validation to estimate the sparsity level because the
cross validation residual typically has a minimum when
the estimated sparsity is equal to the actual sparsity
level. (2) Adaptability of algorithm. In the com-
pressed sensing greedy algorithm, the measurement
vector and the sparse transform base of the signal are
irrelevant, and all the measured values are evenly dis-
tributed to the respective observations. Therefore,
these observations have equal weights when reconstruc-
ting the signal, so partial observations can be used to

The proposed CVA-
SSAOMP algorithm can extract part of the observations

reconstruct the sparse signal.

as training data and it is used to reconstruct sparse sig-
nal. The remaining observations values are used as
cross validation data to replace the prior conditions of
noise level or sparsity to achieve the estimation of spar-
sity. In the algorithm, it is not necessary to set the
maximum sparsity as the stop iteration condition, which
makes the algorithm more adaptable.

2.3 CVA-SSAOMP algorithm with mean filtering

In Step 11 of the above algorithm, the sparsity
corresponding to the minimum value of the cross vali-
dation residuals is taken as the actual sparsity of active
user. In this process, there will be an error that the
sparsity corresponding to the minimum value of the
cross validation residuals is not the actual sparsity of
active user. This is because the noise affects the accu-
rate estimation of the sparsity of active user, and the
error estimation will directly affect the system BER per-
formance. Therefore, the mean filtering method in im-
age processing is used to take the average value of the
estimated sparsity of active user, approach the actual
sparsity of active user at low SNR, and remove a small
number of error at high SNR, thereby improving the
system BER performance.
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2.4 Algorithm complexity analysis

The analysis of the complexity of the CVA-
SSAOMP algorithm is as follows.

(1) The inner product of the NV, x KJ dimension of
the channel matrix and the N, x 1 dimension residual is
first calculated in Step 4, multiplied /N, times, added
N, — 1 times, and totaled KJ rows, and the total com-
plexity is KJ(N, + N, — 1). Then calculate the energy
of the K groups vector, and the computational complex-
ity is K(2J = 1). The two parts of the computational
complexity are added as KJ(N, + N, - 1) + K(2J -
1).

(2) The signal C is estimated by the least squares
method in Step 5. When the estimated sparsity of ac-
tive user is S, the support set I" has SJ atoms, the di-
mension of P, is N, x SJ, and the complexity of the
least squares estimation signal C is 4SJN..

(3) The grouping energy of the estimated signal €
is calculated in Step 6, and the computational com-
plexity is S(2J - 1).

(4) The least squares estimated signal X is calcu-
lated in Step 7. At this time, the support set has SJ at-
oms, the dimension of P,is N, x SJ, and the complexi-
ty of the least squares estimated signal X is 4SJN..

(5) Calculate the estimated signal residual com-
plexity is 2SJN, in Step 8.

(6) Calculate the complexity of the cross valida-
tion residuals is 2SJN,, in Step 10.

Adding the computational complexity of the above
parts, removing the smaller term, the single iteration
computational complexity of the CVA-SSAOMP algo-
rithm is O(2JN,K +8JSN, + 2J°SN + JK). The upper
limit of the number of iterations of the CVA-BSASP al-
- logp,. i, 1.58
- logCy - logCy
Ref. [10], where S = 2S is the maximum sparsity of
active user set in the algorithm. Thus, the upper limit
of the number of iterations of the CVA-SSAOMP algo-
rithm can be expressed as Loy ssione < (S + 4)min

— logp,,;, 1.55 + 6

- logCy ? = logCy
< Leyigsasp- The algorithm  complexity of CVA-
SSAOMP is O( Leyassaonr * (2JN K +8JSN, + 2J°SN +
JK)).

In the multi-user detection of J time slots in one

gorithm is Ly, possp < Smin( ) in

). This shows that Ly, ssiomr

frame, the complexity of the OMP algorithm is
O(2JSNK + 3]JS’N) , the complexity of the SP algo-
rithm is O(2JSNK + 6JS’N) , and the complexity of
the CVA-BSASP algorithm is O(Lgyypsusp = (2JN,K +
12JSN, + 2J°SN + JK) ), where N, = 450. The com-
plexity of the CVA-SSAOMP algorithm is O( Ly, ssiomp

- (2JN,K +8JSN, +2J°SN + JK) ). The calculation is
known O(2JN,K +8JSN, +2J°SN + JK) < O(2JN,K
+ 12J8N, + 28N + JK) , and Loyssuonr < Loyansuse:
Therefore, the complexity of the CVA-SSAOM algorithm

proposed in this paper is far less than the complexity of
the CVA-BSASP algorithm proposed in Ref. [10].

3 Simulation results and analysis
Monte Carlo method is used for system simulation

and the main simulation parameters in this paper are

listed in Table 1.

Table 1 ~ Simulation parameters
Parameters Value
Number of users (K) 200
Number of subcarriers ( N) 100
Number of active user (S) 20
Number of time slots (J) 7

Amount of cross validation data (N,,)

[140:20 :360 ]

The curve of system BER performance among dif-
ferent amount of cross validation data is shown in
Fig. 1. In which, the amount of cross validation data is
a period from 140 to 360, the sparsity of active user
(i. e., the actual number of active user) is S =20,
and SNR =8 dB. It can be seen from Fig. 1 that when
the amount of cross validation data is N, = 250, the
system BER performance is optimal. When the amount
of cross validation data V,, < 250, the increase in the
amount of cross validation data makes the estimation
accuracy rate of active user increase, thereby impro-
ving the system BER performance. When the amount of
cross validation data N, > 250 , the further increase in

107 F

10-3 k

BER

107*F

140 160 180 200 220 240 260 280 300 320 340 360
Amount of cross validation data

Fig.1 The curve of system BER performance among different

amount of cross validation data
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the amount of cross validation data reduces the amount
of data used to reconstruct the signal, resulting in a de-
crease in system BER performance.

The variation of cross validation residuals with the
estimated sparsity of active user is shown in Fig.2. In
which, the amount of cross validation data is N, =
250, the sparsity of active user (i.e. , the actual num-
ber of active user) is S =20, and the maximum sparsi-
ty of active user (i.e. , iterative stop sparsity) is set to
40. It can be seen from Fig. 2 that when the cross vali-
dation residual takes the minimum value, the estimated
sparsity of active user is the actual sparsity. When the
estimated sparsity of active user is greater than the ac-
tual sparsity, the cross validation residual shows a line-
ar growth trend. Based on the above characteristics,
after estimating the actual sparsity of active user, the
proposed algorithm does not need to continue to per-
form a large number of unnecessary iterations.

20
18}

16|

_.
=
T

—
58]
T

Cross validation residuals
=
(=]

s
6t
6~ SNR=2 dB
4} |—% SNR=4dB
~%~ SNR=6 dB
21 | - sNR=8 dB
0

0 4 8 12 16 20 24 28 32 36 40
Estimated sparsity of active user

Fig.2 The variation of cross validation residuals with

the estimated sparsity of active user

The estimated sparsity accuracy curves of active
user under different SNR are shown in Fig. 3. In which,
the amount of cross validation data is N, = 250, the
actual sparsity of active user is 20, and the estimated
sparsity accuracies of CVA-SSAOMP algorithm with
mean filtering, CVA-SSAOMP algorithm and CVA-
BSASP algorithm are compared. It can be seen from
Fig.3 that the estimated sparsity accuracy of CVA-
SSAOMP algorithm is significantly higher than that of
CVA-BSASP algorithm. When the SNR is very low,
the estimated sparsity accuracy of each algorithm is
very low. In particular, the CVA-SSAOMP algorithm
with mean filtering has the lowest accuracy. When the
SNR is gradually increased, the estimated sparsity of
each algorithm is gradually improved. Compared with
the other algorithms, the CVA-SSAOMP algorithm with

mean filtering can achieve accurate sparsity estimation
of active user at lower SNR. This is because that,
when the SNR is gradually increased, the affect of the
noise on the estimation error is gradually reduced, the
estimated sparsity accuracy can be improved by cross
validation with the limited amount of data and the mean
filtering algorithm plays a positive role quickly, which
can further improve the estimated sparsity accuracy of

active user.

Accurac;
=1
W

~E5~ CVA-SSAOMP algorithm with mean filtering |
~£ CVA-SSAOMP algorithm
—E— CVA-BSASP algorithm

i 2 3 4 5 6 7 8
SNR(dB)
Fig.3 The estimated sparsity accuracy curves of active
user under different SNR

The comparison of system BER performance
among different algorithms is shown in Fig. 4. In which,
the amount of cross validation data is N, = 250 and the
actual sparsity of active user is 20, and the system
BER performances of the proposed CVA-SSAOMP algo-
rithm with mean filtering, CVA-SSAOMP algorithm
and traditional OMP algorithm, SP algorithm, CVA-
BSASP algorithm proposed in Ref. [ 10 ] are compared.
It can be seen from Fig.4 that the system BER per-
formance of CVA-SSAOMP algorithm with mean filte-
ring and that of CVA-SSAOMP algorithm are better
than other algorithms. When the SNR is very low,
based on the characteristics of the estimated sparsity of
active user, the system BER performance of the CVA-
SSAOMP algorithm with mean filtering is slightly lower
than that of the CVA-SSAOMP algorithm. When the
SNR is gradually increased, the system BER perform-
ance of the CVA-SSAOMP algorithm with mean filte-
ring is gradually better than that of the CVA-SSAOMP
algorithm. When the SNR is 6dB, compared with tra-
ditional OMP algorithm, SP algorithm, and the CVA-
BSASP algorithm proposed in Ref. [ 10], the BER per-
formance of proposed CVA-SSAOMP algorithm is better
than that of the other three algorithms, and is improved
by 98.1% , 97% , and 55.6% respectively. The BER
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performance of CVA-SSAOMP algorithm with mean fil-
tering is improved by about 25% compared with the
CVA-SSAOMP algorithm.

10° ¢

i OMP-based MUD
~| =0~ SP-based MUD

107 || £ CVA-BSASP-based MUD [10]
| =/~ CVA-SSAOMP-based MUD
| =¥~ CVA-SSAOMP-based MUD with mean filtering |-
1 O -6 ! L ! L L
0 1 2 3 < 5

SNR(dB)
Fig.4 The comparison of system BER performance among
different algorithms

4 Conclusion

This paper proposes a CVA-SSAOMP algorithm for
the structured sparsity model of active user in the up-
link grant-free NOMA scenario. In this algorithm,
based on the feature that the cross validation residual
takes the minimum estimated sparsity of active user as
the actual sparsity, the iterative stop condition is set.
Combined with the low-complexity advantage of the
OMP algorithm, the complexity of the proposed algo-
rithm is effectively reduced. The introduction of low-
complexity mean filtering further improves the accuracy
of the estimated sparsity. Compared with traditional
OMP algorithm, SP algorithm and CVA-BSASP algo-
rithm, the proposed algorithm can effectively improve

the BER performance.
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