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Abstract

With the complexity of the composition process and the rapid growth of candidate services, real-
izing optimal or near-optimal service composition is an urgent problem. Currently, the static service
composition chain is rigid and cannot be easily adapted to the dynamic Web environment. To ad-
dress these challenges, the geographic information service composition ( GISC) problem as a se-
quential decision-making task is modeled. In addition, the Markov decision process (MDP) , as a
universal model for the planning problem of agents, is used to describe the GISC problem. Then, to
achieve self-adaptivity and optimization in a dynamic environment, a novel approach that integrates
Monte Carlo tree search (MCTS) and a temporal-difference (TD) learning algorithm is proposed.
The concrete services of abstract services are determined with optimal policies and adaptive capabili-
ty at runtime, based on the environment and the status of component services. The simulation exper-
iment is performed to demonstrate the effectiveness and efficiency through learning quality and per-

formance.
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0 Introduction

With the rapid development of cloud computing
and Web technologies, the Internet has become an
open distributed computing platform. Especially in the
era of cloud computing, numerous enterprises and in-
stitutions publish their products in the form of Web
services on the Internet for people to access, and appli-
cations are no longer built from scratch but from a com-
position of available services''). In the geospatial ap-
plication domain, more and more geographic informa-
tion (GI) services are being used by the public. Be-
cause of the complexity of geospatial problems, a single
GI service can not effectively meet user needs and its
capability is limited"* . Geographic information service
composition ( GISC) has become a widely used pattern
to reuse resources and build complex applications be-
cause of its interoperability, reusability, and flexibil-
ity (!
and the rapid growth of candidate services, achieving

. With the complexity of the composition process

optimal or near-optimal service composition is a non-

trivial task.

GISC has received considerable attention in recent
years. Most works can be classified into two catego-
ries: static methods based on workflow techniques and
adaptive and automatic methods based on artificial in-
telligence ( AI) planning techniques.

For static methods, a complete service chain is
constructed before the execution of service composi-

8] The construction of service composition starts

tion
with a process model formed by abstract services in
workflow-based techniques. The abstract workflow is
instantiated by a set of concrete services with the opti-
mal quality of service (QoS). A number of investiga-
tions have been devoted to building geoprocessing
workflows. Kepler'®' has been used to implement dis-
tributed geospatial data processing workflows. GeoP-
WTManager'® leverages Web service and workflow
technologies to design and execute tasks. GeoJModel-
Builder'®’ is an open-source geoprocessing workflow
tool. Other works mostly used BPEL-based business
workflow technology to orchestrate geospatial serv-
[11]

ices However, these only simplify the workflow
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composition process syntactically and cannot perform
automatic service composition.

Recently, more attempts are undertaken towards
achieving automatic geospatial service composition.
There have been many approaches to perform automatic
service composition, including rule-based*’ | seman-

d'"*") | and integer programming'"***' approa-

tic-base
ches. Moreover, some approximate optimization algo-
rithms, such as genetic algorithms''®' | particle swarm

[17] 18]
, have

optimization'”' | and evolutionary algorithms'
been adopted to achieve optimization of service compo-
sition'®!. For example, Ref. [20] transformed the op-
timization of service composition into a fuzzy linear pro-
gramming problem by considering users’ preferences,
to better find the optimal composition to meet users’
needs. In general, in most of the approaches, QoS val-
ues are assumed to be fixed and determined. Conse-
quently, its adaptivity to the dynamic environments is
poor.

However, the Web environment is highly dynam-
ic, and a static service chain is rigid and not self-adap-
tive. When one of the services is unavailable, the com-
position has to be adjusted manually''’. In recent
years, adaptive service composition has attracted wide
attention, and there have been many approaches to ad-
dress the adaptability issue, most of which perform
service composition optimization at runtime under a dy-

namic environment, such as graph-based approa-

ches'™ | reinforcement learning (RL) algorithms[zz].
Ref. [23 ] proposed an algorithm for service composition
using multi-objective reinforcement learning. Ref. [22 ]
employed the Q-learning algorithm to solve constraint-
satisfied service composition modeled as a Markov de-

Ref. [24]

Gaussian process with an RL algorithm for adaptive

cision process ( MDP ). combined the
service composition. In addition, along with the rapid
increase of available Web services, some studies have
focused on solving the problem of large-scale service

2] Because of the complexity and high

composition
dynamicity of GISC, there remains a huge need for fur-
ther research exploration.

In this study, a model based on MDP, called
GISC-MDP, is adopted to address the GISC problem in
uncertain and dynamic environments and model it as a
sequential decision-making task. To achieve good ad-
aptation and scalability in a highly dynamic environ-
ment, a novel approach that is built upon the GISC-MDP
model based on Monte Carlo tree search (MCTS)™ is
proposed. MCTS is a tree search algorithm used to find
optimal decision-making through a random simulation and
is thus very suitable for the GISC problem. Furthermore,
the MCTS with an on-policy temporal-difference (TD)

learning algorithm'”"! | namely state-action-reward-state-

action (SARSA (L)), is enhanced to make it capable
of adapting to the dynamic environment and obtaining
the optimal policy. The contributions of this study are
summarized as follows.

(1) A new model is introduced to handle the
GISC problem based on the MDP in a dynamic and
complex environment.

(2) A novel approach is devised to achieve better
adaptation and scalability, using the MCTS algorithm.

(3) An efficient approach is proposed to obtain
the optimal policy by integrating MCTS and an on-policy
TD learning algorithm with a softmax exploration strate-
gy

The remainder of this paper is organized as fol-
lows. Section 1 introduces related research technolo-
gies. Section 2 presents a model for GISC. Section 3
proposes a composition algorithm based on MCTS-TD.
Section 4 shows the experimental results. A discussion
is given in Section 5. Section 6 concludes the paper
and discusses future work.

1 Background

1.1 RL

RL is an important branch of machine learning
and artificial intelligence areas. In an RL algorithm,
the agent is asked to interact with a dynamic environ-
ment and learn how to action optimally through constant

"] RL has a self-learning ability, the

trial and error
goal of which is to obtain the optimal policy to maxi-
mize the total reward value. The fundamental elements
of an RL algorithm are the agent, the environment, the
state, the action, and the reward (Fig.1). The inter-
action between the agent and the environment goes
something like this: the environment will change to a
new state s,,, when the agent chooses an action a, and
simultaneously feeds back an immediate reward signal
r,.; ( positive or negative ) to the agent based on the

Agent

Spe1 Tis1 a;

Action
State Reward

Environment

Fig.1 Reinforcement learning model
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taken action a,. According to the current state and re-
ward signals, the agent then selects the next action un-
der a certain policy, the principle of which is to maxi-
mize long-term cumulative rewards. Finally, an RL al-
gorithm obtains an optimal policy for the decision-mak-
ing sequence through a continuous learning process.

1.2 TD learning

TD learning is the core idea of reinforcement
learning, which is a combination of Monte Carlo ( MC)
and dynamic programming ( DP) methods'®’. Like the
MC method, TD algorithms learn from historical expe-
rience without a model of the domain and update the
value function of the current state with the value func-
tion of the successive state, similar to DP.

The TD algorithm is divided into two parts: TD
prediction and TD control. The former is used to calcu-
late the state value, and the latter is used to get the op-
timal policy. For TD prediction, the TD method is fas-
ter than the MC method in terms of computing time.
The formula for updating the state S, at time ¢ is

V(S,) < V(S,) +al Ry +yV(S.) = V(S)]

(1)

For TD control, there are usually two methods:
on-policy and off-policy methods. In an on-policy algo-
rithm, such as SARSA, the strategy for choosing an
action is the same as that for updating the action-value
function. For an off-policy algorithm, the opposite is
true.

4. Backpropagation

3. Simulation

1.3 MCTS

MCTS is a tree search algorithm that combines the
generality of random simulation with the accuracy of the
tree search and does not need prior knowledge in a spe-

[30 : . .
191 1t uses random simulation to estimate

cific domain
the value of an action and builds a search tree to find
the optimal policy. In theory, MCTS can be used for
any field that can be described in the form of { state,
action| and predicted by simulation.

Initially, MCTS is an empty tree. Afterward, it it-
eratively repeats four phases until the terminate condi-
tion is met; finally, an asymmetric search tree is built.
The phases of a typical MCTS algorithm shown in Fig. 2
are as follows™"’

Selection From the root node s;, a child node is
selected recursively with a tree policy. If the current
node is a non-terminal state and an incompletely ex-
panded node, then the node is expandable.

Expansion An unexplored child node is added
to the current node by taking a valid action.

Simulation According to the default policy, a
simulation is performed from the new node to the termi-
nal node s, or a predetermined depth in the tree and the
simulation result is obtained.

Backpropagation The simulation result of the
new node is backpropagated to all selected nodes on
the current iteration path, and the number of visits is

updated.

I
|
|
|
I
|
i

Node selected :
|
|

Random simulation I

|
|
I
|

Fig.2 MCTS iteration process

At present, the most popular of these algorithms is
the upper confidence bound for trees ( UCT) algo-
rithm. The UCT algorithm combines the upper confi-
dence bound (UCB) with Monte Carlo simulation to
expand the search state. The UCB is a policy of the

multi-armed bandit problem; it provides a trade-off be-
tween exploration and exploitation with the aim of opti-
mizing the expected total reward. The UCB can be ex-
pressed as follows .
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UCB(a,) = X(a)) +C /% (2)

where, X(a;) is the average value of the action a; and

is normalized to the interval [0,1], and n(a,;) and
n(a) are respectively the number of visits to the action
a, and the total number of selections that perform and
lead to the current action a;, and C is a parameter for
better tuning of the trade-off between exploration and
exploitation.

2 An MDP model for geographic informa-
tion service composition

This section starts with the problem description of
GISC and then some basic concepts relevant to GISC
are defined. Finally, to formalize the approach, the
concept of the MDP is employed to schematically model
the GISC process.

2.1 Problem description
The aim of GISC is to automatically integrate and
combine small-granularity Gl services as a complex

composite service that can fulfill a user’ s functional re-
quirements with an optimal policy. In this study, the
functional requirements are achieved by a predefined
task model that is the abstract representation of the
composite service. In the current service environment,
there exist many services with similar functionality, but
with different quality. These services have been
grouped as candidate service sets using clustering algo-
rithms. The work entails selecting the appropriate serv-
ice for each subtask in the task process model at runt-
ime, to generate a concrete composite service chain
with the best quality.

For instance, the task process model is composed
of n abstract services, as shown in Fig. 3. The abstract
service is defined as a geooperator ( which will be de-
scribed in the next subsection). Services with the same
functional properties are clustered into a candidate
service set, such asA(s,), A(s,), and A(s,). Then,
in turn, an appropriate service gs,, for each abstract
service Goper, from candidate service set A(s,) is se-
lected to composite a concrete service chain that maxi-
mizes user satisfaction.

Fig.3 GISC-MDP model

2.2 Problem formalization
This subsection gives the formal description of the
main concepts and definitions relevant to the GISC
problem.
Definition 1
functionally complete self-governed resource following

( GI service) A GI service is a

open and standard service specifications that can be
published and accessed on the Web. A Gl service can
be defined as a triple

GlService = (ID, Geooperator, QoGIS) (3)

where ID is the identifier of a service. Geooperator is

the abstract class of service, and QoGIS is the quality
attribute values of the GI service. QoGIS can be repre-
sented by an n-tuple (¢, ¢,,**, q,) , where each ¢, is
a QoGIS attribute value, and n is the number of attrib-
utes of interest.
Definition 2
Geooperator was proposed in Ref. [32]. It provides an

( Geooperator) The concept of the

abstract representation and formalization for Gl services
with similar functionality but different non-functional
properties and also provides building blocks for a task
process model. For simplicity, in this study, the fol-
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lowing definition is used:

Geooperator = (Input , Output, Desc) (4)
where Input is a set of spatial datasets or non-spatial
parameters of the service, Output represents the output
items of the service and Desc is the functional descrip-
tion.

Definition 3  ( Task process model ) A task
process model defines the basic structure of a sequen-
tial execution workflow, which is an acyclic directed
graph that links multiple geooperators. It can be deno-
ted as follows:

TPM = (GV, GE) (5)
where GV is a finite set of n vertices {gv,, gv,,*,
gv, |, with each node gv,(i = 1, 2,-=-, n) € GVre-
presenting the ith geooperator, n is the total number of
geooperators, and GE is a finite set of directed edges
lgei, gey, , ge,l.
characterized by a tuple (pair,,, conn,, ). pair, = <

Each edge {ge;] € GE can be

gv,, gv, > is an ordered pair that represents execution
precedence between gv, and gv, ; in other words, gv, is
ahead of gv, in the sequence of the workflow. conn,, re-
presents the control flow connector between two geoop-
erators, which includes sequence, branching, loop,
and so forth.

Definition 4 ( Candidate service set) The candi-
date service set is a finite set of alternative services that
have the same Goper but differ in QoGIS. A candidate
service set can be defined as a set {gs,, gs,,",

ge, | , where m is the number of services in the set.

2.3 GISC-MDP model

GISC is the process of selecting the appropriate
service for each Geooperator in the task process model
to generate a concrete composite service chain, which
is actually a sequential decision-making process. The
MDP, as a universal model for the planning problem of
agents, can effectively describe the sequential deci-
sion-making problem in a dynamic environment; thus it
is especially desirable for the GISC problem.

Definition 5 ( GISC-MDP) A GISC model based
on the MDP can be formulated as a 5-tuple;

GISC-MDP =< S, s,, s,, A(*), R > (6)
where S is a finite set called the state space, the ele-

ro

ments of s, € Sands, C S are the initial state and the
possible terminal state set of the GISC-MDP transition
eraph, respectively, A(+) = A(s;) x A(s,) X ==+ X
A(s,) is a joint set of the action space in all states s, (i
=1,2,---,n), where A(s,) represents an action set in
the states; € S and R(s, a) is a reward function that
specifies an expected immediate reward whena e A(s)
is invoked in the current state s.

In the GISC scenario, as shown in Fig. 3, the set
of abstract service class Geooperator is taken as the
state set S, optional GI services in the candidate set are
as the action set, and the QoGIS value as a reward val-
ue R that selects the corresponding action. The solution

to GISC-MDP is a set of policies, each of which is a

process of service selection.

3 Composition algorithm based on MCTS-
TD

3.1 Softmax action selection

Tree or action selection policy plays a significant
role in the process of building the search tree. In the
MCTS algorithm, the node with the highest reward esti-
mate may not be optimal because of the randomness of
the simulation. Consequently, action selection must
balance exploration versus exploitation of the search
tree. Exploration entails discovering the nodes with a
low estimate and number of visits but with a possible
higher win rate. Exploitation entails selecting the node
from experience that gives the highest expected reward.

For the selection step of the MCTS algorithm, the
UCB requires that values are distributed in the interval
[0,1], but a win rate as a reward estimate cannot be
gotten. Inspired by Ref. [33 ], the softmax exploration
approach was adopted as an action selection policy. It
is a more complex approach because it takes into ac-
count the relative values of all nodes. The approach
has been proved to provide a more effective trade-off
between exploration and exploitation. The probability

of selection of each action is calculated as
Q(s,a)/7
e

P(a) = W (7)
b=l

Similar to g-greedy exploration, the extent of ex-
ploration is controlled by a single parameter 7. When 1
takes a higher value, the probabilities of all actions
that can be selected are almost equal, no matter what
estimated value is. The parameter 7 usually decreases
during the learning process, thus enabling the agent to
focus on actions with higher values. When 7 gets close
to zero, a greedy policy is approached.

3.2 Rewards

The ultimate objective of solving GISC-MDP is to
get an optimal strategy that can provide a service se-
quence to maximize users’ satisfaction. The reward
value R(s,a) of GISC-MDP should be a certain meas-
urement of user satisfaction. In this study, normalized
QoGIS values of GI service are employed as reward val-
ues.
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Because of the inconsistency of quality factor val-
ues in their range and units, QoGIS factor values need
to be normalized. The quality factors have two charac-
teristics; positive and negative. For positive factors,
the higher value represents better quality, i.e. , relia-
bility, availability, and completeness, etc. Negative
values have opposite characteristics. The normalized
formulas for positive and negative quality factors are

9 — Guin .
iy lf q max # 9 min
q pasitive = {qmax = Grin (8)
1 if qmax = Gmin
Duax — 9 .
’ lf 9 max 7& q win
q negative = {qmax = Gmin (9)
1 lf Quax = Guin

Then, the reward formula in the model can use a linear
weighted integration function that can be expressed by
the following equation

R(s,a) = > (q;-w) (10)
where n is the number of QoGIS factors, w, and ¢'; are

the weight and the normalized value of the i-th QoGIS
factors, respectively.

3.3 SARSA (A)

The primitive MCTS algorithm maintains a total
reward for each node, which is updated in the back-
propagation step. However, SARSA () is introduced
into the MCTS algorithm. SARSA(A) is an on-policy
TD algorithm that combines eligibility traces with the
SARSA algorithm. First, an action in the current state
using the softmax selection policy is selected and the

instant reward on each step is calculated (Eq. (10)).
Then, the nodes with the rewards collected from the
current node and all its descendants in the backpropa-
gation step are updated. The trace, denoted as E (s,
a), is:

E (s, a) = AyE,_ (s, a) (11)
where vy is a discount factor, and A is called the trace-
decay parameter. In some sense, Ay shows how far the
state s is from the current node. The TD error for each
node is calculated as

5t :Rl+YQt(SL+]’Al+l) _Qz(S;,AL) (12)

Based on this, all its ancestors with the TD error
are updated by

Qt+1(s’ a) = Qt(S[,At) +a5Ep<S,a) (13)
4 Experiments and analysis

4.1 Test data set

In the approach used here, the QoGIS value of GI
service is adopted as the immediate reward value. Ow-
ing to the lack of datasets for GI services, the test data-
set used is the WS-DREAM"* dataset. The dataset
describes real-world QoS measurements, including re-
sponse-time and throughput, obtained from 339 users
on 5825 Web services. Table 1 lists some data seg-
ments of response-time in the test dataset. The WS-
DREAM dataset is preprocessed by taking the average
value of 339 users as the quantitative value of 5825
Web services and then normalizing the response-time
and throughput factors.

Table 1  Data segments of response-time in the WS-DREAM data set

\W WS, WS, WS, WS, WSss0s
User
User, 5.982  0.228  0.237  0.221 6.777
User, 2.130  0.262  0.273  0.251 0.263
User, 0.854  0.366  0.376  0.357 =]
User, 0.693  0.226  0.233  0.220 0.173
Usery, 1.285  0.222  0.232  0.215 0.130

4.2 Experiment Setting

In the following experiment, the response-time
and throughput attributes provided by the preprocessed
WS-DREAM datasets are considered. The reward value
is calculated using Eq. (10) and the weights of re-
sponse-time and throughput attributes are 0.7 and 0.3,
respectively. All the experiments are conducted on a
PC with a 3. 10 GHz Intel Core i5-4440 CPU with 16
GB of RAM. Unless mentioned otherwise, the experi-

mental parameters are set as follows: the discount fac-
tory is 0.9, the trace-decay parameter vy is 0.2, and
the value & of greedy policy is 0. 1.

To indicate the efficiency of the proposed model,
some comparative experiments were performed. Three
other scenarios: (1) removing the softmax exploration
strategy, only using the g-greedy strategy (-softmax) ;
(2) removing the TD algorithm (-TD); (3) Flat

Monte Carlo, a classic algorithm, are evaluated.
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4.3 Learning quality under a varying number of
abstract services

The main objective of this experiment is to verify
the ability of the MCTS-TD approach to obtain GISC
with high quality. The total accumulated reward is
used as a measure to compare with the other three ap-
proaches. In the first stage of the evaluation, two task
process models, consisting of 20 abstract services and
50 abstract services, are considered in the experiment.
The number of candidate services for each abstract
service is set to 20, 50, and 100, respectively. The
learning episode is set to 300. Fig.4 and Fig.5 depict
the accumulated rewards obtained by these approaches
with the different number of abstract services. As
shown in the figures, when the proposed method re-
moves the softmax exploration strategy and TD algo-
rithm, the accumulated reward declines considerably.
The accumulated reward of the proposed approach is
found to be significantly superior to that of three com-
parative methods, independent of the number of ab-
stract services and candidate services for each abstract

service.
g 10 abstract services
-softmax = -TD = Flant Monte Carlo = softmax MCTS-TD
7.5

Accumulated rewards
o
Wi

S

s s,

50
Number of candidate services

Fig.4 Accumulated rewards for 10 abstract services

20 abstract services

-softmax ~ -TD  x» Flat Monte Carlo = softmax MCTS-TD

N\

Accumulated rewards

7/

mommmmnn,
mmmommmnnni

/.

I

0 50
Number of candidate services

—
(=3

0

Fig.5 Accumulated rewards for 20 abstract services

4.4 Average rewards under a varying number of
candidate services

The main purpose of the second experiment is to
examine the performance of this approach under differ-
ent scales of service environments. Average reward is
an important performance indicator for service composi-
tion methods. In the experiment, the service environ-
ment scale is represented by the number of candidate
services assigned to each abstract service. For this, a
task process model consisting of 10 abstract services is
considered. The number of available candidate services
for each task is then set to 100 and 200, respectively.
The number of learning episodes is varied from 0 to 300
and compared the results with those of the other meth-
ods under different environmental scales. As can be
seen from Fig.6 and Fig.7, the proposed MCTS-TD
approach with a softmax policy slightly outperforms oth-
er methods, regardless of the number of available can-
didate services per task. The approach suggested here
achieves higher average accumulated rewards through
the learning process, but superiority is not obvious. The
main reason for this may be due to having fewer learn-
ing episodes and candidate services in the experiment.

100 candidate services

9
& -sotfmax -TD Flat Monte Carlo -+ sotfmax MCTS-TD =
8 = —~
) &
K 2
£ 6 : :
&
g >
E o
4 A
3
50 100 150 200 250 300
Episodes
Fig.6 Average rewards for 100 candidate services
i 200 candidate services
4 -softmax -TD Flat Monte Carlo - softmax MCTS-TD
9 ° -~ "
g 3 & X
3 2 .
g 7 . s
& x
s
< 5
A
3
50 100 150 200 250 300
Episodes

Fig.7 Average rewards for 200 candidate services

5 Discussion

The GISC is a complex problem, and the pro-
posed method solves it as a sequential decision-making
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task based on the MDP. In contrast to the existing ap-
proaches, the mechanism used here has more advanta-
ges, as specified in the following.

The tolerance time for diverse users is inconsistent
in the GISC problem. To help satisfy the flexibility re-
quirements, the proposed method adopts the MCTS al-
gorithm (see Section 3), which can terminate at any
time and provide a decision-making scheme.

In addition, the proposed approach not only ob-
tains the optimal service composition but also offers
multiple alternatives by ranking with reward estimate
values. The alternative services can be quickly put to
use when an optimal service is not available in the
GISC. The proposed approach has self-healing and
self-adaptive capability.

The proposed approach employs the softmax explo-
ration strategy instead of the g-greedy strategy to obtain
better optimization results. The comparative experiment
verifies its efficiency.

6 Conclusion

In this study, the GISC problem based on the
MDP, which is transcribed as a sequential decision-
making task, is modeled. As opposed to most current
approaches, which implement GISC upon a static serv-
ice chain, the approach here attempts to develop GISC
at run-time so that it can achieve self-adaption in a dy-
namic environment. To this end, a novel approach that
combines MCTS with a TD learning algorithm is pres-
ented. The concrete services of abstract services are
determined at runtime, based on the environment and
the status of component services. The experimental
simulation reveals that the proposed approach is effec-
tive and adaptive, and it is demonstrated that this ap-
proach can be effective, adaptive, and scalable in sol-
ving the GISC problem.

In the future, much more work needs to be done
and directions developed to pursue optimation of GISC.
For example, in noisy environments, a filtering mecha-
nism to exclude services with extremely poor QoGIS
will be devised, this can reduce the time spent in the
exploration process. In addition, a more generalized
decision model will be introduced to adapt to an envi-
ronment that is only partially observed.
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