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Abstract

To solve the problem of missing many valid triples in knowledge graphs (KGs), a novel model
based on a convolutional neural network (CNN) called ConvKG is proposed, which employs a joint
learning strategy for knowledge graph completion (KGC). Related research work has shown the su-
periority of convolutional neural networks ( CNNs) in extracting semantic features of triple embed-
dings. However, these researches use only one single-shaped filter and fail to extract semantic fea-
tures of different granularity. To solve this problem, ConvKG exploits multi-shaped filters to co-con-
volute on the triple embeddings, joint learning semantic features of different granularity. Different
shaped filters cover different sizes on the triple embeddings and capture pairwise interactions of dif-
ferent granularity among triple elements. Experimental results confirm the strength of joint learning,
and compared with state-of-the-art CNN-based KGC models, ConvKG achieves the better mean rank

(MR) and Hits@ 10 metrics on dataset WN18RR, and the better MR on dataset FB15k-237.
Key words: knowledge graph embedding (KGE) , knowledge graph completion (KGC) , con-
volutional neural network (CNN) , joint learning, multi-shaped filter

0 Introduction

Knowledge graphs ( KGs), such as YAGO'',
DBpedia'? | Freebase’', are graph-structured knowl-
edge bases, where each edge called a fact or a triple is
represented in the form of (headentity, relation,
tailentity) , or (h, r, t) in short. These KGs have nu-
merous structured information which is a useful re-
source for many natural language processing tasks,
such as question answering'*! and machine reading"’.
However, KGs typically are incomplete, missing a lot
of valid triples'®”’. This problem has attracted much
attention and gives rise to knowledge graph completion
or link prediction, which refers to predict whether a
triple (h, r, t) is valid or not'®!. State-of-the-art link
prediction solutions are primarily knowledge graph em-
bedding ( KGE) based models. KGE aims to project
both entities and relations into a continuous low-dimen-
sional space. These distributed representation vectors,
called entity embeddings or relation embeddings, can
efficiently measure the semantic correlations between
entities and relations, which can significantly benefit a
variety of downstream tasks such as knowledge graph
completion ( KGC) and knowledge inference. KGE

models can be roughly classified as four groups: trans-

' tensor product mod-

[23-25]

lational distance models'®"®

els'”?!  neural network models and convolutional

neural network ( CNN)'*®*' based models. Transla-
tional distance models and tensor product models tend
to adopt shallow, simple encoders to extract latent fea-
tures, thus only capture the linear relationships be-
tween entities. Neural network models often have more

211 Recent re-

parameters and are prone to overfit
search "’ has raised interest in applying convolution-
al neural networks for KGC and proved the superiority
of convolutional neural networks in generating more ex-
pressive triple embeddings. CNN based models can ex-
tract the complex semantic features between entities
and the relation in a triple due to modeling the non-lin-
ear relationship and the efficiency of parameter utiliza-
tion. However, existing CNN-based models exploit on-
ly one single-shaped filter, failing to capture diverse
triple features. For example, ConvE'™' uses 2D filters
to extract the semantic features of the matrices concate-
nated by head entities and relations. ConvKB'?' uses
1D filters to capture the transitional characteristics of
each dimension on the triple embeddings. ConvKE '
uses 2D filters to extract the semantic features of the
matrices concatenated by entities and relations.
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In this paper, a novel convolutional neural net-
work embedding model called ConvKG is proposed,
which uses the joint learning strategy based on multi-
shaped filters to extract the semantic features on triples
embeddings, capturing pairwise interactions of different
granularity among triple elements. Specifically, Conv-
KG explores three different shaped filters: 1 x3, 3 x
3, and 5 x 3, sliding on the triple embedding row by
row respectively. The intuition is that 1 x3 shaped fil-
ters capture fine-grained semantic features, 3 x 3
shaped filters capture intermediate granularity semantic
features, and 5 x 3 shaped filters capture coarse-
grained semantic features due to covering bigger sizes
on the triple embeddings. After getting diverse seman-
tic features, ConvKG uses the method of weight alloca-
tion to let the model learn what granularities of seman-
tic features are needed. Evaluating the performance of
ConvKG on two benchmark datasets WNI8RR"*' and
FB15k-237'" | the experimental results show that,
compared with state-of-the-art CNN-based KGC mod-
els, ConvKG obtains better mean rank (MR) and Hits
@ 10 metrics on dataset WNI8RR, and better MR on
dataset FB15k-237. Experimental results also show
that ConvKG performs better than major translational
distance models and tensor product models.

Contributions in this work are as follows.

A novel model called ConvKG is introduced,
which has exquisite structure and is effective in down-
stream tasks like knowledge graph completion.

A joint learning strategy based on multi-shaped
filters for knowledge graph completion is proposed, ex-
tracting semantic features of different granularity on tri-
ple embeddings.

By using knowledge graph completion task, the
performance of ConvKG on two benchmark datasets

WNI18RR and Hits@ 10 is evaluated.

1 Related work

KGC is a crucial task for knowledge graphs. A
good variety of models have been proposed for this
task. These models can be introduced into four catego-
ries: translational distance models, tensor product mod-
els, neural network models, and CNN-based models.

Translational distance models measure the plausi-
bility of a triple as the distance between the two enti-
ties, usually after a translation operated by the rela-
tion. TransE'®' is the most representative translational
distance model. TransE assumes that the embedding of
the head entity plus the embedding of the relation
should be closed to the embedding of the tail entity.
Since Transk cannot effectively model the three com-

plex relations of 1-to-N, N-to-1, and N-to-N"' | a se-
ries of TransE-based improved models such as TransH ,
TransR and TransD are proposed. TransH'""' intro-
duces relation-specific hyperplanes, using translation
vectors and hyperplane normal vectors to represent re-
lations. And TransR'" introduces relation-specific
spaces, using different matrices to represent different
relations. However, TransD''?' believes that the head
entities and tail entities should have different relation
matrices, so two different relation matrices are used to
represent the relation in a triple, but inevitably intro-
ducing too many parameters. For solving this problem,
TransD exploits two vectors to construct each relation
matrix. There are other translation-based models, such
as TransM''* . TransF'"™’ ; TransA''’ . STransE'" ;
UM SEM™ | and TranSparse'™ . Although transla-
tional models have fewer parameters and use simple op-
erations, however, they have difficulties in learning ex-
pressive triple embeddings due to using linear opera-
tors.

[1922]

Ref. [ 33 ] unifies tensor product models and

53] under the framework of se-

neural network models'
mantic matching models. Semantic matching models
measure the plausibility of a triple as a degree of latent
semantic match between entities and relation by a simi-
larity-based scoring function. RESCAL'"’ represents
each entity as a vector and each relation as a matrix,
then a bilinear function is exploited to model pairwise
interactions among triple embedding factors. Dist-
Mult'?! is an extension of RESCAL by simplifying rela-
tion matrices to diagonal matrices, so this model cap-
tures pairwise interactions along the same dimension of
the triple embeddings and reduces the number of pa-
rameters of relations. Complex ™' extends DistMult by
introducing complex-valued embeddings to better model
asymmetric relations. And HolE'*'' represents relation
as a vector and explores circular operations to model
pairwise interactions between the head entity and the
tail entity, which creates more efficient and scalable
triple embeddings. Tensor product models use simple
multiplication operators, thus only capture the linear
relationships between entities. Despite neural network
models exploit complex encoders, e. g., NTN'®',
MLP"**' | and NAM'®' | this kind of approach often
has more parameters and are prone to overfit ']
There are three major models based on convolu-
tional neural networks for knowledge graph comple-

tion 262!,

ConvE™! reshapes the head entity vector
and the relation vector in a triple and then concatenates
them into an input matrix, which is performed with
multiple 2D filters to obtain different feature maps. Af-

ter concatenating these extracted feature maps, the out-
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putting matrix is vectorized and mapped into the same
vector space as the tail entity, then a dot operation is
applied in the two vectors and the result is a scale
which indicates the score of a triple. ConvKB'?’ repre-
sents each triple as a 3-column matrix where each col-
umn represents a triple element. Then multiple 1D fil-
ters are operated on the matrix to get different feature
maps which are then concatenated and multiplied with
a weight vector to output a score which entails the plau-
sibility of the triple. Specifically, ConvKB learns the
global relationships among same dimensional entries of

ConvKE'?!

dimension transformation strategy to improve the sliding

a triple due to using 1D filters. adopts the
steps of the convolution sliding window on the triple
embeddings and the information interaction ability of
entities and relations in more dimensions. ConvKE also
uses 2D convolution sliding windows to enhance the re-
ceptive field to capture the whole information in more
dimensions of triples. Experimental results of the three
models suggest CNN performs better than tensor prod-
and CNN-

based models can learn more expressive KG embed-

uct models and translation-based models,

dings due to its capturing complex relationships by
learning non-linear semantic features with efficient pa-
rameters.

But ConvKB, ConvKE, and ConvE take into ac-
count only one-single shaped filters and fail to extract
diverse semantic features. Specifically, ConvE'*’ and
ConvKE'™ use 2D filters to extract the semantic fea-

tures of the embedding matrices, and ConvKB'”"' uses

1D filters to capture the transitional characteristics of
each dimension on the triple embeddings, as discussed
in the introduction part. Instead, ConvKG exploits a
joint learning strategy based on multiple shaped filters
to co-convolute on the triple embeddings, which can
generate semantic feature maps of different granularity.
The framework of ConvKG is introduced in detail in

Section 2.
2 The proposed approach

2.1 Background

In this section, notations and definitions used in
the rest of the paper are introduced firstly. A knowl-
edge graph is denoted by G = (E, R) , where E and R
represent the set of entities and relations, respectively.
A triple (h,

two nodes h and ¢t in G. This framework aims to learn a

r, t) is represented as an edge r between

score function f(h, r, t) which gives a higher score for
a valid triple.

2.2 Framework

ConvKG can be divided into two steps. The first
step is to use the filters with different granularity to ex-
tract the features of the triple embeddings. The second
step is the weight allocation, to let the model learn
what granularities of semantic features are needed. The
framework of ConvKG is summarized in Fig. 1. As shown

in Fig. 1, ConvKG first exploits the joint learning strategy
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(Suppose the embedding size k=6,

output feature maps with different semantic granularity on the matrix A ,

the number of filters N =2; ConvKG first exploits joint learning strategy based on three shaped filters to

then concatenates these feature maps to obtain a feature vector

and output a score after a dimensionality reduction operation and a dot product operation )

Fig. 1

Illustrations of ConvKG
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based on three shaped filters to output feature maps
with different semantic granularity on the matrix A, af-
ter concatenates these feature maps to obtain a feature
vector, ConvKG then uses weight allocation to choose
the semantic features with important granularity and
output a score which indicates the plausibility of the
triple.

The convolutional neural network was mainly ap-

337 It imitates human

plied in image processing tasks'
visual experience, uses filters with local perception to
capture local detailed information of the image, and
then adds convolutional layers to capture more com-
plex, more abstract, and higher-level feature informa-
tion of images, and finally outputs abstract representa-
tions on different dimensions of images. ConvKG re-
gards each triple as an image and uses a convolutional
neural network to extract its features. Specifically,
ConvKG distributes triples as vectors in k-dimensional
vector space in the form of (h*, r*, ') and concate-
nates them, constructing a matrix A = [h*, ', #'] €
R" which represents an image of a triple. ConvKG ex-
plores three different shaped filters; 1 x3, 3 X3, and
5 x3. Specifically, the filters w, € R'*, @, € R,
and @, € R slid on the triple embedding matrix A
row by row, generating three shaped feature maps m,
e R”', m, ¢ R"> m, ¢ R*¥™ respectively,
where m, e R represents the extracting fine-grained
semantic features outputted by @, € R, m, e
R represents the extracting intermediate-granular-
ity semantic features outputted by @, € R andm, e
R“™™! represents the extracting coarse-grained granu-
larity semantic features outputted by @, € R*’. These
feature maps are outputted by the following formula: m,
= g(w, *A) + b, where #* is a convolution opera-
tion, b is a bias term, g is some activation function
such as Relu, sigmoid. What’ s more, the 1D filters
w, € R can capture the global translational charac-
teristics among same dimensional entries of a triple[m ,
and the 2D filters w, € R and @, € R’ can capture
the more information interactions due to the larger re-

126281 " Different shaped filters cover dif-

ceptive fields
ferent sizes on the triple embeddings and capture pair-
wise interactions of different granularity among triple
elements. These different shaped feature maps extrac-
ted from matrix A are used to improve the diversities of
the extracting embedding triple features, to produce
richer, more complex and more expressive feature
maps.

After getting feature maps with different granulari-
ty, ConvKG uses the method of weight allocation to let

the model learn what granularities of semantic features

are needed. Specifically, suppose each set of different
shaped filters has N number of filters, ConvKG gets a
whole filter set £2, i.e. | 21 = 3N. The filters w, €
R'"™ generate N number of feature mapsm, € R, the
filters @, € R generate N number of feature maps m,
e R | and the filters w, € R’ generate N num-
ber of feature maps m; e R"“™**'. ConvKG concate-
nates all these feature maps, obtaining a vector v,

e R*®"" which is then computed with a weight ma-

ThXIN(3k-6) - . ; s
R7"3NGE-0) (g a linear transformation. Linear

trix w, e
transformation chooses important vector elements by as-
signing different weights, which are updated by back-

Tkx1 .
e R™ . v__ is

trans

propagation, and output a vector v,

then computed by a non-linear operation. The formula

is defined as follows: v,,,. = 8(V/,. X W), where x

trans
is a matrix multiplication operation, g is some activa-
tion function such as Relu, sigmoid. The vector out-
putted by the above operations is then matched with a
weight vector w, € R™' via a dot product operation,
outputting a score which indicates the plausibility of a
triple (h, r, t).

Formally, the score function of ConvKG is defined
as

J(h,r, t) = g(vec(g(A*02)) xw) - w,

(1)

where 2, w, and w, are shared parameters which are
independent of triples; #* is a convolution operation;
X is matrix multiplication operation.

For training its parameters, ConvKG uses Adam

%" and minimizes the following logistic loss

optimizer
function ¢ with L, regulation on the weight parameter w,

and w,
£= rny e ooy 1081 +exp(li,p ~f(h,r,2)))
+AC w5+ (wsll3) (2)

where Ly, , 5 = {— 1 for (h,r,t) e D
i 1 for (h,r,t) e D'
a set of invalid triples generated by corrupting valid tri-

, where D' is

ples in D. This loss function aims to obtain a score
function, that will give a higher score for a valid triple
and a lower score for an invalid triple. And the L, regu-
lation aims to avoid the overfitting of the model on the
training dataset.

3 Experiments

3.1 Datasets

Two benchmark datasets are chosen to evaluate
the performance of ConvKG: FB15K-237 and
WNI18RR. FB15K-237 is a subset of FBI5K which is
a subset of Freebase where most triples are related to
movies and sports. And WN18RR is a subset of WN18
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which is a subset of WorldNet where most triples con-
sist of hyponym and hypernym relations. Ref. [29 ]
mentioned that the two datasets FB15K and WNIS8
have a large number of test triples which can simply be
obtained by inverting training triples. Ref. [26] intro-
duced a simple rule-based model that can achieve

state-of-the-art results on both WNI8 and FBI15k.

Therefore, corresponding subset datasets FB15k-237
and WN18RR were created to avoid this reversible
problem in WN18 and FB15k. In this paper, these two
more convincing datasets are used to evaluate the per-

formance of ConvKG. Table 1 provides the statistics of
WNI18RR and FB15k-237.

Table 1  Statistics of the experimental datasets
Datasets Entities (N, ) Relations (N,) Train set Valid set Test set
WNI18RR 40943 11 86 836 3034 3134
RB15k-237 14 541 237 272115 17 535 20 466

3.2 Training protocol
Invalid triples D' are created by corrupting valid
triples D. Specifically, a negative fact can be genera-
ted by replacing either head entity & or tail entity ¢ with
a random sample from valid triples D, i. e.
D ={(h,r,t)lh" e EANR #h A (h,r,t)
e D} U{l(h,r,t')1 ¢ e ENTE #1
A (h,r,t) e D} (3)
And entity and relation embeddings are initialized
with TransE'®’ model. Especially on the WNI8RR
dataset, ConvKG exploits triple embeddings produced
by the TranskE model which is trained by the pre-
trained 100-dimensional Glove word embeddings. And
the hyperparameters of TransE are set as follows ™
embedding size k = 100, learning rate at Se ™", margin r
=1, and Ll-norm for FB15k-237; embedding size k
= 100, learning rate at Se™*, margin r = 5, and LI-
norm for WNI8RR. And ConvKG explores three
shaped filters € {1 x3, 3 x3, 5 x 3| initialized by
three truncated normal distribution to jointly learn triple
embeddings. ConvKG selects the number of each
shaped filter in a range of {50, 100, 200} and finally
chooses 200 for WN18RR and 100 for FB15k-237.
The rest parameters of ConvKG include weight
matrix w, and weight vector w,. Adam is used to opti-
mizing all these parameters with initial learning rate
5¢”and A = le” for WNI8RR and initial learning rate
le® and A = le”’ for FB15k-237. ConvKG sets the
batch size as 256 and uses ReLU as the activation
function. By training ConvKG up to 100 epochs, pa-
rameters saved on the last epoch are used for the evalu-
ation.

3.3 Evaluation protocol

KG completion or link prediction task aims at pre-
dicting a missing entity when given a relation and an-
other entity, i. e., predict h given (r, t) or predict ¢
given (h, r).

Following previous work | a set of corrupt triples
for each valid test triple (h, r, t) are generated by re-
placing either h or ¢ with every other entity e, € E — e..
And ConvKG evaluates its performance in a filtered set-
ting, i. e. taking no account of any corrupt triples
which are already present in the KG. During the evalu-
ation, ConvKG assigns scores to the valid test triple
and its corresponding corrupted triples, then ranks
these scores in ascending order and gets the rank of the
valid test triple. Following Ref. [9], two common
evaluation metrics are used: mean rank ( MR), and
Hits@ 10 (i.e. , the proportion of the correct triples in
the top 10 predictions). Lower MR or higher Hits@ 10

represents better performance.

3.4 Results and analysis

Table 2 shows the prediction results of different
models on the test sets of the two datasets WN18RR and
FB15k-237. The results show that ConvKG achieves
the best MR on two benchmark datasets and the highest
Hits@ 10 on WNI8RR than previous state-of-the-art
CNN-based KGC models. Specifically, ConvKG gains
improvements of 391 —204 =187 in MR (which is 47
+ % relative improvement) and 59 —52.5 =6.5% in
Hits@ 10 for WN18RR dataset and also gains improve-
ments of 205 — 164 =41 (which is 20% relative im-
provement )in MR for FB15k-237 dataset.

ConvKG is first compared with ConvKE (NDT) !/,
ConvKE (NDT) refers to take no dimension transforma-
tion strategy, and the difference between it and Conv-
KG is that ConvKE (NDT) only uses the 3 x 3 shaped
filters to extract semantic feature on triple embeddings,
whereas ConvKG also uses 1 x3 and 5 x 3 shaped fil-
ters except for using 3 x 3 shaped filters. And ConvKG
is then compared with ConvKB. ConvKB uses 1 x3
shaped filters to extract semantic feature on triple em
beddings, whereas ConvKG also uses 3 x3 and 5 x3
shaped filters except for using 1 x 3 shaped filters . From
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Table 2 Experimental results of different models on WNISRR and FB15k-237 test sets

(The best score is in bold and the second score is underlined)

WNI18RR FB15k-237
MR Hits@ 10 MR Hits@ 10
Distmult'**’ 5110 49 254 41.9
ComplEx"" 5261 51 339 42.8
TransE" 3384 50. 1 347 46.5
R-GCN™ 6700 8 600 30
ConvE"! 5277 48 246 49.1
ConvKB™"] 2554 52.5 257 51.7
ConvKE(NDT) " 562 48.8 210 47.1
ConvKE?* 391 50 205 45.1
This work 204 59 164 45.8

the above analysis, it can be seen that ConvKG focuses
on extracting semantic feature maps with different gran-
ularity, whereas ConvKB and ConvKE (NDT) focus on
extracting semantic features of single granularity on tri-
ple embeddings. From Table 2, compared with Conv-
KG and ConvKE (NDT) , it can be seen that ConvKG
achieves the better MR on two benchmark datasets and
the higher Hits@ 10 on WN18RR, indicating that the
joint learning strategy based on multi-shaped filters is
beneficial in generating expressive embeddings due to
its capturing pairwise interactions of different granulari-
ty among triple elements.

Following Ref. [9],
ConvKG is further compared with ConvKB on the pre-

on two benchmark datasets,

dicting results w. r. t each relation or each relation cat-
egory. ConvKG employs the truncated normal distribu-
tions to initialize filters to extract semantic features of
different granularity, and ConvKB exploits [0.1, 0.1,
—0.1] which is a TransE-based way to initialize filters
to capture the global translational characteristics among

. . ’ .1 [27]
same dimensional entries of a triple'”’ .

For the WNI8RR test set,
with ConvKB on the predicting results w. r. t each rela-

ConvKG is compared

tion since its rare number of relations and see also _
_ to, verb _ group and derivationally _ re-
lated _ form as M-M relations. Fig.2 illustrates that
ConvKG performs better than ConvKB on MR metric
in each relation . Fig. 3 illustrates that ConvKG performs

see, similar

WNI18RR(MR)
4500
4164
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3500 342
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2500
1991
2000
™ u CnnvkG
1488 n
1500 ConvkB
1000
467
500 57 244
324 11?'I 48 183I 87' 56 44
b [ e m -1 = - -
_hypern Suchts instance, R Jositar. | by _verb_gro | _similar_t
i v nally_t relat‘?‘ "; _also_see -mer -omain \_top _has_part of _domain of_domain — u-s P s
ed_form i ic_of _usage _region P
u CnnvkKG 274 3 113 48 183 727 87 1811 3426 5 4
= ConvkB 1488 24 467 244 444 975 418 1991

4164 6 4

Fig.2 MR on WNI18RR test set w. r. t each relation
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Fig.3 Hits@ 10 on WNI8RR test set w. r. t each relation

better than ConvKB on Hits@ 10 metric in M-M rela-
tions. And for hypernym and derivationally _ related
form relations which account for 40% and 34% of
WNISRR test set respectively, ConvKG also has an
improvement compared to ConvKB on Hits@ 10 metric.
Fig. 4 shows that ConvKG performs better than ConvKB
on MR in each relation whether in predicting head enti-
ties or predicting tail entities. Fig.5 shows that Conv-
KG obtains the better Hits@ 10 in M-M relations or in
hypernym and derwationally _ related _ form relations
which take a large proportion of WNI8RR test set

whether in predicting head entities or predicting tail
entities. After the conclusion of the above experimental
results, it is beneficial to adopt joint learning based on
multi-shaped filters for knowledge graph completion on
WN18RR.

For the FB15k-237 test set, the average number a
of head entities per tail entity and the average number 8
of tail entities per head entity are counted. ris catego-
rized 1-1 relation if @ <1.5 andB <1.5, 1-M relation
ifa <1.5 and B8 =1.5, M-1 relation if « =1.5 and
B < 1.5 or M-M relation if @ =1.5 and 8 =1.5. Results

PREDICTING HEAD & PREDICTING TAIL (MR)
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w Predicting tail (MR) CnnvKG 28 3 9 51 293 16 130 3613 6805 5 4
Predicting tail (MR) ConvkB ras) 20 261 287 655 71 443 3933 8207 5 4

Fig.4 MR of predicting head and tail entities on WNI8RR test set w. r. t each relation
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PREDICTING HEAD & PREDICTING TAIL (HITS@10)
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Fig.5 MR of predicting head and tail entities on WNISRR test set w. r. t each relation

show that 17, 26, 86 and 108 relations are assigned to
1-1, 1-M, M-1 and M-M relations, respectively.
Fig. 6 shows that, on the FB15k-237 test set, ConvKG
performs better than ConvKB on MR metric in all rela-
tion categories. Although ConvKG has poor perform-
ance on Hits @ 10 metric in most relation categories
than ConvKB as shown in Fig. 7, it is worth noting that
ConvKG performs better when compared to ConvKE
which is a KGC model based on convolutional neural

FB15k-237 (MR)
700 671
600
500 458
400
333 323
300 268
200 181
118
100 62 I
o, M
1-1 1-M M- M-M
B CnnvKG 62 268 323 118
w ConvKB 458 333 671 181
® CnnvKG = ConvKB
Fig.6 MR on FB15k-237 test set w. r. t each relation

category

FB15k-237 (Hits@10)

®mCnnvKG  ® ConvKB 049
60 578
Sl 50.6
50
40
30
20
10
0
1-1 1-M M-1 M-M
® CnnvKG 57.8 50.6 32.8 45.4
= ConvKB 51 64.9 34 51
Fig.7 Hits@ 100n FB15k-237 test set w. r. t each relation
category

network. From the above analysis on FB15k-237 data-
set, it can be concluded that the joint learning strategy
based on multi-shaped filters can improve the perform-
ance of the MR metric on the FB15k-237 dataset.
Table 2 also shows that models based on CNNs
perform better than tensor product models and transla-
tion-based models in KG completion, which indicates
that CNN works well in modeling complex relationships
and produces more expressive embeddings. Through
the above analysis on two benchmark datasets, it can
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be concluded that joint learning based on multi-shaped
filters can improve the performance for KG completion
due to its capturing pairwise interactions of different
granularity among triple elements, generating richer
and more expressive embeddings. Especially for
WN18RR dataset, the joint learning strategy performs
well because it can capture pairwise interactions with
different receptive fields among triple elements and ex-
tract semantic features of different granularity. But for
FB15k-237 dataset, compared with other CNN-based
KGC models, joint learning strategy is less effective on
Hits@ 10 metric due to bringing noise semantic fea-

tures, but it also achieves the best MR.
4 Conclusions

In this work, ConvKG, which is a knowledge
graph embedding model based on convolutional neural
networks for KG completion, is proposed. And for ex-
tracting semantic feature maps of different granularity,
ConvKG employs a joint learning strategy based on
multi-shaped filters co-convoluting on the triple embed-
dings, generating more diverse and expressive triple
embeddings. ConvKG uses two benchmark datasets
FB15k-237 and WNI8RR to evaluate its performance,
and experimental results show that, compared with
state-of-the-art CNN-based KGC models, ConvKG
achieves the better MR on two benchmark datasets and
a higher Hits@ 10 on WNI8RR, indicating that the
joint learning strategy can improve the performance of
KG completion. But ConvKG models the triples sepa-
rately and ignores the relationship between triples. In
fact, the entities of each triple contain rich neighbor
information. In future, the relation paths will be con-
sidered to model the neighbor information.
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