HIGH TECHNOLOGY LETTERSIVol. 27 No. 1Mar. 2021 | pp. 62-67

doi;10.3772/j. issn. 1006-6748. 2021. 01. 008

LACC: a hardware and software co-design
accelerator for deep neural networks”

Yu Yong (F

W)@ ** | Zhi Tian ", Zhou Shengyuan ***

(" State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, P. R. China)
(™ School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China)
(™" Cambricon Technologies Ltd, Beijing 100190, P. R. China)

Abstract

With the increasing of data size and model size, deep neural networks (DNNs) show outstand-

ing performance in many artificial intellicence (Al) applications. But the big model size makes it a
challenge for high-performance and low-power running DNN on processors, such as central process-
ing unit (CPU) , graphics processing unit (GPU) , and tensor processing unit (TPU). This paper
proposes a LOGNN data representation of 8 bits and a hardware and software co-design deep neural

network accelerator LACC to meet the challenge. LOGNN data representation replaces multiply oper-

ations to add and shift operations in running DNN. LACC accelerator achieves higher efficiency than

the state-of-the-art DNN accelerators by domain specific arithmetic computing units. Finally, LACC

speeds up the performance per watt by 1.5 times, compared to the state-of-the-art DNN accelerators

on average.

Key words: deep neural network (DNN) , domain specific accelerator, domain specific data type

0 Introduction

Nowadays, deep neural networks (DNNs) have
become the dominating algorithms in many artificial in-
telligence (Al) applications, including image classifi-

(1]

cation, object detection' ', natural language process-

ing?', speech recognition’’ | image classification'*’
and so on. However, deep neural networks are compu-
tation-intensive and memory-access-intensive tasks,
due to the big model size and massive multiply accu-
mulate (MAC) operations, which limit deep neural
networks deployment. To accelerate processing of
DNNs, many works on algorithms and hardware have
been proposed.

As for algorithms aspect, there are two main
methods to decrease models size and computation
amount. Refs[5-8] applied model pruning to remark-
ably decrease model size. However, model pruning in-
duces irregularity in networks, which is not hardware
friendly. Refs[9-12] proposed quantization methods,
to represent number with less bits compared to conven-

tional deep neural networks.

As for hardware aspect, there are many novel do-
main-specific accelerators for neural networks """’
Ref. [18] designed a neural networks accelerator fami-
ly with sequential vector computation. Ref. [19] de-
signed a spatial dataflow based neural network acceler-
ator.

However, conventional processors cannot make
full use of the benefit of the quantization algorithms and
conventional quantization algorithms may lead to signif-
icant accuracy loss, which is intolerable in many Al
application fields. This paper proposes LOGNN data
representation and LACC accelerator with hardware and
software co-design method to resolve the problem.

The key contributions are as follows.

A novel 8-bit width data representation (LOGNN)
is proposed for deep neural networks. LOGNN data
representation is a plug-and-play quantization method
to reduce the model size of the neural networks and
guarantee deep neural networks accuracy.

A novel processor LACC is proposed to take ad-
vantage of the LOGNN data representation by applying
3-bit integer operations during neural network process-
ing.

(D Supported by the National Key Research and Development Program of China (No. 2018 AAA0103300, 2017 YFA0700900, 2017 YFA0700902 ,

2017YFA0700901 , 2019AAA0103802, 2020AAA0103802).

@ To whom correspondence should be addressed. E-mail: yuyong@ ict. ac. cn

Received on Jan. 5, 2020

HIGH TECHNOLOGY LETTERSI Vol. 27 No. 1|Mar. 2021

63

A mapping method is introduced to deploy neural
network layers of different sizes on LACC using
LOGNN data representation.

1 LOGNN data representation

This section introduces the LOGNN data represen-
tation. Converting from floating-point data representa-
tion to LOGNN data representation only needs to find
the nearest value in LOGNN data representation. The
plug-and-play quantization method achieves quarter
memory requirements of floating-point data type and re-
places multiply operations with 3-bit integer opera-
tions. For a convolution layer, define Y = N x W as the

. o Xw: Xh:
output of the layer, where the input N e R™ """

. X X0 XH I
weight W e R™ ™ the output Y € R™™™.

’

1.1 8-bit width data representation
Single-precision floating-point format are common
data representation applied in deep neural networks.
The single-precision floating-point format has 32 bits,
which consist of exponent, mantissa, and sign[m , as
shown in Fig. 1. The exponent is an 8-bit integer, the

mantissa is a 23-bit integer, and the sign is a 1-bit in-

teger.
1 bit 8 bits 23 bits
SIGN| EXPONENT MANTISSA
MSB LSB

Fig.1 The components of floating-point data

When the number’ s exponent is equal to 2° — 1
and the number’ s mantissa is not equal to 0, the num-
ber is NAN (not a number).

When the number’ s exponent is equal to 2° -1
and the number’ s mantissa is equal to 0, the number
is INF (infinite).

When the number’ s exponent is not equal to 0
and less than 2° — 1, the number is

(= 1)SIO% QEXPONENT-IS o (1 . MANTISSA x 27%)
(1)

When the number’ s exponent is equal to 0 and
less than 2° — 1, the number is

(= 1)1V x QEXPONENT-IS o mrANTISSA %273 (2)

Floating-point data format of real numbers sup-
ports a trade-off between range and precision. Expo-
nent in 8 bits ranges from 2 "7 to 2'. Mantissa in 23
bits ranges from 0 to 2% - 1.

Inspired by the conventional floating-point data
representation, it proposes a new 8-bit floating-point

data format (LOGNN) which is organized as in Fig. 2.

1 bit 3 bits 3 bits 1 bit
SIGN EXPONENT MANTISSA EQU
MSB LSB

Fig.2 The components of the low bit width data representation

The 8-bit floating-point data format consists of 1-
bit sign, 3-bit exponent, 3-bit mantissa, and 1-bit
EQU. The sign bit represents the positive or negative
of the number. Exponent is 3-bit-width ranging from 0
to 7. Mantissa ranges from 0 to 2° =1. EQU is 0 or 1,
which enhances the precision and range of the data
representation. The definition of LOGNN is the follow-
ings.

When the number’ s exponent is equal to 2° — 1
and the number’ s mantissa is not equal to 0, the num-
ber is NAN.

When the number’ s exponent is equal to 2° — 1
and the number’ s mantissa is equal to 0, the number
is INF.

When the number’ s exponent is not equal to 0
and less than 2° —1, the number in normal mode is

(= 1)%N x QFXPONENT=S o (1 + MANTISSA x 27

x (1+27%)) (3)

When the number’ s exponent is equal to 0, the

number in denormal mode is
(= 1)%N x 2FXPOVENT=S o MANTISSA x27° x (1 +27%¢)
(4)
The value of LOGNN in the highest precision is
27%x1x27x (1 +27"), which is in denormal
mode. The range of LOGNN is from — 1 x2* x (1 +7
X270 x (1 +2")) 01 x2* x (1 +7x27 x (1 +
2°)).

1.2 8-bit width data multiplication
The polynomial expansion of the proposed data
representation in normal mode is rewritten as
(= 1)S1% (QEXPONENT-3 | prANTISSA x QEXPONENT-6
+ MANTISSA x 25XPONENT-EQU-6 y (5)
The multiplication of two numbers in LOGNN for-
mat is
A KB = (= T) oSy yonEibtat o] 458 w3,
+ My + M, x My, + (M, + M, x M) x 27"
+ (Mg + M, x M) x 27"
+ M, x M, x 27 P00ty (6)
Since SIGN, E(EXPONENT), M (MANTISSA)
and EQU all occupy less than 3 bits, only integer oper-
ation within 3 bits is needed, including one multiply
operation (M, x M) , four 3-bit integer add operations
(My + (My x My), Mg + (M, x M), E, + Eg,
M, + My) , one 1-bit integer add operation (- EQU,

64

HIGH TECHNOLOGY LETTERSIVol. 27 No. 1|Mar. 2021

— EQUy) , and shift operations.

1.3 8-bit width data accumulation

Multiple accumulate operations can lead to over-
flow or underflow. The accumulate operations are com-
mon in deep neural networks, which is sensitive to data
representation precision because of the huge numbers
of parameters. LOGNN uses 32-bit integer for the mid-
dle results.

2 Experiments on LOGNN data represen-
tation

The proposed 8-bit LOGNN data representation is
implemented in DNN inference without retraining con-
ventional deep neural networks to verify the accuracy of
LOGNN quantization method in networks inference.

LOGNN uses scale and zero-point to match float-
ing-point values to the low bit width data representation
with plug-and-play quantization methodm
PyTorch' "

gramming framework and data format is modified in

In this experiments, "is used as pro-

computation procedure. Both synapses and neurons use
8-bit LOGNN data format.

Table 1 shows the result of LOGNN data represen-
tation in AlexNet'™ | ResNetl8*'', and Mobile-
Netv2!?!,
width from 32 bits to 8 bits without accuracy loss.

LOGNN data representation decreases date

LOGNN approach also replaces the conventional multi-
ply operation with 3-bit integer operations. In summa-
ry, the LOGNN data representation reduces 4 times
storage and over 8 times computing complexity, com-

pared to single-precision floating point data format.

Table 1 LOGNN data representation different deep neural networks
Models Bit width Data type Top-1 error

AlexNet Ref 32 FLOAT 43.45%
AlexNet 8 LOGNN 43.51%
ResNetl8 Ref 32 FLOAT 30.24%
ResNet18 8 LOGNN 30.28%
MobileNetV2 Ref 32 FLOAT 27.81%
MobileNetV2 8 LOGNN 27.99%

3 LACC deep neural networks accelerator

3.1 Domain specific arithmetic unit
There are many dedicated processors with domain

Hard-

ware and software co-design in deep neural networks

specific architecture in deep neural networks.

makes it conventional to design domain specific archi-

LACC designs

tecture to meet software requirements.

domain specific arithmetic unit for LOGNN data repre-
sentation, which makes deep neural networks inference
high efficiency.

In DNN forward and backward procedures, multi-
plication and accumulation are the most common opera-
tions :

> AxB (7)

With the LOGNN data representation, only 3-bit

integer operations and accumulation operations are re-
quired. To maintain the accuracy in accumulation

LOGNN uses 32-bit integer for middle results
with shift position. Eq. (6) is equal to Eq. (8).
(= 1) TSN FERS LM+ M, x M)
X 2 + ((M, + M, x M) x 2Fateo-Eel
+ (M, + M, x M) x 254+Fs=0-50Us
M, x M, x 2I:‘A+EB—9—EQUA—E()UB>) (8)
This work designs domain specific arithmetic unit
to support multiply and accumulation in LOGNN data
LOGNN sepa-

rates computations into two parts including exponential

phase,

Eg+Eg-9

representation. As shown in Eq. (8),

parameter computation and multiplier parameter com-
putation.

Exponential parameter computation is shown in
Fig.3, which consists of three 3-bit integer add digital
circuits and three 1-bit integer add digital circuit.

\ £

Neuron (4) Weight (B)
E

., \G/-6
\/\/

_EQU / / Gl
_EQU _'G) Second First

\ l line line

@ exponential exponential

Fourth Third
line line
exponential | exponential

Fiveth
line
exponential

Fig.3 Exponential parameter computation

Multiplier parameter computation is shown in
Fig. 4, which consists of one 3-bit integer multiply dig-
ital circuit and three 3-bit integer add digital circuit.
Exponential parameters are used as the location in 32
bits integer on multiplier parameters.

HIGH TECHNOLOGY LETTERSI Vol. 27 No. 1|Mar. 2021

65

%

Neuron (4) Weight (B)

\ v

M, \ /M,,
@ 1

Fiveth .// \ First
heS O line

line

& exponential
exponentia, = MH -« M, p
Fourth’y l/ v Third
line © O Jine
exjponentigl xponential
vSecon
line
ponerjtial

32-bit accumulation

|

Fig.4 Multiplier parameter computation

Both of exponent parameter computation and mul-
tiplier parameter computation make up domain specific
arithmetic unit. 32-bit accumulation is used in not only
middle results of LOGNN but also middle neuron re-
sults of multiply and accumulation in neural networks
for high accuracy arithmetic computation.

3.2 LACC deep neural networks accelerator
LACC is the deep neural networks accelerator to

support LOGNN data representation and reuse data as

much as possible. Fig.5 shows the architecture of LACC.

— Memory
DMA
—
A A
a — — —
g
g LADD) LADD) LADD LADD)
o| REG [€ REG [REG REG
- it } v
p{LADD Lyl ADD L LADD Lel[. ADD)
REG REG REG REG
11 1 1) I
L2 A A
—tl.AapD ~—Tl.ApD Tleapp| [“f{Lapp
REG REG [€ REG REG
11 1 1 t 1
L2 A4
ILAD " ADD |LADD LADD
REG |* > REG REG REG

Fig.5 LACC: deep neural networks accelerator for LOGNN

LACC has no multiplier circuits. The key components
of LACC are four units, including LADD matrix unit,
control unit, memory unit and direct memory access
(DMA) unit.

Control unit fetches an instruction of LACC and
sends the control signals to the memory unit, DMA unit
and LADD matrix unit. Memory unit is the storage
module of LACC. Tt receives DMA’ s data fetching re-
quest and sends data to DMA module. DMA unit is the
bridge between storage module and computing module
of LACC. DMA receives micro instructions and trans-
fers data as master. LADD matrix is the computing
module of LACC, which receives control unit’ s control
and DMA unit’ s data. LADD mairix unit is the com-
putational component of LACC deep neural networks
accelerator to finish multiply and accumulate opera-
tions. LADD matrix consists of LADD arithmetic unit,
REG and ALU unit, and the network on chip linking
them.

As mentioned before, LADD achieves multiply
and accumulate operation on LOGNN data type with
high performance and low power, which is the most
computation and storage sensitivity of deep neural net-
works.

REG and ALU unit is the local storage unit near
computing module and active computing module. REG
and ALU unit are the base components of LADD ma-
trix.

NOC links every computing modules as shown in
Fig.5. Column and row have been looped individually,
which makes data transferring between each computing
modules flexible. Transferring data between computing
modules also makes much data reuse by transferring
data between neighbor computing modules.

4 Mapping

4.1 Mapping of 2D convolution

Fig. 6 shows how LACC computes 2D convolution.
Input feature maps slide on LADD matrix meanwhile
multiplying weight and accumulating middle results.
The detailed process is as follows.

First, input feature map is loaded to LADD matrix
unit while multiplying and accumulating weight 1.

Second , input feature maps slide left one pixel and
make multiply and accumulate operation on weight 2.

Third, input feature maps slide left one pixel and
make multiply and accumulate operation on weight 3.

Fourth, input feature maps slide up one pixel and
make multiply and accumulate operation on weight 6.

From the fifth to the ninth, input feature maps
make a Z-sliding. Finally, the LADD matrix has the

66

HIGH TECHNOLOGY LETTERSIVol. 27 No. 1|Mar. 2021

output feature map of a 3 x3 2D convolution.

112]3

Input 41516
feature 71819
map Weight

LACC

=
>
(@]
(@]

o

1
I
|

I LACC
| 3
L —_— —_—

Fig.6 Convolution on LACC

Output feature map

4.2 Mapping of 3D convolution

Compared to 2D convolution, more 3D convolu-
tions are used in deep neural networks. The 3D convo-
lution has an additional channel dimension, and the
neurons should be accumulated along this dimension.
Both convolution layers and fully connected layers have
the channel dimensions.

LACC’ s LADD matrix suits for accumulating the
channel dimension. Once the 2D convolution is fin-
ished, DMA unit loads next input neurons of next fea-
ture map in channel dimension of the same output neu-
rons. Then LADD matrix accumulates middle results of
the channel dimension for the final 3D convolution re-
sults.

5 Experiments

5.1 Experiment methodology

The design of LACC is synthesized by Synopsys
design compiler with TSMC 16 nm GP process in stand-
ard VT. The synthesized design is also placed and rou-
ted with the Synopsys ICC compiler. The design is sim-
ulated and verified with the Synopsys VCS, and esti-
mated the power consumption with Synopsys Prime-
Tame PX based on the simulated value change dump
(VCD) file. And taking AlexNet'* as the benchmark
network, the paper compares the LACC with three
state-of-the-art hardware accelerators, including Eye-
riss'?! | ShiDianNao'"®! | and TPU!*.
5.2 Experiment results

The comparison between LACC and the other
state-of-the-art accelerators in power cost and efficiency
is shown in Table 2.

Table 2 Comparison LACC with other accelerators

Accelerators Alexnet Pert/fps Power/mW Efficiency/GOPs/s/W Freq/MHz Area/mm” Technology
Eyeriss 35 278 246 250 16 TSMC65
ShiDianNao 320 400 1000 5 TSMC65
TPU 40 000 2300 700 <331 TSMC28
LACC 131 682 66 7758 1000 1.6 TSMC16

LACC is a scalable accelerator which can accom-
modate different sizes of LADD mairix. With 16 x 16
LADD matrix, the LACC accelerator in the experiment
achieves a 256 MACs per cycle, which means 512
GOPs/s at 1 GHz. If not considering circuit area, the
bigger LADD matrix, the higher performance can be
achieved.

For fair comparison, Table 3 scales the baseline
accelerators into TSMC 65 nm technology node ™.
TSMC 16 nm technology node is around 2.7 times effi-
ciency than TSMC 28 nm and 6 times efficiency than
TSMC 45 nm technology node, and 9 times efficiency
than TSMC 65 nm technology node in Al application.

Therefore, Table 3 shows comparison of LACC in
equivalent efficiency. LACC achieves 1.5 times effi-
ciency as the other accelerators.

Table 3 Comparison of LACC in equivalent efficiency

Equivalent
Accelerators Efficiency Freq/MHz Technology
/TOPs/s/W
Eyeriss 2.214 250 TSMC16
ShiDianNao 3.6 1000 TSMCI16
TPU 5.3 700 TSMC16
LACC 7.8 1000 TSMC16

6 Conclusions

To resolve the intensive memory access and inten-
sive computation problems of deep neural networks,
this work proposes LOGNN data format and LACC
hardware software co-design deep neural networks ac-
celerator and removes the multiply operation in deep

HIGH TECHNOLOGY LETTERSIVol. 27 No. 1|Mar. 2021

67

neural networks. LOGNN data format reduces the data
width from 32 bits to 8 bits, and correspondingly re-
duces 4 times storage and memory bandwidth. LACC
accelerator proposes domain specific arithmetic unit to
suit LOGNN data representation while removing multi-
ply operation. LADD matrix mapping of convolution
makes middle result reuse as much as possible while
processing multiply and accumulate operation. Accord-
ing to the experimental results, LACC deep neural net-
works accelerator achieves 1.5 times efficiency as the
state-of-the-art deep neural networks.

References

[1] RenS, He K, Girshick R, et al. Faster R-CNN: towards
real-time object detection with region proposal networks
[C] // Advances in Neural Information Processing Sys-
tems, Montreal, Canada, 2017, 1137-1149

[2] DevlinJ, Chang M W, Lee K, et al. Bert: pre-training
of deep bidirectional transformers for language under-
standing[J]. arXiv:1810. 04805, 2018

[3] Amodei D, Anubhai R, Battenberg E, et al. Deep speech
2. end-to-end speech recognition in English and Mandarin
[J]. Computer Science, 2015(48) ,173-182

[4] Howard A, Sandler M, Chu G, et al. Searching for Mo-
bileNetV3[J]. arXiv;:1905. 02244 , 2019

[5] GuoY, Yao A, Chen Y. Dynamic network surgery for ef-
ficient DNNS[C] // Advances in Neural Information Pro-
cessing Systems, Barcelona, Spain, 2016. 1387-1395

[6] Wang Y H, Xu C, You S, et al. CNNpack: packing con-
volutional neural networks in the frequency domain[C] //
Advances in Neural Information Processing Systems, Bar-
celona, Spain, 2016 253-261

[7] Han S, Mao H, Dally W J. Deep compression: com-
pressing deep neural networks with pruning, trained
quantization and Huffman coding[J]. Fiber, 2015, 56
(4):37

[8] Song H, Pool J, Tran J, et al. Learning both weights and
connections for efficient neural network[C] // Internation-
al Conference on Neural Information Processing Systems,
Montreal, Canada, 2015 1135-1143

[9] Gupta S, Agrawal A, Gopalakrishnan K, et al. Deep
learning with limited numerical precision[C] // Interna-
tional Conference on Machine Learning, Lille, France,
2015, 1737-1746

[10] Rastegari M, Ordonez V, Redmon J, et al. Xnor-Net:
imagenet classification using binary convolutional neural
networks [C] // European Conference on Computer Vi-
sion, Amsterdam, Netherlands, 2016 525-542

[11] Courbariaux M, Bengio Y, David J P. Binaryconnect:
training deep neural networks with binary weights during
propagations| C] // Advances in Neural Information Pro-
cessing Systems, Montreal, Canada, 2015 3123-3131

[12] Koster U, Webb T, Wang X, et al. Flexpoint: an adap-
tive numerical format for efficient training of deep neural
networks[C] // Advances in Neural Information Process-
ing Systems, Long Beach, USA, 2017 1740-1750

[13] Chen T, Chen Y, Duranton M, et al. BenchNN: on the
broad potential application scope of hardware neural net-
work accelerators [C] // The 2012 IEEE International

Symposium on Workload Characterization, La Jolla,
USA, 2012 3645

[14] Du Z, Palem K, Lingamneni A, et al. Leveraging the er-
ror resilience of machine-learning applications for desig-
ning highly energy efficient accelerators[C] // The Asia
and South Pacific Design Automation Conference, Singa-
pore, 2014 201-206

[15] Zhang S, Du Z, Zhang L, et al. Cambricon-x: an accel-
erator for sparse neural networks[C] // The 49th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, Taibei, China, 2016 1-12

[16] Liu S, Du Z, Tao J, et al. Cambricon: an instruction set
architecture for neural networks[C] // The 43rd Interna-
tional Symposium on Computer Architecture, Seoul, Ko-
rea, 2016 393405

[17] Chen Y, Luo T, Liu S, et al. DaDianNao: a machine-
learning supercomputer [C] // The Annual International
Symposium on Microarchitecture, Cambridge, UK, 2015
609-622

[18] Chen T, Du Z, Sun N, et al. DianNao; a small-footprint
high-throughput accelerator for ubiquitous machine-learn-
ing[C] //The 19th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Salt Lake City, USA, 2014 . 269-284

[19] Du Z, Fasthuber R, Chen T, et al. ShiDianNao: shifting
vision processing closer to the sensor[C] //The 42nd An-
nual International Symposium on Computer Architecture,
Portland, USA, 2015. 92-104

[20] IEEE Computer Society. 754-2008 IEEE standard for
floating-point arithmetic [S]. New York, USA: IEEE
Computer Society Standards, 2008

[21] Jacob B, Kligys S, Chen B, et al. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference[C] // IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Salt Lake
City, USA, 2018 2704-2713

[22] Krizhevsky A, Sutskever I, Hinton G E. TmageNet classi-
fication with deep convolutional neural networks[C] //
Advances in Neural Information Processing Systems,
Harrahs and Harveys, Lake Tahoe, USA, 2012. 1097-
1105

[23] Chen Y H, Emer J, Sze V. Eyeriss: a spatial architec-
ture for energy-efficient dataflow for convolutional neural
networks [C] / ACM SIGARCH Computer Architecture
News, Seoul, Korea, 2016 367-79

[24] Jouppi N P, Young C, Patil N, et al. In-datacenter per-
formance analysis of a tensor processing unit[C] // Inter-
national Symposium on Computer Architecture, Toronto,
Canada, 2017 1-12

[25] Khazraee M, Zhang L., Vega L, et al. Moonwalk: NRE
optimization in ASIC clouds[J]. ACM SIGOPS Operating
Systems Review, 2017, 51(2); 511-26

Yu Yong, born in 1992. He received his B.S.
degree in intelligence science and technology from Nan-
kai University in 2015. He is currently a Ph. D candi-
date at Institute of Computing Technology, Chinese
Academy of Sciences. His research interests include
computer architecture and machine learning algorithms.

