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Abstract

The convergence of computation and communication at network edges plays a significant role in
coping with computation-intensive and delay-critical tasks. During the stage of network planning,
the resource provisioning problem for edge nodes has to be investigated to provide prior information
for future system configurations. This work focuses on how to quantify the computation capabilities of
access points at network edges when provisioning resources of computation and communication in
multi-cell wireless networks. The problem is formulated as a discrete and non-convex minimization
problem, where practical constraints including delay requirements, the inter-cell interference, and
resource allocation strategies are considered. An iterative algorithm is also developed based on de-
composition theory and fractional programming to solve this problem. The analysis shows that the
necessary computation capability needed for certain delay guarantee depends on resource allocation
strategies for delay-critical tasks. For delay-tolerant tasks, it can be approximately estimated by a
derived lower bound which ignores the scheduling strategy. The efficiency of the proposed algorithm
is demonstrated using numerical results.
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0 Introduction

Conventional wireless networks are facing dramatic
challenges with the explosive growth of connected de-
vices and emerging applications in the era of Internet of
Things (IoT). Massive data are generated at network
edges and need local processing for ultra-low latency.
However, under existing frameworks, a large amount of
redundant data have to be uploaded to remote cloud
centers for central processing. Such paradigms not only
consume large bandwidth but also bring unexpected
processing delay. Various techniques have risen to cope
with those challenges, such as mobile edge computing''’ |
fog computing'> and fog-radio access network’'. They
have much in common in pushing communication,
computing, control and storage to network edges.

This paradigm shift requires access points ( APs)
at network edges to perform computation-intensive and
latency-critical applications. This is beneficial, for ex-
ample, in the cyber-physical control of emergency,

where data processing at the nearest AP allows the fas-
test response. Another example is to use local image/
video processing to extract information to upload in lieu
of unnecessary redundant data for bandwidth savings.
To achieve these, APs should have computation
capabilities besides being traditional wireless transceiv-
ers. The resource scheduling problem on how to effi-
ciently utilize the joint communication and computa-
tional resources has been widely investigated. To name
a few, scheduling strategies for task offloading are pro-
posed in terms of energy efficiency, task delay, or multi-
criterion metrics under the cloud-fog-thing network archi-

6] Various optimization methods have also been

[7]

tecture
developed to obtain resource allocation solutions

The resource provisioning problem in deploying a
computing wireless network, however, still remains a
challenging field of research''’. One open question is
how to quantify computation capabilities of APs in
practical wireless networks. Questions also include
where to place serving nodes and how many nodes are

optimal in terms of the deployment cost. Those ques-
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tions should be answered when upgrading existing APs
with co-located computing servers, or deploying new
APs with computation capabilities for emerging applica-
tions such as smart factories.

Several solutions for the resource provisioning
problem at network edges have been recently addressed
in Refs [ 8-10]. Ref. [8] studied the site selection
problem for fog nodes in an loT-based logistic center,
assumed the link between the fog node and the edge
device was wired. The goal of Ref. [9] was to deter-
mine the location placement of serving nodes in wire-
less metropolitan area networks, but its heuristic algo-
rithms ignore the impact of the underlying resource sched-
uling and the inter-cell interference. In Ref. [10], the
demand for AP’ s communication-and-computation ca-
pability was analyzed in a single-cell multi-user scenar-
io. In existing studies, the network assumption is sim-
plified to be either wired or limited to a single-cell sce-
nario, which weakens the dynamics of practical wire-
less networks.

In this work, the computation capabilities of APs
are optimized under practical constraints in multi-cell
wireless networks. The purpose is to provide useful guid-
ance for wireless operators during network deployment.
The main contributions are summarized as follows.

(1) A discrete and non-convex optimization prob-
lem is formulated to quantify the necessary computation
capabilities of APs under heterogeneous delay require-
ments, discrete bandwidth allocation and dynamic in-
ter-cell interference.

(2) The solution is developed based on decompo-
sition theory and fractional programming ( FP). The
optimization problem is firstly decoupled into a compu-
tation subproblem and a communication subproblem.
Then, the first subproblem is solved with a closed-form
expression. The second one is solved using fractional
programming.

(3) Numerical simulations in a multi-cell scenar-
io are performed to evaluate the proposed algorithm.
Practical factors are considered in simulation settings
for insightful analysis. Simulation results demonstrate
the efficiency of the solution.

The rest of this work is organized as follows. The
system model and the problem formulation are presen-
ted in Section 1. The solution is developed in Section
2. Specifically, this section introduces the decomposi-
tion of the original problem, a closed-form solution for
the computation subproblem, and an iterative update
framework. The detailed algorithm for the communica-
tion subproblem is separately presented in Section 3.
Simulation results are presented in Section 4. Conclu-
ding remarks are given in Section 5.

1 System model and problem formulation

A multi-cell wireless network is considered. Let /
={1,2,---, I} and J=1{1,2,---, J} denote the sets
of indices for APs and devices, respectively. AP i is
capable to communicate with a group of devices within
its coverage whose indexes are from the set J,(J,C.J).

1.1 Computation model

The computation capability is measured by the
number of cycles of the central processing unit (CPU)
per second. Let F; denote the computation capability of
AP i. Each AP is assumed to be configured with a cer-
tain level of computation capability in order to process
tasks from its serving devices, i.e. ;

F, >0, Viel (1)
further, the fraction of computational resources alloca-
ted to device j is denoted as B;. Those devices without
any computational requirements are simply omitted, so
that B, satisfies the following conditions.

Zjej_ﬁjsl’ﬁj € (05 1], V] = ]i9 VL el
(2)

Therefore, the amount of computational resources
allocated to devicej e J;is B;F,.

The task is measured by the data size in bits. The
computation task is assumed to be fully offloaded to
AP. Let ¢; denote the number of CPU cycles needed to
process one single bit of device j’ s task. Then, the

L

B.F

o

calculation time of a given task with /; bits is sec-

onds for each devicej e J,.

1.2 Communication model

The access mode is frequency division multiple
access for multiple devices served by one AP. A set N
= {1,2,---, N} of frequency subcarriers is consid-
ered. a; € {0, 1} is used to represent the subcarrier
allocation indicator. Subcarrier n e N is allocated to
device jif and only if a; = 1. Orthogonal subcarrier as-
signments are further assumed during one scheduling
interval, i.e. ;

Zjejia}l <1,a 10,1}, VjelJ, Viel
(3)

Full frequency reuse is adopted so that the inter-
cell interference can not be ignored.

The device is associated to its serving AP with the
strongest received signal. Let p; denote the uplink
transmission power at subcarrier n from device j to its
serving AP. The total power of device j should be no
more than the maximum uplink transmission power
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P 1 €. o

S PSP =0, VneN, Viel
(4)

Frequency selective channel is assumed due to

max 9

wide-band communication. Distance-dependent path
loss and shadow fading are also considered as fading
components. hj is denoted as the uplink channel gain
from device j to AP i at subcarrier n.

The communication and computation stages in pro-
cessing one task is assumed to be sequential. The com-
munication time for downlink transmission is also neg-
lected due to the negligible amount of feedback bits.
Letr; denote the uplink transmission rate of device j as-

sociated with AP i, where

hip

n yl'y

Iy = Z,LE a;j log, 1+ 2 - n)’
N &y = zj'eJ/Jihif'pf'

Viel, Yiel (5)

Then, the communication time is approximately

l,/r; seconds. The total processing time ¢; satisfies ;

L Lc, ) )
t;, = rj +BjFi$dj, Viel, Viel (6)

where d; constrains the delay to process [; bits.

1.3 Problem formulation

The objective of this work is to understand how
many computational resources are necessary in order to
satisfy the tasks’ requirements in multi-cell wireless
networks. Therefore, the optimization problem can be
expressed as the minimization of the total computation
capabilities of all APs in the network. Specifically, the
problem is formulated as

PO: minimize >, ,F, (7)

F.p,a,B

subject to Eqs(1) - (6)
where the collections of variables to be optimized are
denoted as F = (F,),.,, p = (p]l'l)jel,neNs a =
() ey nens and B =(B;);., respectively.

PO is a challenging combinatorial and non-convex
optimization problem. The formulation incorporates dis-
crete subcarrier assignment, where subcarriers alloca-
ted by one AP are coupled with those co-channeled
ones assigned by neighboring APs. It is well known
that a degenerated communication problem of PO to
solely maximize the sum rate with Eq. (5) has been
rather complicated'"’. It becomes more challenging
when further introducing the computation problem.

2 Decomposition based solution framework

2.1 Framework overview
An overview of the procedures is firstly presented

to solve the problem PO. As shown in Fig. 1, the prob-
lem PO is solved in an iterative manner, which in-
cludes several key stages, such as problem decomposi-
tion, subproblem solving, and variable updating. Spe-
cifically, the problem PO is firstly decomposed to the
computation subproblem Pl and the communication
subproblem P2. Then, the two subproblems are sepa-
rately solved by its corresponding algorithms after ini-
tializing the auxiliary variable z,.

J
formed by additional variable updates until the conver-

[terations are per-

gence condition is satisfied.

Decompose the problem PO into subproblems P1 and

P2 by introducing the auxiliary variable z,

v

| Initialize the auxiliary variable z, |

<
v v

Solve the subproblem P1 Solve the subproblem
using a closed-form solution P2 using FP

v v

| Update z; using gradient and subgradient methods

Is the convergence condition satisfied?

Fig.1 Flow chart of the solution framework

2.2 Decomposition
By grouping computation variables and communi-
cation variables asx, = [F, B8] andx, = [p, a], PO

falls into the following structure "'

v, (x,) +2,(x;)
ul(x]> +u(x,) <m, (8)
x, €A, x, €A,

minimize
X1, X2

subject to

where both v, (x,) and u,(x,) are functions of x, in its
feasible region A, for k=1, 2; m is a constant. Since
primal decomposition is appropriate for Eq. (8), x,
and x, can be decoupled after decomposing Eq. (6)
into

Z =T (9)

1 4 1
,BjFL-/cJ- = lj Z; (10)

J
where, the auxiliary variable z; can be considered as a

rate threshold according to Eq. (9). Detailed decom-
position of PO to two subproblems are as follows.
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2.3 Computation subproblem

The objective here is to optimize computation ca-
pabilities F and allocation coefficients 8 under fixed z
= (%), The optimization problem is

P1. mlnlmlzezlgl (11)
F.B

subject to Eqs(1), (2) and (10).

A closed-form solution for P1 is

c.
s J S
F, = Zjd,. PR Yiel (12)
L oz
1
4 _1
[ z;
B=———71 »Viel,VYiel (13)
Zind 1
- :
Proof From Eq (10) for eachj e J,, it has
C.
——— <8, (14)
TEST
' lj z;
Combining Eq (2) and Eq. (14), it obtains:

<> . Bs (15)

l.

From Eq. ( 15)
tained as shown in Eq. (12).

Evidently Eq. (10) should be satisfied with
equality. Therefore, Eq. (13) can be directly derived
by combining Eqs(10) and (12).

Proposition 1 F, in Eq. (12) approaches to a
lower bound, i.e. , F = Z (ljc /d;) , for delay-

szsld 1
Lz

the minimum value of F; is ob-

i

tolerant tasks with d; >> [/z,.

The proof of Proposition 1 is obvious according to
Eq. (12) so that it is omitted here. Further, the lower
bound is no longer dependent on the rate-related pa-
rameter z;, so it presents a computationally efficient ap-
proach to estimate AP’s computation capability under

weak delay demands.

2.4 Communication subproblem

The objective here is to optimize power allocation
variables p and frequency allocation indicators e under
fixed z. This is in fact the following feasibility prob-
lem.

P2: r=z,jel (16)

subject to Eqs(3), (4) and (5).

For fixed z, any feasible (p, a) satisfying Eq. (16) is
a solution.

P2 is solved in the dual domain:

minimize g(p, u) (17)
subpjyeﬂct to p,=0, Vjel,
w=0, Yjel.
where ,
g(p, p) = maxmize L(p, a,p,p)  (18)

is the dual function, and

Lp,a,p,p) =2 > (o —wp)

+ Z}_EJ( ~ Pji%; +/'Lijax)
(19)
<pj>jeJ and p
= (u;) s are Lagrange multipliers for rate and power
constraints in Eq. (16) and Eq. (4),

7 (j € J;) is the rate at subcarrier n, where
n n
iP;
n ”
a-i + Z el/l; U /

Then r; can be simply expressed as r, = Z

is the Lagrangian function. Here, p =

respectively ;

ri= o log,( 1 + (20)

J

I
neN J
The dual problem in Eq. (17) is solved by using Algo-

rithm 2 in Section 3.

2.5 Iterative algorithm

The auxiliary variable z; is iteratively updated ac-
cording to the gradient and subgradient methods.

s -8 _lz) +9(z)),jel (1)
where 8 is the positive step-size; the gradient w(z;)
from P1 and the subgradient ¢(z;) from P2 are as fol-

lows.
oF, c
w(z) = P —
i dz; (dz/l, -1)°
QD(ZJ') =z = rj*

r” is computed by Eq. (5) using the solution of P2.

J
To sum up, the solution of PO can be achieved by
solving two subproblems P1 and P2 iteratively and up-

dating z; using Eq. (21), as shown in Algorithm 1.

Algorithm 1  Solution for PO
Input: configuration parameters P, (o Sy 0

max ¥ Ty Vi My

VneN, Vjel, Viel;

and channel gain h;

Output: F, p, a, B;

ij

Ll
Initialization : z = d_L +e, Vjeld;
¢
Repeat
1) update p, a by calling Algorithm 2;
2) update F, B by Eq. (12) and Eq. (13);
3) update z by Eq. (21) ;

until convergence

“ g is a very small positive value to guarantee an initial feasible
solution of P2.
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3 Fractional programming solution for P2

In this section, the dual problem of P2 is solved
through FP. Firstly, it is shown that the dual problem
has a similar FP structure as Ref. [11]. Then, the
baseline FP in Ref. [11

multi-subcarrier FP with Gauss-Seidel iterations. Final-

] is extended to a general

ly, the solution is presented in Algorithm 2.

Algorithm 2 Solution for P2

Input: configuration parameters P, , f;, [, d;,

VneN, Vjel, Viel;

and channel gain h;

Output: p, @, p, p;
Initialization: set (p, a, p, p) to feasible values;

ij

Repeat
Repeat for fixed (p, p)
1) update y, y, p, @, @ by Eq. (28);
until convergence
2) update p, u by Eq. (29);

until convergence

In the following, the equivalent form of the dual
function in Eq. (18) is discussed. For fixed p, u and
z, Eq. (18) is in fact

maXImlze Z/EJ z neN(p] T = wp}) (22)

where rj has the same FP structure as Ref. [11].
Therefore, Eq. (22) can be solved by referring to the
baseline FP algorithm based on the quadratic transform
and Lagrangian dual transform ( Theorem 1 and 3 in
Ref. [11]). The difference is that an additional linear
term is introduced, i.e., w;p; in Eq. (22). Following
the same line for the proof of Theorem 1 and 3 in
Ref. [ 11

change the properties stated therein (the details are

1, it is sure that this linear term does not

omitted here). As a result, Eq. (22) can be reformu-
lated to a parallel optimization problem for each subcar-
riern € N.

maximize
P a

where ,
Q;(+) = p;logy, (1 +)) —ppy = (9))°0;
—pp! + 29" o, (1 + ¥ ) hip!)
S LS (29)
Accordingly, a new term, i.e., up;, is included

in Eq. (24) compared to the baseline FP in Ref. [11].
For eachj € J,, yf and yj'f are auxiliary variables de-

Zielzje]ioinj(a;’p;) (23)

fined as follows, respectively.
o = P

J 2 n._n

oy T Zj'EJ/Jihif'pj/

(25a)

o _ AL+ Y Rp))
A 2 n_n

o; + Zj'eJhij'pf'
The approach to solve Eq. (23) is presented as

(25b)

follows. Suppose subcarrier n is assigned to task j by
AP i. The optimal p; that maximizes the object of the
max operation in Eq. (23) can be obtained by letting
0Q;;

n

= 0. Therefore, p; can be obtained as
ap;
. pi(97) (1 + ¥k
pj = m n 2 ’ Pmax
Gyt 0, O
(26)
By substituting Eq. (26) into Eq. (24) and com-
paring with all the possible assignments of this subcar-

rier, o can be obtained as

n

aj — jed;

{O, if max Q; <0, orj # arg max Q;
1, forj = arg max Qs 0therw1se
JeJi

(27)

So far, the solution of (p;, a]);_; .y can be ob-
tained by iteratively updating Eqs(24) — (27) among
neighboring cells for a multi-subcarrier system. In the

Gauss-Seidel iterations '’ are

proposed algorithm
used to update the above variables. In this way, AP ¢
uses the recent results of its neighboring cells to update
its own variables so that the interference status becomes
more accurate. Specifically, the variables are updated

in the following circular fashion.

7 = LG, el a™?) (28a)
n(k+1) f (pn(k) "(/”'1) a(k) (k+1)> (28b)
n(k+1) = £,(¥] n<k+1> n(k+1> ,bP b (28¢c)
Qn(kﬂ) = fo(p. n(k+l) yf”“‘”) y & B bt
s Vi ) i+ » Yi-
(28d)
n(k+1> —f (Q"(’”')) (286)

Where

al? =[ '5““), pj”“) j'el.,i'el, i >i],

a" = [a;(k+]), pj(“]) lj'el,,i'el, i'<i],
P = [V 1 edy, v el, i 5],

bV =y Vel ivel, i <i],

and f,(+) s £,() s £,(+) s fy(+) s f.(+) correspond
to Eqs(25a), (25b), (26), (24), (27), respec-
tively; superscript £ (or £ + 1) represents the index of
iterations.

Once Eq. (22) is solved for all n, Lagrange mul-
tipliers p, u can be updated using subgradient meth-
ods.

pi<—p; — (¥ —2)

I Ty (P = Z neNﬁ;‘l)

where 7, and 7, are the positive step-sizes; p; is the so-

(29a)
(29b)
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lution of Eq. (22) ; and 7, is calculated by Eq. (5).

The solution of P2 is summarized in Algorithm 2,
where the collections of variables y;, y; and Q) are de-
noted as y, y and Q, respectively. Compared to the
baseline FP, the general multi-subcarrier FP further;
(1) performs joint power allocation among multiple
subcarriers under the total power constraint, with cor-
responding updates in Eq. (24) and Eq. (26); and
(2) updates variables by Gauss-Seidel iterations in
Eq. (28) to better handle the interlinked resource allo-
cation due to the interference.

4 Performance evaluation

In this section, simulations are performed to eval-
uate the proposed algorithm. The simulation setting fol-
lows a pico-cell scenario of the 3rd Generation Partner-
ship Project (3GPP) "),

are as follows. A homogeneous deployment with three

The general assumptions

APs is considered, where each AP serves three devices
in its coverage. Each AP is located at the center of the
cell and the inter-AP distance is 100 m. All APs fully
reuse 10 MHz frequency band, which consists of 50 re-
source blocks ( RBs) with each RB consisting of 12
continuous subcarriers. The unit for frequency schedu-
ling is one RB. The maximum uplink transmission
power is 23 dBm. The power spectral density of noise
at each AP is - 174 dBm/Hz. A 3GPP probability-
based path loss model is considered. The standard de-
viations of shadow fading are 3 dB and 4 dB for line of
sicght (LOS) and non-line of sight (NLOS), respec-
tively. The small-scale fading is modeled as Rayleigh
fading. The channel is assumed to be frequency flat
within one RB but independent for different RBs. The
data size of each task is set to 10 Mbits, and the num-
ber of CPU cycles needed to process one bit of each
task to 100 cycles/bit.

The effects of three practical factors on the re-
quired computation capabilities are empirically evalua-
ted. These are tasks’ delay requirements, resource al-
location strategies, and the interference status. First,
the task’ s delay is varied, denoted as d, from 1 s to
6 s to indicate both delay-critical and delay tolerant
tasks. Second, three benchmarks are used to evaluate
the proposed algorithm. These are the soft frequency
reuse (SFR) scheme, which is one of the representa-
tive techniques for frequency scheduling to handle the

inter-cell interference '’

, a generic average resource
allocation scheme (average), and the ‘lower-bound’
performance based on Proposition 1. Finally, two sce-
narios are considered for the interference status charac-

terized by devices’ locations, where at the ° cell

edge’ , the minimum distance from the device to its
serving AP is 45 m, and in the ‘cell area’ , it is 5 m.

In Fig.2, the necessary computation capabilities
of the network are compared using different resource al-
location (RA) algorithms under the above settings.
Simulation results show that, as the delay becomes
large, the required computational resources become
sharply reduced. Intuitively, this effect is consistent
with the fact that the delay-critical tasks demand much
more computational resources than the delay-tolerant
tasks. Furthermore, the demand approximately approa-
ches to the lower bound under weak delay demand,
e.g., d >4 s. This indicates that the resource provi-
sioning for computation capabilities can be simplified
by using the lower-bound estimation instead of running
an iterative algorithm.

It is observed that, for those delay-critical tasks,
the scheduling strategy has a strong impact on the nec-
essary computation capabilities of the network. Take d
=1s as an example. The demand for computation ca-
pabilities with the proposed algorithm reduces to about
one third of the average scheme for cell-edge devices,
as shown in Fig.2(a). The reason of this effect is that
the proposed algorithm is more efficient in dealing with
the inter-cell interference and thus achieves higher
communication rates. Similarly, SFR also brings bene-
fits to reduce computation costs compared to the aver-
age scheme, but is still inferior to the proposed algo-
rithm.

There exists a trade-off between the transmission
rate and the demand for computational resources.
When devices are randomly located in the whole cell
area, some locations near to the cell center increase
communication rates, due to the strong received signal
strength and the negligible interference. Hence, as
shown in Fig.2(b) , the demand for computational re-
sources under each scheduling algorithm is highly re-
duced compared to that in the cell-edge scenario
(Fig.2(a)).

Fig. 3 further illustrates the experimental cumula-
tive distribution function ( CDF) of the required com-
putation capability for each AP when devices are loca-
ted at the cell edge. Roughly speaking, the computa-
tional resources are varying in a certain range due to
the inter-cell interference and the received signal
strength , which finally leads to dynamic communication
rates. The ranges are rather wider for both the average
allocation scheme and SFR than the proposed algo-
rithm. Thus, it is necessary to balance the worst case
and the deployment cost during the computational re-
source planning for APs in practical wireless networks.



HIGH TECHNOLOGY LETTERSI Vol. 27 No. 2| June 2021

127

X101

—
(S}

—<&— Proposed algorithm
—+— SFR

—_
(=]

—— Average

42
172}
Q
2
=
,§ 8r —&— Lower-bound
z
< 6
g
Q
g4
3
7
3 ot

0

1 2 3 4 5 6

Delay/s

(a) Devices are uniformly distributed at the cell edge

X101

—&— Proposed algorithm
—%— SFR

—&— Average

—8— Lower-bound

B

EN
a

[

Computation capabilites/cycles/s

(=}
—_
[\
w
S
w
N

Delay/s
(b) Devices are uniformly distributed in the cell area
The minimum demand for the total computation capabili-
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Fig. 2
devices’ locations

The degree of the demand for computational re-
sources is summarized in Table 1 under the previously
mentioned constraints according to the analysis of the
simulation results. It indicates the significance of the
different factors during the resource provisioning in the
practical multi-cell network deployment.

Table 1 Demand for computational resources under key factors

Resource demand

high 1
Key factors & o
Del. . critical %
elay requirement
i tolerant Vv
stron, \/
Inter-cell interference 2
weak Vv
optimized vV
RA algorithms P
general v

5 Conclusion

The resource provisioning problem is investigated
for APs with communication-and-computation capabili-
ties in multi-cell wireless networks. Specifically, the
minimum demand for computational resources is quan-
tified to guarantee the tasks’ requirements under prac-
tical concerns. The analysis shows that the resource

1
g Proposed algorithm
0.8 ’// /,’/ - ==« SFR
/ V¢ 7 --—%--- Average
0.6 [ ¥ ]
2 [ il
(=) [ ’I?
© 04t ‘»" ,g’ 1
i
02F | 'If‘ 2
4 |
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| ¥
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Computation capability per AP/log,
(a) Task’s delay is 1 s
1 7 T e i = ™
[ P - Proposed algorithm
L | 4 4
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04f |4
[1]
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02t 1]
i
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8.9 9.1 9.3 9.5 9.7 99 10

Computatoin capability per AP/log

(b) Task’s delay is 4 s
Fig.3 Experimental CDF of computation capabilities of each
AP. Devices are randomly located at the cell edge

provisioning depends on key factors such as delay re-
quirements, scheduling strategies, and the interference
status. In particular, delay-critical tasks demand much
more computational resources and are more sensitive to
scheduling strategies than delay-tolerant tasks. Fur-
ther, for delay-tolerant tasks, a lower bound is derived
to estimate the demand for computation capabilities,
which is more computationally efficient. The conclu-
sions are beneficial for wireless operators when upgra-
ding an existing network or deploying a new one for

emerging applications.
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