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Abstract

With the rapid development in the service, medical, logistics and other industries, and the in-
creasing demand for unmanned mobile devices, mobile robots with the ability of independent map-
ping, localization and navigation capabilities have become one of the research hotspots. An accurate
map construction is a prerequisite for a mobile robot to achieve autonomous localization and naviga-
tion. However, the problems of blurring and missing the borders of obstacles and map boundaries
are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.
In this pursuit, the present work proposes the development of an improved Gmapping algorithm
based on the sparse pose adjustment ( SPA) optimizations. The improved Gmapping algorithm is
then applied to construct the map of a mobile robot based on single-line Lidar. Experiments show
that the improved algorithm could build a more accurate and complete map, reduce the number of
particles required for Gmapping, and lower the hardware requirements of the platform, thereby sav-

ing and minimizing the computing resources.

Key words: complex indoor environment, single-line Lidar, map construction, improved
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0 Introduction

In view of the implementation of the strategies of
Industry 4. 0, Intelligent Manufacturing, and Made in
China 2025, a dramatic progress and prosperity has
been achieved in the field of robotics. Indoor mobile
robots have become a research hotspot in the field of
service robots. At present, studies on indoor mobile
robots are mainly centered on the map construction, lo-
calization, and navigation. Precise map construction
and accuracy of the localization information in an un-
known environment are mutually dependent on each
other. Independent navigation and path planning of a
mobile robot depend on the accurate environmental
mapping and localization. Therefore, the map con-
struction and localization are the basic and key technol-
ogies in mobile robots.

Simultaneous localization and mapping ( SLAM)
refers to the process where the mobile robot simultane-
ously achieves an independent localization and mapping
in an unknown environment'''. Studies on SLAM have

become one of the important research aspects concern-
ing the mobile robots'”*’. Based on the type of sen-
sors, SLAM is classified as laser SLAM and visual
SLAM. Laser SLAM is further divided into laser 2D-
SLAM and laser 3D-SLAM. Visual SLAM is further di-
vided into monocular LSD-SLAM™',  binocular
SLAM"’ | RGB-D-SLAM-V2'*) and Kinect Fusion'"’.
Both the SLAM approaches are based on the RGB-D
camera.

The Lidar-based 2D SLAM algorithm relies on the
probability model during map construction with state es-
timation for the mobile robot at its core. Extended Kal-
man filter (EKF) SLAM was invented to solve the dy-
namic nonlinear problems of the mobile robot model ™’ .
However, this method exhibited the defects of heavy
calculation load, susceptibility to environmental noi-
ses, and accumulation of linearization error after long-
term operation. Ref. [9] proposed the representative
PF-based SLAMs that included the approaches
FastSLAM 1.0 and FastSLAM 2. 0.

Robot operation system ( ROS), an open-source
operating system, integrates the commonly used laser-
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based 2D-SLAM'"”). The commonly used laser-based
2D-SLAM algorithms include Hector'"!,  Gmap-
ping'">"*) | and Cartographer "*'. The Hector SLAM al-
gorithm places a high requirement on Lidar in terms of
the turnover rate and measurement noise, thus it has
certain limitations. The Cartographer algorithm needs
to take up more computing resources. Hence, a higher
requirement is placed on the hardware configuration of
the mobile robots. Integration of the Gmapping algo-
rithm into the ROS is a representative of Rao-Black-
wellized Particle Filter-SLAM ( RBPF-SLAM) , which
has been improved based on FastSLAM 2.0. Given the
high speed and high accuracy, Gmapping has become
one of the most extensively used algorithms in mobile
robots. However, in a complex indoor environment,
especially when the odometry is subject to noise inter-
ferences, the particle filters (PF) in Gmapping can
encounter over-filtering problems. As a result, the ob-
stacles and map boundaries are blurred. Scan match
may fail due to poor observation or too small overlaps,
leading to the missing boundaries of the obstacles and
map. This further affects the quality of the constructed
map.

A number of researchers have proposed improved
methods for RBPF-SLAM to solve the above problems.
Ref. [15] described an improved method of RBPF-
SLAM, which reduced the algorithm complexity and
enhanced the realtime of the system, but impaired its
robustness. Ref. [ 16 ] addressed the problems of parti-
cle degeneracy and particle failure by developing an
improved SLAM method. Although this method im-
proved the accuracy and efficiency of map construc-
tion, the time complexity of the algorithm was in-
creased. A large number of particles were still needed
to achieve the error convergence. Ref. [17] proposed
a scan match SLAM approach based on PF, which re-
duced the problems of memory consumption and clo-
sure of the cycle. However, the number of particles
needed for the algorithm was directly proportional to the
environmental scale, which meant a high consumption
of the computing resources. Ref. [ 18 ] reported an im-
proved RBPF-SLAM based on the geometric informa-
tion, which enhanced the system robustness and con-
sistency of environmental construction. However, 500
particles were needed for map construction using this
algorithm, thereby placing a high demand on the hard-
ware’ s computing capability. Ref. [ 19 ] improved the
FastSLAM 2. 0 algorithm based on FC&ASD-PSO. This
method reduced the influence of the cumulative error
and improved the accuracy of map construction, but in-
creased the complexity of the algorithm.

All in all, although some improvements have been

made in the RBPF-SLAM algorithm, the problems of
high algorithm complexity and high consumption of
computing resources still persist. Moreover, few efforts
of improvements have been directed at Gmapping, a
representative  RBPF-SLAM method. In the present
study, the Gmapping algorithm was optimized for its
application in the map construction of a mobile robot in
a complex indoor environment. The SPA pose-graph
optimization was employed and the graph optimization
thread was executed as an independent thread to lower
the demand of the Gmapping algorithm for computing
resources. By using the proposed method, a more ac-
curate and integrated map could be constructed with fe-
wer particles.

1 Construction of a mobile robot model

1.1 Transformation of coordinate system of the
mobile robot

The coordinate system of a mobile robot based on
Lidar consists of the world coordinate system, robot co-
ordinate system, and Lidar coordinate system. The
world coordinate system is an absolute coordinate sys-
tem fixed in the environment and is represented by
using rectangular coordinates. The robot coordinate
system and Lidar coordinate system are relative coordi-
nate systems that need to be converted to the world co-
ordinate systems.

Let X;;0,Y,, be the world coordinate system of a
two-wheeled mobile robot and X,0,Y, be the robot co-
ordinate system. The representation is illustrated in
Fig. 1. The origin of the robot coordinate system is lo-
cated at the center of the robot. In the world coordinate
system, the coordinates of the origin are X}, = (x,, y,,
0.) that represents the pose of the robot in the world

coordinate system.

Y, A

Ou >X
Fig.1 Coordinate system of the mobile robot
Let the coordinates of a certain point in the robot

coordinate system be @, = [x,, ¥,]", and 0 be the in-
cluded angle between this point and X,. Then, in the
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world coordinate system X,0,Y, , the coordinates X},

= [y, yw, 6% ] can be calculated below, as shown in

Eq. (1).
Xy x, cos(@) —sin(0) 04 %
Yw|= [y, |+ ]sin(8) cos(8) 0|y
65, 0. 0 0 1°Lg

(1)

1.2 Lidar model

Lidar observations are used for the map construc-
tion of an indoor two-wheeled robot based on single-
line Lidar. Since the Lidar observations are represen-
ted in the form of polar coordinates, they are converted
into the rectangular coordinates. The coordinates of the
Lidar observation points are converted into the world
coordinate system'>'. As shown in Fig.2, the distance
between the observation point and Lidar is Z*. The in-
cluded angle between the Lidar measurement point and
the robot coordinate system is @, ,,,. kis the number of
the Lidar measurement point. Let X, = (x, y, 6) be
the pose of the robot at the moment t. (%, .5 ¥i. won)
is the position of the Lidar in the robot coordinate sys-
tem. Then, the coordinates X* = (x*, ", 6*) of the
measurement point in X,0;Y,, can be calculated from

Eq: (2):

k

x, x cos(9) —-sin(@) O X, sons
yil= [y # [sin(@) cos(0) O+ | ¥ wn
0:‘ 0 0 0 1 ek,s(ms
%, [ cos(6 + 6, ..) &,
+2| vy || sin(0 + 6, ) [+ € (2)

0 0 £,
where, £, , £ and £, are the measurement noises, gen-
erally assumed to be zero-mean white Gaussian noi-

[2
SESl ].

Y, A

Lidar measurement point

w X

Fig.2 Coordinate representation of Lidar

1.3 Kinematic model of the mobile robot
In odometry, a device is employed for pose esti-
mation of a mobile robot that collects encoder data per

unit time. The robot trajectory model can be obtained
by calculating the wheel displacement of a robot per
unit time. Then the pose of the robot at a given mo-
ment is estimated through integration, and the pose es-
timation of the robot between adjacent moments is con-
ducted. Pose estimation of the robot between adjacent
moments is illustrated in Fig. 3.

Y, A

"

0, »

Fig.3 Pose estimation of the mobile robot between

adjacent moments

Let the pose of the robot at the moment ¢ — 1 be
X, =[x, 9%.,0,.1", Atis the sampling time, v
and w are the linear speed and angular speed of the ro-
bot. Then the pose of the robot at the moment ¢ is X, =

[x,, v, 6,]", as given by Eq. (3)"*).

%, %, vAtcos( 6, + wAt)
¥y, = | v, || vAtsin(6, , + wAt) (3)
0, 6. 5 wAt

2 Map construction method for indoor mo-
bile robot based on the improved Gmap-
ping algorithm

2.1 Gmapping algorithm

The schematic representation of the SLAM process
of the mobile robot is shown in Fig. 4.

} robot
* landmark

Fig.4 Schematic representation of the SLAM process of
the mobile robot

As shown in Fig.4, from moment ¢ =1 to ¢ +2,

the pose of the mobile robot is represented by x,_; ,,,.

The motion control quantity on the odometry is repre-

sented by u,_, ,.,, the landmark m, and the scan-

Jij+3 9
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ning observation z,_; ,; ;.-
In the Gmapping algorithm, p(x,,, m | z,,
uy,_, ) is the posterior probability estimate of the robot,
where «,,, is the pose of the robot from the initial mo-
ment to moment ¢; z, , is the Lidar observation from the
initial moment to moment ¢; u,,,_, is the motion control
quantity on the odometry. By introducing the observa-
tion into the proposal distribution of robot, the im-
proved proposal distribution of the ith particle at the
moment ¢ is obtained, as given by Eq. (4). Whenever
anew (u, ,, z,) appears, the proposal distribution is
recalculated, and the particles are updated as well.
p(a |t m&, 6, 2, uy)
_pCalmh,m) plalmh, ua)
) pa t mly, x5, u,,)
The Gmapping algorithm is an improvement based

on FastSLAM. However, the Gmapping algorithm often
encounters the problem of over-filtering in a complex
environment if the odometry is subject to interferences
other than Gaussian noise. In such case, the problems
of blurring, missing, and shift of the obstacle borders
may occur on the constructed map, which impairs the
accuracy and integrity of the map. Here, the Gmap-
ping algorithm was optimized and improved in light of
the above problems for map construction. Based on the
graph optimization theory, the pose graph of the robot
and the closed-loop constraint in the front-end are con-
structed through the graph optimization thread. The
pose graph optimization method based on the sparse
matrix was employed in the back-end for global nonlin-
ear optimization during map construction. The robot’ s
pose and map information carried by the particles were
corrected. This method not only preserved the advan-
tage of fast map construction in Gmapping, but also
lowered the demand for computing resources in the ro-
botic system. Furthermore, both the accuracy and in-
tegrity of the consiructed map were improved.

2.2 Pose-graph optimization based on SPA
SPA is a nonlinear optimization method used to
construct the sparse matrix for the online solving of lin-

2] Nonlinear optimization is a global opti-

ear systems
mization method. When compared with the filter-based
algorithms such as EKF, nonlinear optimization effec-
tively eliminates linear and cumulative errors of the
system, thereby achieving good optimization effect and
satisfactory map construction. Map construction is
translated into the problem of finding the optimal nodes
that satisfy all of the current constraints. The maps are
represented by means of the graph. The objective is to

jointly optimize the pose of nodes, thereby minimizing

The framework diagram of SLAM
based on graph optimization is shown in Fig. 5.

potential errors.

Update Pose-Graph

‘ Edge |
T T I (Constraint Back-end
Sensor Data

Pose-Graph
Construction

Pose-Graph
Optimization

)
— =

Scan Match

SPA Nonlinear
Closed-Loop Optimization
Detection

Fig.5 Architecture of SLAM based on pose-graph optimization

Classical nonlinear optimization methods include
the bundle adjustment ( BA), Levenberg-Marquardt
(LM) algorithm, and Graph-SLAM. However, as the
environmental scale increases, the memory needed for
the conventional nonlinear optimization increases rapid-
ly. The computing load also increases dramatically,
and the time complexity is aggravated. SPA is based on
the Cholesky decomposition of a sparse matrix and per-
forms the back-end graph optimization through the con-
struction of a sparse matrix. SPA reduces the demand
for memory and lowers the algorithm complexity, there-
fore it is suitable for map construction in a complex in-
door environment.

Using LM as the architecture, the linear system
model is constructed with SPA, as shown in Eq. (5).

(H + MAdiagH)Ax = J' Ae (5)
where, H is the direct sparse feature matrix; A is the
conversion factor from the gradient descent method to
the Newton-Euler method ; Ax is the correction quantity
for the mobile robot’ s pose; J is the Jacobian matrix of
error; A is the precision matrix, whose value is the re-
ciprocal of covariance; and e is the error function. SPA
solves the direct sparse matrix H by Cholesky decom-
position, thereby solving the correction quantity for the
mobile robot’ s pose Ax. Online pose estimation of the
robot is carried out, and the map is updated incremen-
tally, with the minimization of linearization error of the
system. Thus, the map construction and map optimiza-
tion of the mobile robot are finally realized.

The SPA algorithm is a full nonlinear optimization
method, which achieves online continuous pose-graph
optimization of the mobile robot by constructing a
sparse feature matrix. This method is capable of opti-
mal global estimation of all nodes without occupying too
much computing resources. The SPA algorithm is fea-
tured by high processing efficiency, low failure rate,
and fast convergence. However, as a back-end optimiza-
tion algorithm, the SPA needs to be combined with the
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front-end algorithm with scan match capability. Gmap-
ping can estimate the robot’ s pose with high speed and
which
makes it suitable to be combined with SPA optimiza-

accuracy during the front-end scan maich,

tion. By incorporating the advantages of the Gmapping
algorithm in the scan match, an improved Gmapping
algorithm based on SPA optimization is proposed. This
method retains the speed of Gmapping in map construc-
tion and pose estimation of a mobile robot. The proce-
dure also integrates SPA for optimization and correction
of the constructed map and pose of a mobile robot.
This further reduces the demand for computing re-
sources and alleviates the problem of over-filtering with
PF. The constructed map is more complete and exhib-
its clear and more accurate boundaries and obstacles.

2.3 Improved Gmapping method based on SPA
optimization

Based on SPA, the pose-graph optimization process
is executed independently as a single thread to optimize
map construction. An improved Gmapping algorithm is
proposed.

The improved algorithm consists of the following
steps:

Step 1 The pose estimation and particles infor-
mation is initialized. The pose x,"” of the ith particle
estimated from the pose ") of the ith particle at the
previous moment and the odometry information u, , are
obtained. The calculation is shown in Eq. (6). The
proposal distribution p is calculated. The initial particle
set S, = {} is defined. The information of all particles
s'") is stored at the previous moment into the particle
set St 1 for the previous moment. The particle informa-
tion s 1 of the prev1ous moment is given by Eq. (7).

= xz 1 ®u,, (6)
(” = (alh, mb, 0 (7)

Step 2 A scan match is performed. Based on
(i) "(3)

map information m,"; , estimated pose %, , and obser-

, a scan match is performed on the surrounding
'(3)

vation z,
finite region for the pose x, " estimated for the ith parti-
cle.

the maximum

likelihood estimate of the robot’ s pose x'”

If the scan maich is successful,
is solved.
The calculation formula is shown in Eq. (8). Decision
If the

number of robot’ s pose coordinates reaches 20 in At

of the pose-graph optimization thread is done.

time, start the pose graph optimization thread, then
Step 3 and Step 3’ is executed simultaneously; other-
wise only Step 3 is executed.

%" = argmaxp(x | m7, z,, 5,) (8)

If the scan match fails, then Step 3 and Step 4 are

p(x] l X1

skipped. The pose x'” and weight w'” of the ith parti-

cle are recalculated, using Eqs(9) and (10), respec-
tively.
o~ plal xf, wor) (9)
o = obplz ] mb, x?) (10)

Step 3 The scan match region x'” is sampled.
The means and covariance matrices of each point are
calculated. The target distribution p(z, | m'"), %) -
) u,,) is evaluated at the sampling position
x;. The normalization factor 1" is calculated.
Step 3’ The graph optimization thread is execu-
ted. The pose-graph and closed-loop constraint is con-
structed.

Step 4 The Gaussian approximation of proposal
distribution N(u” , Z 1) is calculated,
Eq. (11) and Eq. (12). The pose 2" of the ith parti-
cle is sampled using Eq. (13).

'ZKx (Z|mtl’x)

j=1

'P(le x:(i)ly U,y ) (11)
K
!=1p(zt| m,_;, xj)

; 1
210 =5
n , _ S
'P(le xt(i)l’ U,1) * (xj _/Lt(l))(xj _/"'z(L))
(12)

o~ N, 2 69) (13)
Step 4’ The SPA optimization is executed. The
pose correction quantity Ax is calculated by using the

using

0 1
M = TG
7

(i)

equation of the linear system thus constructed. The
calculation result is introduced into Step 6 to correct
the pose x” of the ith particle.

Step 5 The weight of the ith particle is updated.

Step 6 The pose and map information m.” of the
ith particle is updated. The pose correction quantity Ax
calculated from Step 4’ is employed to correct the pose
x'” of the ith particle, by using Eq. (14). The map
information m'") of the ith particle is updated through

@)

the pose x,"” and observation z, of the ith particle and

the map information m'") of the ith particle at the previ-
ous moment, by using Eq. (15).

P = 2P + Ax (14)

m'” = integrateScan(x', z,, m") (15)

Step 7 The information of the particle set S, is
updated by using Eq. (16).

S —S U{< (z) (t) (z>>} (16)

Step 8 The completlon of the map construction is
determined. If yes, then the algorithm workflow is ter-
minated, and Stepl0 is executed. If the map construc-
tion did not finish, then Step 9 is executed.

Step 9 The particles are re-sampled. The effec-

tive sample size N is calculated and checked whether
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it is smaller than the threshold 7. Then the need for re-
sampling is evaluated. If the effective sample size is
smaller than the threshold, then re-sampling is per-
formed. If no, there is no need for re-sampling. The par-
ticle re-sampling is done using Eq. (17). If the resam-
pling is successful, go to Step 5; if there is no need for
re-sampling, the algorithm returns to Step 1.

S, = resample(S,) (17)

Step 10 The algorithm workflow is terminated.

The workflow of the improved algorithm is presen-

ted in Fig. 6.

ion and
articles informatior

succeeded

Evaluate the target Start
distribution and optimization
normalization factor, thread

Calculate ;
Construct the pose-
graph

Update the weight Construct closed-

of the i-th particle loop constraint

Update robot pose
and map information
of the i-th particle

SPA optimization

Resample the Update the particle

particles set

Fig.6 Workflow of the improved Gmapping algorithm based on
SPA optimization

3 Experiment and analysis

3.1 Construction of the experimental robot plat-
form

In this section, the hardware platform for mobile
robot, robot communication framework based on ROS,
and Stage simulation platform are designed and con-
structed. The hardware platform mainly consists of
LSLIDAR-N301, Intel NUC7i5BNH, STM32 control
board, mobile robot chassis, display, and 24 V battery
power supply. The structural chart of the system plat-
form is shown in Fig. 7.

LSLIDAR-N301 is applied to acquire real-time
measurement data, which is applied to laser SLAM of

the mobile robot. The LSLIDAR-N301 is shown in

Fig. 8. Intel NUC7i5SBNH Mini PC is employed for the
following functions, including real-time data process-
ing, map construction, localization, and motion plan-
ning, as shown in Fig. 9.

Display
Battery -
i ——— Mini PC
Control -
board
- Lidar

Fig.7 Structural chart of the system platform

Fig.8 LSLIDAR N301 model

IISmm——""""—111 mm

Fig.9 Dimensions of the mobile robot on the mini PC

The mobile robot chassis is composed of two driv-
ing wheels and two universal driven wheels. The two
driving wheels are arranged in a horizontal symmetry
across the chassis. They are directly driven by the DC
motor control system. The two driven wheels are ar-
ranged in a longitudinal symmetry across the chassis to
assist the steering. In the experiments, Dell laptop
with Ubuntu 16. 04, Intel CoreTM i7-7700HQ, 16 GB
memory, Stage and ROS Kinetic are used for the robot
simulation. The hardware and software configurations
fulfill the requirements for simulation experiment.

3.2 Experiment and result analysis

Map construction is performed by controlling the
robot with the keyboard. The simulation process is dis-
played in real-time in the Rviz window and Stage simu-
lator. The binary environmental map used for the ex-
periment is shown in Fig. 10(a), and the map size is
47 m x 33 m. The map construction process shown in
the Rviz window is presented in Fig. 10(b). The map
resolution is 0. 025 m.

Two groups of experiments are conducted. One is
to compare the Gmapping algorithm and the improved
Gmapping algorithm based on SPA in the performance
of map construction under the same particle number
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without obstacles. The other is to compare the two al-
gorithms under the same particle number with obsta-

Stage simulator are shown in Fig. 10(c) and (d). The
details of the parameters in the simulation process are

cles. The display interfaces of the experiments on the

(a) Environmental map for binary simulation

(¢) Snapshot of Stage stimulator without obstacles

shown in Table 1.

(b) Rviz window displaying the map construction process

(d) Snapshot of Stage stimulator with obstacles

Fig.10 Diagram of the system simulation experiment

Table 1 Table of experimental parameters of the system
Parameter name Parameter value
Radius of the mobile robot 0.5m
Linear speed of the mobile robot 1.5-3m/s
Angular speed of the mobile robot 0.6 -1 rad/s
Map resolution 0.025 m
Map size 4733 m

3.2.1 Experiment 1;: map construction experiment
without obstacles

Initially, the Gmapping algorithm and the im-
proved Gmapping algorithm are compared on the basis
of SPA for the performance of map construction without
obstacles by using the control variable technique. The
main parameter influencing map construction using the
Gmapping algorithm is the particle number. For a gen-
eral complex indoor environment, the optimal particle
number needed for map construction is 30. Thus, the

experiment is conducted by setting up three different

particle numbers.

As shown in Fig. 11, (a) is the display of the bi-
nary map on the Stage simulator; (b) and (c) are the
comparison of the two algorithms under the particle
number of 30; (d) and (e) are the comparison of the
two algorithms under the particle number of 15; (f)
and (g) are the comparison of the two algorithms un-
der the particle number of 5.

In Fig. 11(b) and Fig. 11(c), the map construc-
ted by Gmapping with the particle number of 30 is fair-
ly accurate. However, in some areas marked in ellipse
color in Fig. 11(b), the boundaries are blurred, lead-
ing to an incomplete display of the obstacles and map
and impairment of map accuracy. The improved Gmap-
ping algorithm based on SPA optimization is executed
for real-time detection and optimization of the map fea-
tures. Highly accurate and clearer map boundaries and
obstacle contours are delineated in the above areas.
Therefore , the map constructed by improved Gmapping
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(a) Map of the experimental environment
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(b) Map construction using the Gmapping algorithm with 30 particles

(d) Map construction using the Gmapping algorithm with 15 particles

e

(f) Map construction using the Gmapping algorithm with 5 particles

Fig.11 Map construction

(¢) Map construction using the proposed algorithm with 30 particles
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(g) Map construction using the proposed algorithm with 5 particles

experiment without obstacles
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algorithm is more accurate.

From Fig. 11(d) and (e), it is clear that the ac-
curacy of map construction using Gmapping under the
particle number of 15 decreases to a certain extent. In
the areas marked with ellipse in Fig. 11 (d), bounda-
ries are missing to a certain extent, thereby affecting
the accuracy of map construction. The accuracy of the
improved Gmapping algorithm based on SPA optimiza-
tion slightly decreases for the particle number of 15
than for the particle number of 30. However, a little
influence is produced on the accuracy of map construc-
tion. As compared with Fig. 11(d) , more accurate map
boundaries and features are generated in the correspond-
ing areas using the improved algorithm in Fig. 11 (e).
The map constructed is more complete.

In Fig. 11 (f) and (g), when five particles are
used to construct the maps, the use of the Gmapping
algorithm leads to severe blurring of map boundaries
and obstacles. In contrast, the improved algorithm
achieves better accuracy for map construction; the ob-
stacle features are clearer, and the map boundaries are
more regular.

All in all, in a structured indoor environment, the
improved Gmapping algorithm based on SPA optimiza-
tion could construct highly accurate maps than the con-
ventional Gmapping algorithm, under the same particle
number. The advantages of this improved algorithm are
even more salient under a small particle number. The
improved algorithm exhibites an accuracy of map con-
struction similar to that under a smaller particle num-
ber, and with high stability and adaptability.

3.2.2 Experiment 2; map construction experiment
with obstacles

In experiment 2, three obstacles are added to
make the structured indoor environment more complex.
These three obstacles are the longitudinal obstacle of
0.5mx3 mx1.5m on the left, wide obstacle of 3 m
x0.5 m x 1.5 m in the middle, and a pedestrian of
0.2m x0.4mx1.5 m in the corner on the right, re-
spectively (Fig.12). Two control groups are set up in
the experiment, and a comparison between the two al-
gorithms in map construction is conducted under the
particle number of 30 and 5, respectively.

The map construction experiment with obstacles is
shown in Fig. 12. As shown in Fig.12(b) and Fig. 12(c),
in a complex structured indoor environment, the prob-
lems of boundary blurring and distortion occured in ar-
eas marked with ellipse using Gmapping under the par-
ticle number of 30. In contrast, the improved algorithm
has a better adaptability, and the map constructed is
more accurate. In Fig.12(d) and Fig.12(e), the

boundary shift and blurring occurred with the Gmap-

ping algorithm, when the particle number was 5. On
the contrary, the improved algorithm exhibits a higher
stability, and the map accuracy is higher than that with
the conventional Gmapping algorithm.

All in all, under the same resolution and mini-
mum match score, the accuracy of map construction
using the conventional Gmapping algorithm is consider-
ably influenced by particle number. In contrast, the
improved Gmapping algorithm based on SPA optimiza-
tion is less affected by the particle number. In other
words, the improved algorithm does not require a large
particle number and too much computing resources for
accurate map construction. It shows a better adaptabili-
ty and places a lower demand on the hardware of the
mobile robot. As the particle number decreases, the
accuracy of map construction using the Gmapping algo-
rithm decreases as well. Therefore, the algorithm could
hardly meet the requirements on map construction in a
complex indoor environment under a small particle
number. The proposed algorithm is superior to the con-
ventional Gmapping algorithm in 2D map construction
for robots under a small particle number, both in accu-
racy and in integrity.

Under the same particle number, the improved
Gmapping algorithm based on SPA optimization exhib-
its a higher accuracy than the conventional Gmapping
algorithm. As shown by the above experiments, the
problems of local boundary blurring and boundary dis-
tortion occur during map construction with Gmapping.
Boundary shift also occurs under a small particle num-
ber. The Gmapping algorithm based on SPA optimiza-
tion offers a higher accuracy than the conventional
Gmapping algorithm, and the obstacles and map
boundaries constructed are clearer and more complete.

4 Conclusions

Boundary blurring and distortion are the common
problems encountered during the 2D Lidar map con-
struction by a mobile robot in a complex indoor envi-
ronment using the conventional Gmapping algorithm.
To address this problem, an improved Gmapping algo-
rithm based on the SPA optimization is proposed,
which is subsequently applied in the map construction
for the indoor mobile robot. The robot simulation plat-
form based on ROS and Stage is built, and experiments
are conducted for comparison between the two algo-
rithms. When compared with the conventional Gmap-
ping algorithm, the improved algorithm needs a smaller
particle number for map construction, saves computing
resources, and lowers the requirements for hardware.
The simulation experiments verify the accuracy, stabili-
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ty, and adaptability of the proposed algorithm. Future
study will be centered on the deepened and extended

application of the improved Gmapping algorithm based
on the SPA optimization in the multi-sensor fusion field.

(d) Map construction using the Gmapping algorithm with 5 particles

|

1 -

(e) Map construction using the proposed algorithm with 5 particles

Fig.12 Map construction experiment with obstacles
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