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Abstract

Image super-resolution (SR) is an important technique for improving the resolution and quality

of images. With the great progress of deep learning, image super-resolution achieves remarkable im-

provements recently. In this work, a brief survey on recent advances of deep learning based single

image super-resolution methods is systematically described. The existing studies of SR techniques

are roughly grouped into ten major categories. Besides, some other important issues are also intro-
ghly group ] 8 , p

duced, such as publicly available benchmark datasets and performance evaluation metrics. Finally,

this survey is concluded by highlighting four future trends.
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0 Introduction

Image super-resolution ( SR) aims to transform a
low-resolution ( LR) image with coarse details into a
counterpart high-resolution ( HR) version with refined
details and improved visual quality. With HR images
various tasks in computer vision may enhance their per-
formance, hence SR has been successfully introduced
into many important tasks, such as object detec-

[12 [35]

I face recognition'>' | medical imaging'®’ | as-

[7]

tion
tronomical images However, as a typical ill-posed
problem, image SR is challenging and there are many
problems that remain to be solved.

According to the type of features, SR methods can
be roughly divided into two categories: traditional
methods and deep learning methods. Traditional meth-
ods adopt hand-craft features or independent feature
learning processes, and their performances are always
restricted by the quality of extracted feature. Recently,
with the rapid development of deep convolutional neu-

ral networks (CNNS)[S-w] ,
methods have achieved promising performances

deep learning-based SR
[11-15]
and atiracted ever-increasing attention from industrial
and research communities. This work concentrates on
deep learning methods'"®’.

The main contributions of this survey are three-

fold ;

(1) A comprehensive review of deep learning-

based single image SR techniques is described, inclu-
ding problem definitions, datasets, assessment met-
rics, representative algorithms, experimental compari-
sons.

(2) Providing systematic and extensive evalua-
tions on publicly available image super-resolution data-
sets.

(3) The challenges, open issues, the new
trends, and future directions are all discussed for pro-
viding insights on possible future directions.

1 Problem setting

1.1 Problem definitions

SR aims to convert an LR image into an HR im-
age. In the process, the number of pixels in the input
LR image is increased with required scaling factor, as
shown in Fig. 1. The reconstruction strategies in exist-
ing image super-resolution methods concentrate on ex-
ploring prior information or deducting by rules to train
an optimal model that can build amplified images from
available LR images. Therefore, the reconstruction is
reflected as the problem in an inverse route to calculate
the original details around the geomeirical symmetries
of the SR image by merging one or more LR images.

1.2 Datasets
A series of classic datasets for image SR tasks
have been proposed, among which some datasets pro-
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vide LR-HR image pairs, and others only provide indi-
vidual HR images. Representative benchmark datasets
are Set5!"") | Set14' ) BSD100'"’, Urban100'*"
DIV2K'™®' | Mangal09™'', Flickr2K'*' | 0ST300'*,
PIRM'®! . Set5 and Setl4 consist of 5 and 14 testing
images, respectively. BSD100 contains 100 testing im-
ages from natural images and specific objects. Ur-
ban100 is a relatively new dataset taken from urban
scenes. DIV2K is originally constructed for NITRE
(new trends in image restoration and enhancement )
challenges, and it contains 800 images for training and
100 images for testing and validation. PIRM consists of
200 images, covering diverse contents, including peo-
ple, objects, etc.

SR Method

(Scaling Factor: K)

(K*mXK*n)

Fig.1 Illustration of image super-resolution
1.3 Assessment

Image quality assessment (IQA) refers to deter-
mine the important visual attributes of images, focusing
on the evaluation of human perception. IQA methods
can be divided into subjective methods and objective
methods. And the subjective and objective methods
may be bit consistent, for the latter often cannot accu-
2251 In this

section, the five commonly used IQA metrics are brief-

rately capture human visual perception

ly introduced.
1.3.1 Peak signal-to-noise ratio

In SR task, peak signal-to-noise ratio (PSNR) is
calculated by the maximum possible pixel value (deno-
ted as L) and mean squared error ( MSE) between a

ground-truth image / and a reconstructed image I,
which are formulated as

MSE = > (1) = 1()’ (1)

2
PSNR = 10 - loglo(ﬁ) (2)

where L is 255, N denotes the number of pixels. Since
PSNR only relate to pixel-level MSE without visual per-
ception, it may lead to poor reconstruction quality.
1.3.2 Structural similarity

The structural similarity index (SSIM) ! is pro-
posed for measuring the structural similarity between
images in terms of luminance, conirast, and struc-
tures. Due to the characteristic of HVS, SSIM can well
meet the requirements of perceptual assessment ' and

is widely used in SR tasks. SSIM can briefly be formu-
lated as
SSIM(I, I) = [C,(1, I)]*[Cc(1, D 1P[C(I, D)7
(8)

where a, B, vy are control parameters for adjusting im-
portance, C,(+), C.(+) and Cs( ) are comparisons
on luminance, conirast, and structures, respectively.
1.3.3 Mean opinion score

Mean opinion score (MOS) is a commonly used
subjective IQA metric by human raters to determine a
perceptual image quality score ( generally ranges from
1-poor to 5-excellent). The final MOS is calculated as
a mean of all rating scores. It is often discouraged by
biases and variance of rating criteria, differences be-
tween the subjective views of different raters. In real-
ity, some SR models perform poorly in PSNR or SSIM,
but achieves good perceptual quality in MOS!™>"*"),
1.3.4 Learned perceptual image patch similarity

As a recently introduced full-reference IQA met-
ric, the learned perceptual image patch similarity
(LPIPS) adopts linear deep classification networks
to measure perceptual similarity. These networks are
often trained on the BAPPS™ | which contains human
perceptual judgments. The LPIPS is consistent in many
models that have been trained to improve PSNR, SSIM
scores, or those trained to improve the quality of per-
ception. Hence, LPIPS can well balance objective
evaluation (PSNR, SSIM) and subjective evaluation
(MOS).
1.3.5 Natural image quality evaluator

Natural image quality evaluator ( NIQE )™

com-
putes 36 identical natural scene statistic (NSS) fea-
tures from image patches with the same size to analysis
quality, fitting them with the multivariate Gaussian
(MVG) model. The sharpness criterion is not applied
to these patches. The quality of distorted images is ex-
pressed as the distance between the quality-aware NSS
feature model and the MVG features extracted from the

distorted image as

D<U19 1}2’ 21922>

=\/<v1 ) (B ) ) @)

where v, , v, and 3,,, 3, are the mean vectors and co-

variance matrices of the natural MVG model and the
distorted image’ s MVG model.

2 Deep learning based image SR
Various image SR algorithms based on deep learn-

ings have shown impressive performance. According to
model designs, the existing SR algorithms are roughly
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divided into 10 categories.

2.1 Direct network

This type of method mainly consists of a single
path without complex skip connections. In these net-
works, several convolution layers are often simply

d™*'. SRCNN™’ is a pioneer deep learning

stacke
based SR work which is mainly composed of three con-
volutional layers. Different from the shallow network
structure of SRCNN, VDSR'*’ is commonly referred as
a deep VGG network and uses fixed-size convolutions
(3 x3) in all layers. The architecture of DnCNNP js
simple and is similar to SRCNN, it only stacks convo-
lutional layers, baich normalization layers, and Rel.U
layers. IRCNN'*"! combines discriminative CNN net-
works with model-based optimization methods. FSRC-
NN consists of four convolution layers and one de-

convolution layer.

2.2 Residual learning based methods

Residual learning adopts local or global skip con-
nections, which can benefit training and feature learn-
ing!"*1>442) " CARN™! employs ResNet blocks'"’ to
learn the relationship between LR input and HR out-
put. FormResNet'®' presents a formatted residual
learning framework for image restoration. BTSRN'*’
proposes a novel balanced two-stage residual networks
with lightweight yet efficient two-layer residual blocks.
REDNet'”! proposes a deep encoding and decoding
framework for image restoration, in which convolution
and deconvolution are combined for extracting primary
image content and recovering details. HCNN'*’ hierar-
chically assembles shallow CNNs with deep CNNs for

effective image SR.

2.3 Dense connection based methods

Inspired by the success of the DenseNet'*' | SR
algorithms adopt densely connected CNN layers to im-
prove performance. SRDenseNet™”) is directly con-
structed on DenseNet. In RDN"  residual dense
block (RDB) serves as a basic build module. In each
RDB, the dense connections between each layer allow
full usage of local layers. BBDP'*/ iteratively performs
back projections to explore the feedback error for im-
proving texture details. Its motivation is that only feed-
forward mechanism is not optimal for modelling the
mapping from LR to HR images. ESRN"" adopts an
efficient residual dense block to construct a fast, light-
weight, and accurate super-resolution network.

2.4 Recursive network based methods

[51-52]

Recursive networks either employ recursively

convolutional layers or recursively link units for pro-
gressively breaking down the complex SR problem into
a set of simple ones. DRCN' efficiently reuses
weight parameters while exploiting large image context.
To ease the difficulty of training the model, DRCN
uses recursive-supervision and skip connection. As
DRCN, DRRN"™" utilizes recursive learning, which
replicates a basic skip-connection block to achieve a

multi-path network block. In MemNet >’

, a memory
block adopts a gating mechanism for tackling the long-
term dependency problem. SRFBN'**! enhances low-
level representations by exploring high-level semantic
information, in which a feedback block effectively han-

dles feedback information as well as the feature reuse.

2.5 Progressive design based methods

Facing large scaling factors, SR algorithms'™' of-
ten progressively predict output image by multiple
steps. SCN'®) combines a sparse coding model partic-
ularly designed for super-resolution with a neural net-
work and trained in a cascaded structure from end to
end. LapSRN'®! reconstructs the sub-band residuals of
high-resolution images through the progressive recon-
struction. CMSC"") models the super-resolution recon-
struction by a sequence of cascaded sub-networks to
gradually refine high resolution features with cascaded-
supervision in a coarse-to-fine manner.

2.6 Multi-branch network based methods
Multi-branch networks aim to obtain a diverse set
of features at multiple context scales. CNF™* aims to
fuse multiple CNNs for image SR. IDN'®! consists of
feature extraction block, stacked information distil-
lation blocks, and reconstruction block. EBRN'®! ad-
vocates that the limitation of existing methods is caused
by under-fitting of the models on complex textures and
overfitting on simple structures. Hence, a block resid-
ual module is adopted to restore parts of the image in-
formation while passing the remained information to
deeper layers. DRN'®"! proposes a novel dual regres-
sion scheme for paired and unpaired data. SeaNet'®’
adopts an image reconstruction network , a soft-edge re-
construction network, and a refinement network.

2.7 Attention mechanism based methods
Combined with deep networks, attention-based SR
methods have shown promising performance. SelNet'®*!
proposes a novel selection unit, which is a multiplica-
tion of an identity mapping and a sigmoid-based selec-
tion module. In RCAN'®! a residual in residual
(RIR ) structure combined with channel attention

(CA) mechanism is proposed to adaptively rescale
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channel-wise features by considering interdependencies
among channels. SRRAM'®! extensively evaluates a
range of attention mechanisms with common SR archi-
tectures. In Ref. [66 ], authors explore the cross-scale
patch recurrence property of a natural image through a
cross-scale internal graph neural network.

2.8 Multiple degradation based methods

The majority of existing super-resolution methods
only consider a single degradation. However, in real-
ity, there often exist multiple types of degradations.
ZSSR'”") only relies on a small image-specific CNN,
which is trained at test time on internal examples ex-
tracted solely from a LR test image. SRMD'®*’ has high
scalability of handling multiple degradations by taking
both a LR image and its degradation maps as input.
Recently, UDVD'®’ proposes a unified network to ac-
commodate the variations from inter-image ( cross-im-

age variations) and intra-image ( spatial variations) .

2.9 GAN based methods

GAN'™"! hased methods employ a game-theoret-
ic, the generator tries to generate SR image that the
discriminator cannot distinguish as a real HR image or
an artificially super-resolved one. SRGAN'*! is a pio-
neer GAN-based network for optimizing a new percep-
tual loss. EnhanceNet'”’ achieves promising results by
a combination of adversarial training, perceptual los-
ses, and a newly proposed texture transfer loss. SR-
Feat'""! produces perceptually pleasing images by em-
ploying an image discriminator together with a feature
discriminator. The feature discriminator encourages the
generator to generate high-frequency details instead of
noisy artifacts. ESRGAN' achieved Top-1 rank in
the PIRM-SR Challenge. In ESRGAN, the discrimina-
tor relativistic GAN learns to judge whether one image
is more realistic than another, guiding the generator to
recover more detailed textures.

2.10 Domain-specific applications

Intuitively,, images with good quality and high res-
olution can facilitate visual related tasks. From this key
observation , some work has explored the learning of SR

[74-78]_ Specifically’ in

for domain-specific applications
Ref. [75], a clear high-resolution face is directly gen-
erated from a blurry small one by adopting a GAN for
tiny face detection. In Ref. [77], authors propose a
novel feature-level super-resolution approach that can
be extended into any proposal based detectors. Zhang
et al. "™ proposed two SR methods for the spatial and
temporal streams, tailored for two-stream action recog-

1 [80]

nition networks. Zhu et a addressed image classi-

fication by developing an end-to-end architecture that
internally elevates representations of an LR image to
“super-resolved” ones.

3 Experiments

Table 1 lists the 2 x SR resulis, and Table 2 lists
4 x SR results. Apparently, Bicubic has poor perform-
ance compared with the deep learning ones. As a pio-
neer deep learning work, SRCNN outperforms Bicubic
by 2.98 dB PSNR and 0. 0238 SSIM on Set5 in 2 x
SR task. Although the experimental results of other di-
rect networks, e.g. , ESPCN and FSRCNN, are great-
ly improved in PSNR and SSIM, the details are still not
promising. By deepening networks, these methods
(EDSR" and FormResNet*!) adopt residual learn-
ing, which is conducive for training and feature learn-
ing, to improve the details of reconstructed images.
RDN'**’ makes full use of hierarchical feature informa-
tion and provides a lot of reference information for re-
construction. Consequently, its PSNR and SSIM are
respectively 32.47 dB and 0. 8990 on Set5 for 4 x SR.
DRCN™' | DRRN""" and MemNet'* employ recur-
sive learning to progressively break down the harder SR
problem into a set of simpler ones for further boosting
reconstruction performance. And they all achieve ad-
vanced PSNR and SSIM results in SR tasks. LapSRN"’
progressively predicts output image by multiple steps,
which alleviates issues with undesired artifacts and
greatly reduces the computational complexity. To ex-
ploit the features of multiple context scales, SeaNet'®’
employs a multi-branch network to obtain complemen-
tary information and achieves 32.44 dB PSNR and
0.8981 SSIM results on Set5 for 4 x SR. RCAN'®' fo-
cuses on necessary and effective image information and
achieves 38.27 dB PSNR and 0. 9614 SSIM on Set5 for
2 x SR. The PSNR and SSIM of ZSSR'*"} | SRMD'*®! |
and UDVD'®’ on Set5 are not the best, but they can
reconstruct visually satisfactory SR images for real-
Although SRGAN has relatively low
PSNR and SSIM, its reconstruction results are visually
promising. IRN"™'"" achieves the best PSNR and SSIM
in 2 x SR, which are respectively 43.99 dB and
0.9871 on Set5. And in 4 x SR, its PSNR and SSIM
are respectively 36.19 dB and 0. 9451 on SetS. For 4
x SR, DRN'® achieves the best PSNR and SSIM,

showing the effectiveness of multi-scale feature learning

world images.

and dual regression scheme.

In image super-resolution, it is difficult to com-
pare methods, because there are many involved fac-
tors, such as network complexity, training data, patch
size for training , number of features maps . In Table 3 |
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Table 1 PSNR and SSIM on the benchmark datasets for a scaling factor 2 x
Set5 Set14 BSD100 Urban100 DIV2K Mangal09
Method Category PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM
Bicubic - 33.68 0.9304 30.24 0.8691 29.56 0.8435 26.88 0.8405 32.45 0.9040 31.05 0.9350
SRCNN[3! Direct Network 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.51 0.8946 34.59 0.9320 35.72 0.9680
VDSR4 Direct Network 37.53 0.9587 33.05 0.9127 31.90 0.8960 30.77 0.9141 35.43 0.9410 37.16 0.9740
DnCNNI3! Direct Network 37.58 0.9590 33.03 0.9128 31.90 0.8961 30.74 0.9139 - - - -
FSRCNN!#] Direct Network 36.98 0.9556 32.62 0.9087 31.50 0.8904 29.85 0.9009 34.74 0.9340 36.62 0.9710
CARNMY Residual Learning 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 36.04 0.9451 38.36 0.9764
EDSR! Residual Learning 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 35.03 0.9695 39.10 0.9773
MDSR!4] Residual Learning 38.11 0.9602 33.85 0.9198 32.29 0.9007 32.84 0.9347 34.96 0.9692 38.96 0.9780
ERN[#] Residual Learning 38.18 0.9610 33.88 0.9195 32.30 0.9011 32.66 0.9332 - - - -
RDN !4 Dense Connection 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 - - 39.18 0.9780
ESRN[] Dense Connection 38.04 0.9607 33.71 0.9185 32.23 0.9005 32.37 0.9310 - - - -
DRRN[3! Recursive Network 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188 35.63 0.9410 37.92 0.9760
MemNet 2] Recursive Network 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 - - 37.72 0.9740
SRFBN[*! Recursive Network 38.11 0.9609 33.82 0.9196 32.29 0.9010 32.62 0.9328 - - 39.08 0.9779
DRCN!%] Recursive Network 37.63 0.9588 33.06 0.9121 31.85 0.8942 30.76 0.9133 35.45 0.9400 37.57 0.9730
SCN!36 Progressive Design 36.52 0.9530 32.42 0.9040 31.24 0.8840 29.50 0.8960 34.98 0.9370 35.51 0.9670
D-DBPN[#! Progressive Design 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 - - 38.89 0.9775
LapSRN{Ss] Progressive Design 37.52 0.9591 32.99 0.9124 31.80 0.8949 30.41 0.9101 35.31 0.9400 37.53 0.9740
IDN Multibranch Network ~ 37.83 0.9600 33.30 0.9148 32.08 0.8985 31.27 0.9196 - - 38.02 0.9749
IRN(S! Multibranch Network  43.99 0.9871 40.79 0.9778 41.32 0.9876 39.92 0.9865 44.32 0.9908 - -
SeaNet 2! Multibranch Network ~ 38.15 0.9611 33.86 0.9198 32.31 0.9013 32.68 0.9332 - - 38.97 0.9779
RCAN!®4] Attention Mechanism  38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 36.63 0.9491 39.44 0.9786
ZSSR L] Multiple Degradation  37.37 0.9570 33.00 0.9108 31.65 0.8920 - - - - -
SRMDNF!®)  Multiple Degradation ~ 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 35.54 0.9414 38.07 0.9761
Table 2 PSNR and SSIM on the benchmark datasets for a scaling factor 4 x
Set5 Set14 BSD100 Urban100 DIV2K Mangal09
Method Category PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM PSNR  SSIM
Bicubic - 28.43 0.8109 26.00 0.7023 25.96 0.6678 23.14 0.6574 28.11 0.7750 25.15 0.7890
SRCNN[! Direct Network 30.48 0.8628 27.50 0.7513 26.90 0.7103 24.52 0.7226 29.33 0.8090 27.66 0.8580
VDSR4 Direct Network 31.35 0.8838 28.02 0.7678 27.29 0.7252 25.18 0.7525 29.82 0.8240 28.82 0.8860
DnCNNI3! Direct Network 31.40 0.8845 28.04 0.7672 27.29 0.7253 25.20 0.7521 - - - -
FSRCNNI3#! Direct Network 30.70 0.8657 27.59 0.7535 26.96 0.7128 24.60 0.7258 29.36 0.8110 27.89 0.8590
CARNMY Residual Learning 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.43 0.8374 30.40 0.9082
EDSR[#) Residual Learning 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 29.25 0.9017 31.02 0.9148
MDSR!'4] Residual Learning 32.50 0.8973 28.72 0.7857 27.72 0.7418 26.67 0.8041 29.26 0.9016 31.11 0.9150
ERN[#! Residual Learning 32.39 0.8975 28.75 0.7853 27.70 0.7398 26.43 0.7966 - - - -
RDN 4! Dense Connection 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 - - 31.00 0.9151
ESRN[*) Dense Comnection ~ 32.26 0.8957 28.63 0.7818 27.62 0.7378 26.24 0.7912 - - - .
DRRN[3! Recursive Network 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638 29.98 0.8270 29.46 0.8960
MemNet 2] Recursive Network 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 - - 29.42 0.8942
SRFBN Recursive Network 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.60 0.8015 - - 31.15 0.9160
DRCN[%! Recursive Network 31.53 0.8854 28.03 0.7673 27.24 0.7233 25.14 0.7511 29.83 0.8230 28.97 0.8860
SCN 36 Progressive Design 30.39 0.8620 27.48 0.7510 26.87 0.7100 24.52 0.7250 29.47 0.8130 27.39 0.8570
D-DBPN[# Progressive Design 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 - - 30.91 0.9137
LapSRN!% Progressive Design 31.54 0.8866 28.09 0.7694 27.32 0.7264 25.21 0.7553 29.88 0.8250 29.09 0.8900
IDN ¥ Multibranch Network ~ 31.82 0.8903 28.25 0.7730 27.41 0.7297 25.41 0.7632 - - 29.40 0.8936
DRN!®'] Multibranch Network ~ 32.74 0.9020 28.98 0.7920 27.83 0.7450 27.03 0.8130 - - 31.73 0.9220
IRN(8! Multibranch Network ~ 36.19 0.9451 32.67 0.9015 31.64 0.8826 31.41 0.9157 35.07 0.9318 - -
SeaNet 62! Multibranch Network — 32.44 0.8981 28.81 0.7872 27.70 0.7399 26.50 0.7976 - - 31.05 0.9154
RCAN[®! Attention Mechanism  32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 30.77 0.8459 31.22 0.9173
SRGAN2] GAN 32.05 0.8910 28.53 0.7804 27.57 0.7354 26.07 0.7839 28.92 0.8960 - -
ZSSR L] Multiple Degradation ~ 31.13 0.8796 28.01 0.7651 27.12 0.7211 - = - - < «
SRMDNF!®)  Multiple Degradation ~ 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.01 0.8278 30.09 0.9024
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the classical and advanced SR methods are compared
in many factors. Methods with direct reconstruction
perform one-step up-sampling from the LR to HR
space, while progressive reconstruction predicts HR
images in multiple up-sampling steps. Global residual
learning indicates that the network learns the difference
between the ground truth HR image and the up-sam-
pled LR images. Local residual learning stands for the
local skip connections between intermediate convolu-
tional layers. Multi-scale training indicates that the

network design adopts multi-scale architecture. Table 3
shows the comparison of parameters for different SR al-
gorithms. More parameters mean higher computation
costs. Due to the improvement of the network structure
and the convolutional layer, the parameters of FSRC-
NN and SCN are less than SRCNN, and the parameters
are 12 K and 24 K, respectively. Although EDSR has
an excellent performance, it has more parameters than

other methods, reaching 43 000 K.

Table 3  Comparisons of parameter numbers

Method Input Output Parameters Global residual Local residual ~ Multi-scale
SRCNN! Bicubic Direct 57K
FSRCNN'*®) LR Direct 12K
SCNE* Bicubic Progressive 42 K
VDSR!! Bicubic Direct 665 K VvV A
DRCN' Bicubic Direct 1775 K Vv
LapSRN*! LR Progressive 812 K vV
DRRN'" Bicubic Direct 297 K vV Vv vV
SRGAN™ LR Direct 1500 K
DnCNN"*! Bicubic Direct 566 K 274
EDSRM* LR Direct 43 000 K VvV vV
MDSR !/ LR Direct 8000 K Vv Vv vV
ZSSR'®"! LR Direct 225 K Vv
MemNet!*’ Bicubic Direct 677 K vV vV N
IDN'* LR Direct 796 K Vv W
SRMDNF' LR Direct 1482 K
SRFeat!"” LR Direct 6189 K vV V4
D-DBPN'*! LR Direct 10 000 K % Vv
RDN!*! LR Direct 21900 K Vv Vv
SRFBNE LR Direct 3500 K 4 V4 Vv
RCAN'®" LR Direct 16 000 K % Vv Vv
DRN'®! Bicubic Direct 9800 K V vV \V
IRN®! LR Direct 4350 K Vv
ESRN!) LR Direct 1014 K % Vv
ERN'*! LR Direct 9530 K Vv Vv
SeaNet* LR Direct 7397 K vV \V4 Vv

4 Conclusions

This survey paper reviews most work published on

the topic of deep learning based super-resolution. The
possible four development trends are concluded as fol-
lows.

(1) Unsupervised SR. As a self-supervised task,
SR often explores low-resolution images from high ones
through simple degradation algorithms. The exploration
of similarities in self-images should be a valuable topic.

(2) Light-weight network. The existing work of-

ten seeks to build a deeper and more integrated net-
work for extracting informative features. However, they
are too time-consuming, greatly restricting usages in
real cases.

(3) Realistic SR. Some work, especially the
GAN based ones, reconstruct super-resolved images
with promising perceptual quality. However, the su-
per-resolved images often have seriously semantic in-
consistency with their LR counterparts.

(4) Domain-specific applications. Super-resolu-
tion can greatly benefit other vision tasks. Therefore, it
is also a promising direction to apply SR to more spe-
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cific applications, such as object detection, face recog-

nition.
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