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Abstract
Meta-learning provides a framework for the possibility of mimicking artificial intelligence. How-

ever, data distribution of the training set fails to be consistent with the one of the testing set as the
limited domain differences among them. These factors often result in poor generalization in existing
meta-learning models. In this work, a novel smoother manifold for graph meta-learning (SGML) is
proposed, which derives the similarity parameters of node features from the relationship between
nodes and edges in the graph structure, and then utilizes the similarity parameters to yield smoother
manifold through embedded propagation module. Smoother manifold can naturally filter out noise
from the most important components when generalizing the local mapping relationship to the global.
Besides suiting for generalizing on unseen low data issues, the framework is capable to easily perform
transductive inference. Experimental results on MiniImageNet and TieredImageNet consistently show
that applying SGML to supervised and semi-supervised classification can improve the performance in
reducing the noise of domain shift representation.
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0　 Introduction

The difference between human intelligence and ar-
tificial intelligence is that humans can learn quickly
and accurately from a small number of examples, be-
cause humans have the ability to learn from prior
knowledge[1] . In contrast, traditional deep learning
has made tremendous progress in various fields, such
as image classification[2-3], object detection[4-5] and
image semantic segmentation[6-7] . However, the strong
deep learning algorithm heavily relies on a lot of la-
beled data. The human label cost and the scarcity of
some classes tremendously limit the further develop-
ment of deep learning. Just as humans can use the pre-
vious background and knowledge to effectively learn
new knowledge, artificial intelligence algorithms also
need to learn quickly and efficiently to contain new and
invisible information. So meta-learning has aroused
strong interest in various fields, especially few-shot
learning[8-10], learn to learn[11-12] and continual learn-
ing[13-14] . This work focuses on few-shot learning,
which aims to identify novel categories with very few la-
beled examples.

A key challenge of meta-learning is inference abil-

ity, inferring the new data representation by the effi-
cient and fast neural network based on training. Be-
cause the operation of few-shot learning needs to make
full use of the information in the dataset, especially it
is sensitive to the slight change of data distribution,
and graph neural network (GNN) can perform neigh-
borhood feature aggregation iteratively to express the
complex interaction between data instances[15] . There-
fore, the research on solving few-shot learning with
GNN has attracted more and more attention in related
fields. For example, Ref. [16] obtained the prior
knowledge of classifier by training similar few-shot
learning tasks. Ref. [17] proposed a model based on
node labeling framework to obtain node classification
tasks. In addition, there are a large number of litera-
tures containing regularization techniques, such as
dropout[18], batch normalization[19], and manifold
mixup[20-21], which analyzed the generalization capabil-
ity.

This paper tries to use simple smoother manifold
combined with GNN to address the few-shot classifica-
tion problem. A method called smoother manifold for
graph meta-learning (SGML) is proposed. Specifical-
ly, it is believed that the similarity of node features can
be obtained by iteratively updating node features and
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edge features in the graph network, then map them to
the embedded propagation network to obtain a set of in-
terpolation features, and then the image is labeled by
the classifier. The embedded propagation network can
increase the smoothness of the embedded manifold.

1　 Related works

Because GNN is extremely powerful in modeling
the dependencies between nodes, some revolutionary
breakthroughs have been made in the study of graph
structure. Refs[22,23] combined graph node charac-
teristics with graph topology to classify graph nodes.
On this basis, Ref. [24] proposed an edge-labeling
graph neural network ( EGNN) to make full use of
edge information, which solves the problem that graph
convolutional network (GCN) can only handle one-di-
mensional edge features and that noise with original ad-
jacency matrix in graph attention network (GAT) mod-
el may not be optimal. However, combining graph
structure and few-shot learning are still unnoticed, and
there are few unreliable solutions to classify for un-
known categories with only a small amount of data.
Ref. [25] proposed a label-based propagation transmit
network, built an undirected graph containing both un-
labeled data and labeled data, and obtained labels of
all unlabeled data by means of label propagation. By
learning to predict edge labels, the network can ex-
plore the direct connection state by using intra-cluster
dissimilarity and inter-cluster similarity. By iteratively
updating edge labels, the clustering representation can
be advanced and the classification performance can be
improved by combining with transductive propagation
network (TPN). This approach is used to construct the
network by using the relationship between edges and
nodes.

When constructing machine learning, if a mess of
complex neural network area is used to fit the data, it
is easy to cause over-fitting, which will cause the gen-
eralization ability of the model to decline. At this time,
regularization is needed. The absence of the free lunch
theorem has clearly show that there is no optimal regu-
larization method, and a more appropriate regulariza-
tion can only be chosen from different tasks. Ref. [26]
proposed the thought of batch normalization expression,
which is more universal and can solve problems such as
slow training, gradient disappearance and gradient ex-
plosion caused by inconsistent distribution. Ref. [27]
showed that self-supervised technology can fully exert
the advantages of manifold, especially when used with
manifold mixup, it can significantly improve the few-
shot learning performance. Ref. [21] proposed the

embedding propagation network (EPNet) utilizing em-
bedded interpolation to capture high-order feature inter-
actions, so as to use manifold smoothing to solve the
problem of poor generalization ability caused by differ-
ent data set distribution in few-shot learning. This work
tries to combine this manifold smoothing with GNN and
achieves unexpected results.

Semi-supervised learning and transductive learn-
ing are similar to the core ideas of meta-learning, so
they are widely used in this field. The former enables
learners to use unlabeled samples to improve their
learning performance without relying on external inter-
action, while the latter can train specific training sam-
ples to predict the samples to be determined. Semi-su-
pervised learning is applied in few-shot learning in or-
der to improve classification performance through
adding unlabeled data. Three ProtoNets semi-super-
vised variants were proposed based on k-means meth-
od, which adjusted clustering information by using a
large amount of unlabeled data[28] . Based on this,
Ref. [29] proposed a meta-learned cherry-picking
method which based on the self-training and meta gra-
dient descent method without redesigning the semi-su-
pervised network. Experiments have proved that trans-
ductive learning achieves better performance than in-
ductive learning in the few-shot classification task[30] .
They proposed a transduction network for a meta-learn-
ing framework that uses feature embedding, graph con-
struction, label propagation and the four steps of loss
calculation realizing end-to-end learning. Furthermore,
the meta-learned confidence transduction (MCT) was
proposed in Ref. [31] in order to update the confi-
dence weighted average of all supporting samples and
query samples of each prototype class and perform me-
ta-learning on the parameters of distance measurement
to improve the performance of transduction inference.
The transduction learning method is applied to the
framework to improve performance and improve semi-
supervised learning results.

As shown in Fig. 1, the L iterations update of node

Fig. 1　 Extract similarity from mutually updated node
and edge features
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features and edge features is completed in each epi-
sodes, and then the similarity features between the two
nodes are extracted as the input of the next stage.

2　 Method

In this section, the few-shot classification task is
defined and the proposed smoother manifold for graph
meta-learning is described. Firstly, the node features
are initialized by using feature extractor for inputting
images and edge features. Then, node feature transfor-
mation network and edge feature transformation network
are adopted to update each other with new node fea-
tures and edge features, and get the similarity between
nodes. Finally, the similarity is input into the embed-
ding propagation module to map the features to a set of
interpolated features and into the label propagation
module to get logit value for each query examples of the
class.

2. 1　 Problem definition
Episodic training is utilized to complete classifica-

tion task T, where T includes a support set S with la-
beled samples (k samples per class), and a query set
Q with unlabeled samples (q samples per class). And
query set does not contain the samples of support set
i. e. S ∩ N = Ø.

More specifically, the training and testing tasks
for n-way k-shot problems are as follows. T = S∪ V∪
Q, S = {(xi, yi)} n×k

i = 1, where xi and yi ∈{C1,…,CN}
= CT ∈ C are the ith input image and its label. Q =
{(x j, y j)} n×k+t

j = 1 are the jth input image and its label, t
represents the number of samples from the query set.
Although S and Q are uniformly sampled from the data-
set, they do not included in each other, i. e. S∩Q =
Ø. The samples in the verification dataset V intersect
with neither S nor Q, but are only used for hyperparam-
eter search. In each episode,the training model is opti-
mized in the support set Q with the labels, and then the
loss of the model is predicted in the query set Q. The
training program iterates until the convergence accord-
ing to the given episodes.

2. 2　 Model
This section describes the SGML framework for

the few shot classification. Firstly, the convolutional
neural network is used to extract the feature representa-
tion of the input image to construct the full connection
graph G = (P,W;M), nodes and edges represent sam-
ples and types of relationships between samples, re-
spectively, whereM represents amount of samples task.
P: = {P i} i = 1,…,| M| and W: = {E ij} i, j = 1,…,| M| respec-

tively represent nodes set and edges set, where pi is the
node feature of P i and eij is the edge feature of E ij . Then
apply the obtained similarity between the nodes in the
embedded propagation matrix and the label propagation
matrix and finally use the classifier to obtain the loss.
2. 2. 1　 Preparing

Firstly, the node features are initialized by the
output of feature extractor network v0i = fθ{xi} . Then
initialize the edge labels as follows.

e0ij =
[1‖0]　 　 　 yij = 1 and i, j ≤ N × K
[0‖1]　 　 　 yij = 0 and i, j ≤ N × K
[0. 5‖0. 5]　 　 　 　 otherwise

{
(1)

The similarity parameters of the node features are
obtained by iterations between node features and edge
features. Specifically, set the number of iterations be
L. Defining node feature and edge feature of the L - 1
layer as vL-1i and eL-1ij , then update the node features vLi
during the neighborhood aggregation process as follows.

vLi = fLv {[∑
j

􀭴eL-1ij1 vL-1j ‖∑
j

􀭴eL-1ij2 vL-1j ]; θL
v } (2)

where 􀭴eL-1ijd =
eijd

∑ k
eikd

, and fLv is the node feature trans-

formation network, as shown in Fig. 2(a).
Then, the updated node feature and edge feature

are used to obtain newly edge feature and the similarity
between the nodes.

􀭰eLij =
fLe (vLi , vLi ; θL

e )eL-1ij

∑ k
fLe (vLi , vLk;θL

e )eL-1ik1 ∕(∑ k
θL
e )

(3)

eLij = 􀭰eLij ∕ ‖􀭰eLij‖1 (4)

zL = 1
1 + e -fLe(vLi , vLi ; θLe)

(5)

where fLe is the edge feature transformation network, as
shown in Fig. 2(b).

Fig. 2　 Detailed network structure of feature transformation

05 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 1 |Mar. 2022　



The node feature and edge feature are iterated
with each other L times to obtain the final similarity
feature zL between the node pairs as the input of the
embedded propagation module. The purpose of embed-
ding is increasing the smoothness of manifolds, espe-
cially at the classification boundary of low density.
Firstly, the module calculates the prototype distance
and the adjacency of each similarity feature ( i, j) re-
spectively as d2

i, j = ‖zi - z j‖2
2 and Aij = exp( -

d2
ij

Var(d2
ij)

) . Then the Laplace of the adjacency matrix

is calculated by the prototype distance.
C = D - 1

2 AD - 1
2 ,　 Dii = ∑ j

Aij (6)
Then, the propagation matrix is obtained by using

the label propagation formula proposed by Ref. [32].
P = (I - αC) -1 (7)

where α ∈ [0,1] is the scaling factor, the value is
0. 5. I is the identity matrix. To remove the irrelevant
noise in the input information and obtain the embedded
information, the propagation matrix P is weighted and
operated as follows.

􀭴zi = ∑
j
P ijz j (8)

The one-hot encoding is used to process data. Let
P􀭹Z be matrix of embedding propagation by employing
Eq. (6) and Eq. (8), where 􀭹Z ∈  n×k+t is sampled at
S and Q. Moreover, let YS ∈  n×k be the labels from
the S of one-shot encoding. Finally, the label for query
set YQ with the largest logit value is obtained by apply-
ing label propagation as follows.

Y^ S
Y^ Q

é

ë

ê
ê

ù

û

ú
ú
= log P􀭹Z

YS

0[ ]( ) (9)

2. 2. 2　 Training
SGML will conduct two stages of training. Firstly,

the model will be pre-trained in the pre-training stage
to learn the general feature representation, and then
the model will be fine-tuned in the episodic learning
stage to inference to unseen classes.

Pre-training phase First, let a classifier param-
eterized byWl andWr with a linear layer of softmax acti-
vation function to predict the sample label category in
support set S and optimize it with the minimum cross
entropy loss.

Lc(xi, yi) = - lnp(yi | 􀭴zi, Wl) (10)
In addition, self-supervision is added to improve

the effectiveness of the model, so the same classifier as
above is used to predict the loss of rotating images.

Lr(xi, r j) = - lnp(yi | 􀭴zi, Wr) (11)
In conclusion, stochastic gradient descent (SGD)

is used to optimize the losses of the above two classifi-

ers as follows.

argmin
θ,Wl,Wr

∑
b

i = 1
∑

4

j = 1
Lc(xi, yi) + Lr(xi, r j) (12)

where b is the batches of size, 4 rotations per image
and r j ∈{0 °, 90 °, 180 °, 360 °}.

Episodic learning phase At this stage, the mod-
el obtained in the pre-training stage is deduced to novel
categories, and two classifiers are still used to optimize
SGML. The first classifier uses softmax to calculate the
class probability based on label propagation as follows.

Lp(xi, yi) = - lnp(yi | 􀭴zi, 􀭹Z, YS) (13)
The second classifier uses the same classifier as in

the pre-training stage to retain the distinguish feature
representation. The loss optimization is as follows.

L1 = 1
| S | ∑

(xi, yi)∈Q
Lp(xi, yi) (14)

L2 = 1
| S ∪ Q | ∑

(xi, yi)∈S∪Q

1
2 Lc(xi, yi) (15)

argmin
θ, Wl

(L1 + L2) (16)

Framework of SGML is shown as Algorithm 1.

Algorithm 1 Framework of SGML
1 Input: T = S ∪ V ∪ Q, where S = {(xi, yi)} n×k

i = 1, Q =
{(x j, y j)} n×k+t

j = 1 .
2 Initialize: v0i = fθ{xi}, e0ij by Eq. (1).
3 For l = 1,…,L do:
4 　 vLi = NodeUpdate {vL-1i , eL-1ij } by Eq. (3);
5 　 eLij,zL = EdgeUpdate {vL-1i ,eL-1ij } by Eq. (4) and Eq. (5).
6 End
7 􀭴zi = propagation module { zL,θe} by Eq. (5), Eq. (6),

Eq. (7) and Eq. (8), where θe is the is corresponding pa-
rameter sets.

8 Pre-training phase:
9 Predict the class labels of examples in support set S by

Eq. (10), Eq. (11) and Eq. (12).
10 Output: argmin∑∑(Lc + Lr) .
11 Episodic learning phase:
12 Learn to inference unseen classes by Eq. (13),

Eq. (14), Eq. (15) and Eq. (16).

13 Output: argmin∑∑(LP + 1
2 LC) .

3　 Experiments

This section mainly describes the experimental re-
sults on two commonly used datasets, MiniImageNet
and TieredImageNet.

3. 1　 Datasets
MiniImageNet is one of the most commonly used

few-shot classification datasets proposed by Ref. [33].
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Total of 100 categories, each category has 600 images,
all in RGB color, adjusted to 84 × 84 pixels. Divide it
into three (64, 16 and 20) disjoint parts for training,
verification and testing.

TieredImageNet is a subset of the alternative ima-
genet dataset that has a larger number of images than
MiniImageNet[34] . There are a total of 608 categories
(all sampled from the 34 high-level categories in ima-
genet), all RGB colors, adjusted to 84 × 84 pixels. It
is divided into 351 (20 high-level categories), 97 (6
high-level categories), and 160 (8 high-level catego-
ries) groups for training, verification, and testing.

3. 2　 Experimental setting
Baseline methods For feature extractors module,

two common convolutional neural networks are used.
One is a basic embedding network Conv-4 (Fig. 3(a)),
the other one is a much more complicated network Res-
Net-12 (Fig. 3(b)).

Fig. 3　 Detailed network structure of feature extractors
v0i = fθ(xi)

Implementation details To verify the accuracy
of the implementation on these two datasets, 5-way 1-
shot and 5-way 5-shot experiment will be conducted.
To assess the fairness of the experiment, 15 query ima-
ges will be selected from each class for 5-way 1-shot
and 5-way 5-shot in each episode. The proposed SGML
model is optimized using SGD with initial learning rate
of 5 × 10 - 4 and weight decay of 10 -1 . For MiniImageN-
et, the model iterated 100 epochs in total, and the
batch size of the meta-training task is set to 60. For
TieredImageNet, because it is a larger dataset, more
iterations are needed to better converge. The model it-
erated 150 epochs and the batch size of the task is set
to 40. All of the experiments were carried out in Py-
torch and run with two NVIDIA GTX 1080Ti GPUs.

Few-shot classification The proposed SGML with

the latest meta-learning model are compared in Table 1.
In which, all models are tested by using transductive
and non-transductive settings; T means transductive
setting, where it classifies all query samples at once
at a single episode; F means non-transductive setting,

Table 1　 Classification results in 5-way setting

Model Transduction
1-shot 5-shot 1-shot 5-shot

Conv4 ResNet-12
MiniImageNet

MAML F 50. 76 54. 37 52. 96 59. 88
MAML T 53. 84 60. 86 57. 43 65. 16
TPN F 51. 28 60. 18 53. 76 67. 77
TPN T 55. 43 68. 29 60. 75 74. 96
MetaOpt T - - 63. 27 77. 40
EGNN F 53. 18 62. 68 - -
EGNN T 58. 18 76. 37 - -
EPNet T 59. 32 74. 26 68. 74 79. 52
SGML F 54. 61 68. 46 62. 37 71. 85
SGML T 59. 75 74. 88 70. 65 80. 71

　 　 TieredImageNet
MAML F 52. 21 61. 26 51. 86 58. 94
MAML T 57. 21 69. 24 59. 62 70. 53
TPN F 53. 43 68. 76 62. 94 69. 13
TPN T 58. 96 74. 93 68. 12 76. 73
MetaOpt T - - 68. 72 79. 38
EGNN F 57. 86 65. 86 - -
EGNN T 62. 40 78. 25 - -
EPNet T 61. 36 76. 51 74. 63 79. 36
SGML F 58. 49 69. 73 62. 13 72. 05
SGML T 62. 58 77. 45 75. 65 81. 12

where it performs the query inference one by one. No-
tably, almost all the transductive settings improve the
performance of SGML. Furthermore, in the transduc-
tive setting, SGML performed better than EGNN[15]

with 50 parameters, which only classifies the results by
predicting edge labels. Likewise, since TPN[25] has
fixed node features during the label propagation
process, its label propagation equation requires addi-
tional parameters. On the contrary, the node features
and edge features are adopted to the given task in the
process of mutual update. The accuracy of model-ag-
nostic meta-learning (MAML) [35] has been greatly im-
proved after transduction, but it is still insufficient
compared with other models. It can be guessed that be-
cause MAML is prone to overfitting when processing
high-dimensional data, SGML is better for this prob-
lem. MetaOpt[8] increases the amount of calculation to
improve the generalization ability under high-dimen-
sional embedding, which is inconsistent with the ideas
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of this work. Different from EPNet[21], this work uses
graph network to generate smoother embedding mani-
fold, SGML network architecture is bigger and the
effect is better. It is worth mentioning that the worst
experimental results of SGML will not lag behind the
reported performance by more than 1. 5% (74. 88%
vs. 76. 37% ).

Semi-supervised classification This work con-
ducts a fair comparison with the same settings in the 5-
way 5-shot experiment, that is, all classes in the sup-
port set samples are labeled with the same number. In
order to fully demonstrate the effectiveness of the pro-
posed method, this work conducts experiments on Mi-
niImageNet and TieredImageNet datasets with Conv-4.
The experimental results are shown in Table 2. SGML
can increase the maximum accuracy by 2. 81% on Mi-
niImageNet (66. 84% vs. 64. 03%, when 60% la-
beled) and up to 4. 89% on TieredImageNet (72. 41%
vs. 67. 52%, when 60% labeled). It is worth noting
that SGML performs the worst at 20% labeled, and only
has a 0. 18% improvement at 40% labeled (64. 50%
vs. 64. 32%). It can be assumed that better accuracy
may be achieved with Resnet-12, which will be studied
in future work.

Table 2　 Semi-supervised results for Conv-4
Labeled ratio (5-way 5-shot)

Method Transduction 20% 40% 60% 100%
　 　 MiniImageNet

TPN T 57. 22 59. 89 64. 03 98. 29
EGNN T 63. 62 64. 32 66. 36 76. 37
EPNet T 58. 34 62. 36 65. 87 74. 26
SGML T 57. 21 64. 50 66. 84 74. 88

　 　 TieredImageNet
TPN T 60. 37 61. 48 67. 52 74. 93
EGNN T 63. 74 64. 56 71. 01 78. 25
EPNet T 59. 63 65. 58 70. 80 76. 51
SGML T 61. 52 63. 77 72. 41 77. 45

Visualization Fig. 4 shows the effect of embed-
ding manifolds. In Fig. 4(a), all the samples are scat-
tered in the characteristic space, with different colors
representing different classes. In the pre-training
stage, all samples were classified. As shown in Fig. 4,
different categories are distributed in different circles,
and the classification boundary is relatively obvious.
The density of nodes also shows that the relationship
between nodes in the feature space is complex and in-
teractive. In the next stage, the sample interaction is
spread more intensively, the relationship between
nodes is more complex, the density and smoothness of

the decision boundary are also increased, and the noise
representation of the previous stage is reduced ( the
noise may cause missing manifolds, which may affect
the embedding result in severe cases). GNN is a deep
architecture composed of several nodes and edges. To
validate the idea that interaction between task samples
should be easier as the number of iterations increases.

(a) Initial phase

(b) Pretraining phase

(c) Episodic learning phase
Fig. 4　 Visualization of feature space at different phase

The SGML is compared at different layers, and
the results are shown in Fig. 5. Since TieredImageNet
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is a larger dataset, more iterations are required to con-
verge (100 epochs vs. 150 epochs). With the increase
of the number of iteration layers L between node fea-
tures and edge features, the classification effect of the
two datasets is also better. When L = 3, the classifica-
tion accuracy is the best, and the curve is relatively

flat; when L = 2, the classification accuracy is re-
duced, and the curve is relatively tortuous; when L =
1, the classification accuracy is the worst. This indi-
cates that SGML tends to show good clustering in more
iterations, but it does not indicate that more iterations
will make the effect better.

(a) MiniImageNet 5-1 (b) MiniImageNet 5-5

(c) TieredImageNet 5-1 (d) TieredImageNet 5-5

Fig. 5　 Classification accuracy on different layers

4　 Conclusion
A novel smoother manifold for graph meta-learning

is proposed, which aims to addressed the problem of
few-shot classification task. In the process of SGML,
the similarity between nodes is obtained by updating
nodes and edges features with different parameter lay-
ers, and then the similarity is sent to the embedded
propagation module to complete the classification task.
The experiment results show that the proposed method
not only can improve the classification performance,
but also can increase the smooth classification bounda-
ries. Future work aims to explore other way of adding
graph networks to manifold in meta-learning such as
graph embedding, that will address more challenging

problems to larger number of shots.
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