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Abstract
A multispectral image compression and encryption algorithm that combines Karhunen-Loeve

(KL) transform, tensor decomposition and chaos is proposed for solving the security problem of

multi-spectral image compression and transmission. Firstly, in order to eliminate residual spatial re-

dundancy and most of the spectral redundancy, the image is performed by KL transform. Secondly,

to further eliminate spatial redundancy and reduce block effects in the compression process, two-di-

mensional discrete 9/7 wavelet transform is performed, and then Arnold transform and encryption

processing on the transformed coefficients are performed. Subsequently, the tensor is decomposed to

keep its intrinsic structure intact and eliminate residual space redundancy. Finally, differential pulse

filters are used to encode the coefficients, and Tent mapping is used to implement confusion diffusion

encryption on the code stream. The experimental results show that the method has high signal-to-

noise ratio, fast calculation speed, and large key space, and it is sensitive to keys and plaintexts with

a positive effect in spectrum assurance at the same time.

Key words: Karhunen-Loeve (KL) transform, tensor decomposition, differential pulse filter,

Tent map

0 Introduction

Remote sensing is a comprehensive detection tech-
nology based on aerial photography and interpreta-
tion'"". Due to its wide coverage, strong detection ca-
pabilities, and comprehensive data acquisition, it has
been used for decades on reconnaissance, meteorologi-
cal observation, and resource census. Multispectral
imaging systems as an important part of satellites are
developing towards high resolution and large field of
view. It gets more detailed and accurate information to
improve the recognition ability of ground and ocean tar-
gets with high resolution; and it also makes the cover-
age of the space camera larger and effectively improves
the work efficiency. With the increase in resolution and
field of view, the amount of data output by the space
camera becomes larger and larger, which puts forward
higher requirements on the compression and decom-
pression algorithms of related images. In addition, it is
necessary to encrypt multispectral images to ensure da-
ta security.

For two-dimensional images and multispectral im-

ages, many compression encryption algorithms have

been proposed. Ref.[2] proposed a 3D chaotic en-
cryption scheme for compressed image. First, the set
partitioning in hierarchical trees (SPIHT) encoding al-
gorithm is used to compress the image, and then the
images are mapped to a three-dimensional bit matrix.
Next Lorenz is used to generate a chaotic sequence,
and a series of processing is performed on the genera-
ted three-dimensional bit matrix. Finally the com-
pressed and encrypted image is got. The method has a
positive encryption effect, but the amount of data is
huge. Ref. [3] proposed a hyper-spectral image com-
pression algorithm based on adaptive spectrum recom-
bination. It has a small amount of encrypted data but
lacks security. Ref. [4 ] proposed an algorithm of joint
hyperspectral image compression and encryption based
on optimal spectrum prediction of inter-band, SPIHT
and chaos mapping. It has a better compression effi-
ciency and encryption effect, but the compression effi-
ciency and key space need further improvement. Ref. [5]
proposed a joint image compression-encryption scheme
using entropy coding and compressive sensing, which
has a better compression and encryption performance.
The compression encryption algorithm mentioned
above are aimed at two-dimensional images, with little
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research on multispectral images. Different from ordi-
nary two-dimensional images, multispectral images
contain hundreds of continuous spectrum imaging infor-
mation with spatial and spectral dimensions. The
amount of data is huge, which makes the subsequent
processing of multispectral images more complicated.
Considering the characteristics of multispectral images
and referring to the latest Karhunen-Loeve (KL) trans-
form technology'®”' | this paper proposes a multispec-
tral image compression encryption algorithm based on
chaos and fast wavelet transform, which closely com-
bines the compression process with the encryption
process together. While improving the efficiency of im-
age storage and transmission, the security of the image
is guaranteed, and higher compression efficiency and
better encryption effect are achieved.

1 KL transformation

KL transformation (KLT) can be used in princi-
pal component analysis (PCA). It is a linear and re-
versible transform with decorrelation performance. The
calculation process of the original algorithm is as fol-
lows.

First, the multispectral image matrix containing N
spectral bands is integrated into a two-dimensional ma-
trix Y using the row stacking method, and the average
value of the vector Y is calculated. The process of cal-
culation is shown in Eq. (1).

m = E|Y] zjlvzly,, (1)

where m is the mean of Y, E{ | represents the mean of
the vector.

Secondly, the covariance matrix C of the vector Y
is calculated, and the calculation process is shown in
Eq. (2).

C

EL(Y =m) (Y =m)")

1
N; Y.Y — mm" (2)

Finally, the eigenvalues and eigenvectors of the

covariance matrix C are calculated. The KL transfor-
mation expression can be obtained as shown in
Eq. (3).

Y =A"(Y -m) (3)
where A is the eigenvector of C. The algorithm re-
quires a huge amount of calculations, among which the
calculation of the M x N size spectrum requires (M x N
— 1) times additions and one division, and the calcula-
tion of normalization of the data requires (M x N) times
subtractions. Other operations require higher computa-
tional complexity. Therefore, the following improve-
ments will be made to solve this problem.

First of all, when the covariance is calculated, a
subset of the spectral vectors is randomly selected in-
stead of using all the spectral vectors, and the size of
the subset is appropriately selected to minimize the
computational complexity while ensuring image quality.
The effect of sampled size on compression performance
is shown in Fig. 1. From Fig. 1 it can be seen when the
sample size is 1/1000 of the traditional method, the
compression performance starts to decline, and the cal-
culation complexity is also low. The value is selected
as the sampling ratio to estimate the covariance consid-
ering the compression performance and calculation
time.
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Fig.1 The effect of sampling ratio on compression performance

Table 1 shows the comparison of the KLT execu-
tion time of the 512 X512 x4 image using the down-
sampling method. It can be seen that under the prem-

ise of ensuring certain compression performance, the
calculation time of this method is greatly reduced.
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Table 1 ~ Calculation time comparison
Methods Computing time/s Total time/s
Sample 0.65 3.28
Without Sample 1.73 4.56
Enhance 62.43% 28.07%

The Jacobi algorithm is often used to find the ei-
genvalues and eigenvectors of the symmetric matrix.
However, the algorithm requires not only the main ele-
ment, but also the row and column rotation transforma-
tion to obtain the eigenvalues at the same time, which
makes the whole calculation process very complex and
difficult to implement in parallel.

A series of transformations will be used to trans-
form the matrix M into a square matrix T with each col-
umn pairwise orthogonal to calculate the eigenvalues of
the symmetric matrix M, namely MV, ---V, =T, so
T'T=V,---VIM'MV,---V,. According to the relation-
ship between T and T'T, it is known that the spectral
norm of each column of the square matrix T is the ab-
solute value of the eigenvalue of the symmetric matrix,
and its sign can be determined by the relationship be-
tween the eigenvalue and the eigenvector from the
equation Mb. = A.b.. A, is positive if the signs of Mb
and b, are the same. Otherwise it is negative.

Finally, the eigenvector matrix is calculated using

a lifting scheme instead of matrix multiplication ( mean
x eigenvector) in classic KLT. The eigenvector matrix
is decomposed into A" = PLUS, where P is the permu-
tation matrix, L is the unit lower triangular matrix, U
is the unit upper triangular matrix, and § is the diago-
nal matrix. The output elements are rounded after each
stage to maintain no floating point output. The im-

proved KL expression is shown in Eq. (4).
Y = round(round(round(X x8) xU) xL) x P
(4)

In the formula, round means rounding. Multipl-
ying by P is the element swap, where the multiplica-
tion is only performed by 1 and 0. The permutation is
not computationally intensive, because it only needs to
loop through the vector to exchange certain elements.
The S matrix is a sparse lower triangular matrix, and
therefore fewer element multiplication operations can be
required by applying the zero check technique to the
multiplication operation.

The transformed effect diagram is shown in Fig. 2.
KLT is performed on the upper three spectral bands
(a, b, ¢) of a multi-spectral image (including 4 spec-
tral bands) respectively to obtain three transformed im-
ages (d, e, f), which eliminate most of the inter-
spectral redundancy, and the energy is mainly concen-
trated in the first two spectral bands.

Transformed images

Fig.2 KL transformation effect diagram of each spectrum

2 Wavelet encryption algorithm

The encryption algorithm is composed of three
parts: subkey generation, wavelet coefficient scramb-

ling and data stream encryption.

2.1 Subkey generation
The chaotic system is improved Logistic mapping
and Tent mapping, the improved mapping equation is
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%o = (o + (4 = py) X cos((107° +x,) xm/2)]
x xn x (l - x"/n> (5)
Bl 0 < <
T x/l p
xn+l = p (6)
1 -x, .
otherwise
1L -p

wherep € (0,1), x, € [0,1], u,is 3.569945673,
and 1/ne (0,1) is the amplification factor. When u
€ (3.569945673, 4], the sequence generated by Lo-
gistic mapping is in a chaotic state. When its value is
4, the system is in the best chaotic state, but the en-
cryption effect is poor at this time. In order to solve the
problem of poor encryption effect when value is 4, an
infinite approach expression of 4 is adopted to replace 4
to achieve the expected chaotic characteristics and
safety.

The output hash values are divided into 5 groups,
denoted as f,, f,, /5, fi, and f5. The sub-key is gener-
ated by Eq. (7) as the initial value of Logistic map-
ping.

5
x; = mod( Y £/27,1) (7)
i=1

where, mod stands for modular operation. Given the
initial keys x,, x,, and x,, the subkeys are generated
by perturbing the initial keys by Eq. (8), and they are
respectively used as the initial values, control parame-
ters and initial ciphertext blocks of the Tent mapping.
xy = mod(x, + (f, ®fp)/27,1)
x, = mod(x, + (f;, ®f,)/27,1) (8)
xh =2, Df
where, @ is the XOR operation.

2.2 Scrambling of wavelet coefficients
After the general pixel is constructed, it is neces-
sary to perform wavelet transformation on the pixel to
reduce the blocking effect in the compression process
and protect the real information of the image. Wavelet
transform is a new transform method proposed on the
basis of Fourier transform. While continuing the local-
ized advantage of short-time Fourier transform, it
overcomes a series of shortcomings of Fourier trans-
form. The two-dimensional discrete wavelet transform

can be obtained by Eq. (9).

flm,n) = <f<m9n) ,le, il,i2<m9n) >¢, il,iz(m’n)
(9)
After performing a wavelet transform on the im-
age, four subbands, namely low frequency subband
(LL), horizontal high frequency subband (LH), ver-
tical high frequency subband (HL) , and diagonal high
frequency subband (HH) will be generated. The sec-
ondary transformation is to repeat a similar division on

the basis of the LL. Better research results will be
achieved by processing differently for different subband
coefficients.

In this paper, Arnold transform is used to scram-
ble the coefficients after wavelet transform. According
to the Arnold transform periodic table, the appropriate
number of scrambling times are selected to transform
and scramble the target pixel to obtain a transform
scrambling map.

2.3 Tensor decompositon

The multispectral image is a kind of third-order
tensor, its tensor representation form is ¥ e R
which can be decomposed into three non-negative mode

matrices, namely A" = [a!” | al"” -

al’l e
’ R,
1, xR . .
R/ (n =1,2,3), and a low-dimensional non-nega-
Ry xRy xR
78 The decom-

posed approximate tensor can be used to replace the

tive core tensor, namely G € R

original tensor to achieve the purpose of compression.

Most of the non-negative tensor Tucker decompo-
sition is to minimize the cost function of the following
formula.

D= |Y-GxIA}|] (10)

In order to optimize the above formula, many
methods have been proposed mathematically. Among
them, the dGN algorithm is derived from the Newton
method. However, due to the relatively large amount of
calculation and difficulty in implementation, it has not
been used in multi-spectral image processing. The algo-
rithm has low complexity and fast convergence speed,
making it more suitable for multi-spectral image com-
pression through appropriate improvements.

Through the following formula, the dGN iterate
can be got.

BB+ (Hiu) g (n

H=JJ,g=I(-y

Among them, B = [vec (A" )", vec (AP )",
vec(A )", I'is the identity matrix , H is the Hessian
matrix , g is the damping parameter, g is the gradient,
y =vec(Y), ¥y = vec(Y), and J is the Jacobian ma-
trix.

The huge amount of calculation required for the it-
erative process mainly comes from the calculation of H
and g. In order to speed up the calculation, this paper
improves the calculation of the Hessian matrix H and
the gradient g respectively. Suppose the symbols of
Kronecker product, Khatri-Rao product, and Had-
amard product are &, © and @, respectively,
Eq. (12) is defined as

N

(»)IA("’ =AY@--04" 004V, I =1, ¥n,

n=
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OA® = AV QA" AA T @---@A
k#n ’

I, =1, Vn,
@A(’f) _ A(N) @..-@A(”H) @A(n—l) @"'A(l)

k#n
(12)

The biggest problem in optimizing the dGN algo-
rithm is how to reduce the computational complexity of
the Hessian matrix H and its inverse matrix. To solve
this problem, the following improvements is put for-
ward.

First of all, the matrix I'(n, m) of size R X R and
the block matrix K of size NR* x NR* composed of ma-
trix K(m, n) are as follows:

I—v(n,m) — I:I-v(n,m):IT — I:I-v(m,n):IT — ® C(k)

ki, m
(13)
= (1-¢,,)P,diag(vec(I"™")) € R
(14)
Among them, C™' = A" AW e R*¥" 5, is

n,m

K( n,m)

Kronecker §, P, ; is the permutation matrix of matrix X
of sizel x J, and P,Jvec(XT) = vec(X) Py =Py,
ro=r"" n=1,2,-,Nm=1,2,---,N. When
NR << T, the fast dGN algorithm can be expressed as
Eq. (15).
AW — A"+ A L = (F, + T ],
n=12-- N (15)
Among them, A‘(L"') is a modification of the ALS
update rule with suppression factoru(u > 0), the ma-
trix F, of size R x R is the first few pieces of matrix @,

vex(@®) = B,w,, the approximate Hessian matrix H
can be obtained, namely:
H =G + ZKZ' (16)
G = blkdiag(I''"” ® I,)"., e R"™™ 7 =

blkdiag(I, ® A )N_ e RFV®,

n=1
The inverse matrix of the approximate damped
Hessian matrix H, (H, = H +ul ;) can be obtained by

Eq. (17).
-1 >~ T
' =G, - L#Bfl(,ﬂ) ) (17)
G, = blkdiag(I'"" ® I,)".,, L, = blkdiag

(T;") ® A™)Y_.. Via calculation, Eq.(18) and
Eq. (19) can be got.

B«—pB+Gg-LBL, (18)
w'u = L‘TJTVCC(&')

— % [VCC(A(n)T(A:Ln) _ A(n)r(ﬂ) T-vllin) ) )T]z‘:l }T

— VCC% [A(n)'l‘Al(Ln,) _ I—Wj—vlin) JQ":I % (19)

Eq. (19) still requires a large amount of calcula-
tion. The main calculation amount is concentrated on
the calculation of the Jacobian matrix J and the crea-
tion of the matrix L,. This article will further simplify
the three main parts of the iterative Eq. (19) , the sim-
plification process is shown in Eq. (20) and Eq. (21)

respectively.

G = (Gurec(e) V
vee() Q,(((QA)TL) ® 1,011,
= [vec(E, ( oA"Y )T,i”) ) 1

k#n
[Vec( Y(n)( ®A<k) )T,in)
k#n ,
- A" (kgnA(k) )T(;gnA(M ) F;(Ln> )
[VeC(Alin) _ A(n)F(n) r‘iﬂ) )T:I::’,:l (20)
Vec(A(l)F]fle))

LBw, = vec(A(")an/fL'l)) (21)
vee(A™ FN]N—':LN))
Among them Q, = [, =& P, .

. From the
N+1:N
above formulas, the core tensor G can be obtained and

expressed as follows.

G = blkdiag(I'"" ® 1, )., e R,

F(n) — @k#nc(k) ,C(n) = AMTYm , (22)
) —a"/ | |,

The norm is a reinforced concept of distance, and
[pnorm is not a norm, but a set of norms. [, norm can
lead to a sparse solution. And it can produce a more
sparse model than [, norm, and [, norm can be used to
feature selection.

The above formula uses the [, norm, which is not
suitable for image compression, so we change it to the
[, norm , and the new iteration rule is as in Eq. (22).

Fig.3 is a performance comparison chart between
the algorithm and other three algorithms. It can be
seen from Fig. 3 that compared with the hierarchical al-
ternating least squares ( HALS) and the least squares
(LS), the algorithm proposed in this paper has the ad-

vantage of fast convergence; compared with the original

10% — T — T
[ i1 11| —&— original dGN
&. I —%— multiplicative LS
100 b e o i | —+— HALS 1
- ¥~ P —+&— proposed method|
§ 102 et T T T
o
(=]
B
—g 0 S S A O S S
Z
[0 cH S S O 15 0 S S
1078 Lo L T P
10° 10" , 10? 10°
Relative error
Fig.3 Convergence speed comparison of decomposed

three-dimensional tensor
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dGN algorithm, although the convergence speed is
slightly slower, the calculation amount of this system is
much smaller than the latter, and the improved algo-
rithm is more suitable for multi-spectral image com-

pression.

2.4 Data stream encryption

For further compression, the original signal needs
to be converted into a new integer stream. Then the in-
teger stream is converted into a binary coded stream,
and Huffman coding is adopted. However, if these in-
tegers are directly converted into a binary bit stream
through Huffman coding, too much storage space will
be required. Therefore, the differential pulse code
modulation ( DPCM) filter is used to convert the origi-
nal signal into a new integer array.

Firstly, the non-zero coefficients are uniformly
quantized with a quantizer. The original signal is con-
verted into a new integer array to save storage space
and further compress the non-zero coefficients. Final-
ly, the integer stream is converted into a binary coded
stream to achieve efficient image coding.

Secondly, Tent mapping is used to perform confu-
sion diffusion encryption on the compressed code
stream. Assuming that the compressed data stream of
the plaintext is R, the initial value of the Tent mapping
and the control parameters are x,, x,, and the initial
ciphertext block is x,. The data stream encryption
process is as follows.

R is divided into n sub-blocks, and the length of
each sub-block is 32.

Then, x, and x, are used as the initial values and
control parameters, and they are iterated n times. The
iteration process is shown in Eq. (23).

y, = mod(round(x,; x 10'°), 2%) (23)

Finally, the encrypted sequence is obtained by
Eq. (24) with x, as the initial ciphertext block.

x; = SR[ (mod((r, ®m, +x,,), 27,

LS(m(lﬁ»umd(.r;_l,") )] (24)
where SR[ e, f] means shifting e to the right by f bits,
and L; means taking the lower five bits of the se-

quence.
3 Experimental results

3.1 Encryption performance analysis

The algorithm has 5 initial keys in total, and the
precision space generated by each key is close to 10'.
During the encryption process, the key changes contin-
uously as the plaintext changes. Therefore, it has a
larger key space and known plaintext attacks and brute

force attacks can be effectively resisted.

In order to verify the sensitivity of the algorithm to
the key, the original image is encrypted with a key of a
slight difference, and the rate of change of the code
stream is compared. It can be obtained through experi-
ments that the output bit stream change rate remains
between 47.62% —47.72% , which has good key sen-
sitivity.

With the key unchanged and the value of a certain
pixel in the image being randomly changed, the sensi-
tivity of this algorithm to plaintext is evaluated through
the encrypted bit stream change. 100 simulation exper-
iments on QuickBird with different characteristics and
specific compression ratios are performed. The experi-
ment shows that the ciphertext bit stream change rate
remains at 47.45% —47.53% . It can be seen that
this algorithm is very sensitive to plaintext images and
the differential attacks can be effectively resisted.

The number of pixels change rate ( NPCR) and
the unified average changing intensity (UACI) are im-
portant indicators for effective analysis of resistance to
differential attacks. Among them, NPCR represents the
ratio of different gray values of different ciphertext ima-
ges at the same position, and UACI represents the av-
erage change density between different ciphertext ima-
ges. Table 2 lists the NPCR and UACI test results of

this algorithm and several other algorithms.

Table 2  Test results of NPCR and UACI

Minor plaintext

Algorithm changes NPCR/%  UACL/'%
(pixel value)

Ref. [8] 1 99. 60 33.50

Ref. [9] 1 99.62 31.59

This work 1 99.79 34.21

The higher the values of NPCR and UACI, the
better the encryption effect. It can be seen from Table
2 that the NPCR and UACI of this algorithm are closer
to ideal values. Therefore, compared with similar algo-
rithms, this algorithm can better resist differential at-
tacks.

3.2 Compression performance analysis

A multispectral image with three spectral bands is
selected as the test image to verify the feasibility of the
algorithm. The whole algorithm is simulated on the
computer. The pixel depth is 8 bit/pixel (b/p), and
the compression ratio is 16: 1. The experimental results
are shown in Fig. 4.

It can be seen from Fig. 4 that when the bit rate is
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relatively high, the PSNR is particularly high, and the
reconstructed image is not much different from the orig-

inal image. After DWT and KLT has been performed on

images, most of the pixel values are located in 1 bit, the
spectral redundancy is eliminated.

(a) Original image

(b) Reconstructed image

Fig.4 Comparison of original image and compressed reconstructed image

To verify the quality of the compressed image fur-
ther, 4 groups of QuickBird multispectral images with
different characteristics were selected for testing. And
the recently proposed multispectral image compression
algorithm is used for comparison. The comparison re-
sults are shown in Table 3.

Table 3  Compression system test results

Methods 4:1 8:1 16 : 1 32:1
IKLT!] 50.21  48.35  45.23  41.15
DWT-Tucker " 53.11  50.22  46.85  41.78
ATSH 50.17  45.87  43.36  41.23
JPEG2000"" 49.45  48.11  45.07  40.31
This work 52.83  48.74  46.12  41.53

It can be seen from Table 3, within the compres-
sion ratio range of 4 : 1 —=32 : 1, the proposed algorithm
achieves a high peak signal-to-noise ratio, which is su-
perior to many existing compression algorithms. Also,
this algorithm is feasible and particularly suitable for
the occasions of higher compression ratio.

Table 4 shows the data processing speed of this al-
gorithm compared with some existing algorithms. It can
be seen from Table 4 that the data throughput rate of
the compression algorithm proposed in this paper is
lower than the existing compression algorithm, and the
processing speed is equivalent to JPEG 2000, but the
compression ratio is much higher than JPEG 2000 and
other compression algorithms. Compared with other
compression algorithms , one reason for the slightly low-
er throughput rate of this algorithm is that the encryp-
tion algorithm is added to the algorithm, which increa-
ses the complexity of the algorithm. As the hardware
improves, the processing speed of the algorithm will
continue to increase, and the advantage of the algo-
rithm, namely high peak signal-to-noise ratio, will be-

come more obvious at the same time.

Table 4 Comparison results of data processing speed

Throughput rate Frequenc
Methods (M }files/s) /(I]V[Hz ’
JPEG2000"" 5.52 88
KLTH 9.77 88
DWT-Tucker™ " 11.26 88
3DSPIHT"" 16.04 88
This work 5.06 88

The spectral distortion between the original pixel
and the reconstructed pixel is often used to measure the
fidelity, and the spectral angular distance (SAD) is
one of the most commonly used criteria for evaluating
multispectral images. Smaller SAD means that com-
pression has lost less information, and the reconstruc-
ted multispectral image is more reliable for subsequent
applications. For convenience, the mean SAD is used
as standard deviation for all pixels to reveal the average
spectral distortion of the multispectral image. The re-
sults of the mean SAD for different methods are shown
in Fig.5. It can be seen from the figure that the meth-
od achieves a smaller mean SAD at the maximum bit
rates, which indicates that the average spectral distor-
tion of this method is less than other methods. There-
fore, the proposed method has good spectral fidelity.

4 Conclusion

This paper proposes a multi-spectral image com-
pression encryption algorithm that combines chaos,
wavelet transform and KL transform to solve the securi-
ty problem of multispectral image compression and
transmission. The experimental results show that the
method has high signal - to - noise ratio , short operation
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Fig.5 Mean SADs

time, large key space, and it is sensitive to keys and
plaintexts with a fine effect in spectrum assurance at
the same time.
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