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Abstract

With the emergence of various intelligent applications, machine learning technologies face lots
of challenges including large-scale models, application oriented real-time dataset and limited capa-
bilities of nodes in practice. Therefore, distributed machine learning ( DML) and semi-supervised
learning methods which help solve these problems have been addressed in both academia and indus-
try. In this paper, the semi-supervised learning method and the data parallelism DML framework are
combined. The pseudo-label based local loss function for each distributed node is studied, and the
stochastic gradient descent(SGD) based distributed parameter update principle is derived. A demo
that implements the pseudo-label based semi-supervised learning in the DML framework is conduc-
ted, and the CIFAR-10 dataset for target classification is used to evaluate the performance. Experi-
mental results confirm the convergence and the accuracy of the model using the pseudo-label based
semi-supervised learning in the DML framework. Given the proportion of the pseudo-label dataset is
20% , the accuracy of the model is over 90% when the value of local parameter update steps be-
tween two global aggregations is less than 5. Besides, fixing the global aggregations interval to 3, the
model converges with acceptable performance degradation when the proportion of the pseudo-label
dataset varies from 20% to 80% .
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0 Introduction

Recently, the rapid growth of emergent applica-
tions including unmanned driving, face recognition and
automatic navigation has greatly promoted the develop-
ment of artificial intelligent ( Al) technologies. Howev-
er, in some of the scenarios, such as unmanned aerial
vehicle (UAV) networks''' and Internet of vehicles
(IoV) ', the implementation of Al technologies faces
challenges aroused by the limited batteries, low com-
puting capability as well as data privacy. Moreover, in
most of the practical cases, the performance of Al tech-
nologies is limited by the size of training sample set and
the accuracy of the labels. To address the above prob-
lems, distributed machine learning ( DML )" and
semi-supervised learning'*! has attracted enormous at-
tentions.

DML is a distributed collaboration architecture for
multiple worker nodes to train a machine learning

(ML) model together . Generally, there are two bas-
ic parallelism modes for DML, which are model paral-
lelism and data parallelism. In the model parallelism
mode, the ML model is partitioned among workers and
each worker updates part of the parameters using the
entire dataset””’. In the data parallelism mode, each
worker has a local copy of the complete ML. model and
updates model parameters based on their local da-

ta“’é]

. Nowadays, the data parallelism has been more
widely adopted than the model parallelism, given that
most ML models can be entirely stored in the memory

of modern GPUs.

the raw data to a central node, the data privacy issue is

Since workers do not need to send

well solved.

As for the aggregation process of DML, both the
synchronous mode and the asynchronous mode can be
used in the communication between workers and the
aggregator /. In the synchronous communication, all
the workers should stop at the overall barrier synchro-
nous’ and wait for other workers to finish the local
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training before the barrier. While using the asyn-
such as HogWild!"®' and

, all the workers can send their parameters

chronous communication,
Cyclades'”’
or models to the aggregator when they accomplish sev-
eral local training. Obviously, the synchronous mode
wastes the waiting time, but the aggregation algorithm
is simple. Meanwhile, the asynchronous mode can fully
utilize the time. However, due to the different compu-
tation capabilities of different workers, the poor work-
ers may slow down the convergence rate and become a
drag of the whole model.

Semi-supervised learning is a class of methods
which can train deep neural networks ( DNN) by using
both labeled and unlabeled data. With these methods,
the problem of lacking labeled data in some of the real-
time application scenarios can be overcome. One of the
early methods of training the DNN based on labeled
10T Ref. [11] pro-

posed a semi-supervised deep learning method for hy-

and unlabeled data was studied

perspectral image classification which uses limited la-
beled data and unlabeled data to train a DNN. In the
research area of modulation classification, combining
handcrafted feature with deep learning, Ref. [ 12] pro-
posed a few-shot modulation classification method
based on feature dimension reduction and pseudo-label
training.

Although DML and semi-supervised learning are
widely used in the areas such as image classifica-

tion! " [14]

ing'"™ etc. , the implementation combining these two

, face recognition ", natural language process-
technologies together has not been well studied. For
some of the scenarios, especially some Al applications
with real-time collected unlabeled data using devices
with limited capability such as the UAV based emer-
gency rescue and real time high definition mapping in
IoV, the combination of DML with semi-supervised
learning is of great necessary.

In this paper, a data parallelism architecture ena-
bling the pseudo-label based semi-supervised learning
in DML is proposed. Then the cross entropy based lo-
cal loss function with pseudo-label at each worker is
given and the learning problem is formulated. The sto-
chastic gradient descent (SGD) is adopted in the train-
ing process and the corresponding local parameter up-
dating equation is derived. A demo that implements the
pseudo-label based semi-supervised learning in the
DML framework is conducted and the CIFAR-10 data
set for target classification is used to evaluate the per-
formance. Given the proportion of the pseudo-label
dataset is 20% , results show that the model converges
when the local update steps between every two global
aggregation is less than 5. Results also confirm that the

proportion of the pseudo-label dataset affects the con-
vergence rate and the accuracy.

1 Distributed semi-supervised method

1.1 Architecture

A typical data parallelism architecture enabling
the pseudo-label based semi-supervised learning in
DML is considered and shown in Fig. 1. The raw data
is locally stored at N worker nodes, each of which
trains a complete machine learning model (i.e. DNN)
by using the local data. The local dataset of each work-
er consists of two parts, i.e., the labeled dataset and
unlabeled dataset. Moreover, it is necessary to assume
that all the workers collaborate in a synchronous way
and a parameter server implements the parameter ag-
gregation process.

Y™ N

Whole Labeled | Parameter |
Dataset | Server |

@ Whole Pseudo |
- Label Dataset \ __¥_

oo b

—_——————— —_—————_——— —_———— —— —

Fig.1 Architecture

1.2 Loss function of the distributed semi-super-
vised learning
In the data parallelism distributed framework, the
local loss function of the i- th worker is given as

IDIZZZ(W RV NG

jeD; k

L(w) A

where D, is the local data set of the i-th worker, C is
the number of labels, [(w, y}, f}) is the loss function
of the k-th label of the j-th data sample, w is the pa-
rameter vector of the model, f is the output units of
the k-th label of the j-th sample and y, is the label of

it. And the global DML loss function is given as

Y I D | L
Ly (w) = Z #](W) (2)

i
where D & U, D."".

According to the pseudo-label based semi-super-
vised learning proposed in Ref. [10], the overall loss
function with unlabeled dataset is

1 n C ] )
S IDNLINY
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=1 k=
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where n is the number of the labeled data, n’ is the
number of the unlabeled data, o is a balance coeffi-
cient, f ] is the output units of the k-th pseudo label of
and the class which has
maximum predicted probability is picked up as the

the j-th unlabeled sample,

pseudo-label y/ for j-th unlabeled sample, and y/ is giv-
en by

. 1
y’.={
o

where x’ is the input vector according to the j-th unla-

k = argmax,f, (w, x') (4)
otherwise
beled sample.

The labeled and unlabeled dataset at worker i are
denoted by D, and D, respectively. So the local dataset
atnode i is D, = D, U D,. Combining Eqs(1) and
(3), the local loss function of the i-th worker with
pseudo label dataset can be expressed as

L(w) =

[

o2 2l

i, eDy

W,y [+ ; ;l(w, i S ]
(5)

Taking Eq. (5) into Eq. (2), the overall loss

function of the distributed semi-supervised learning can

be expressed as

L(w) =
N ¢

W, i fi) + D Zl(w, i fi)]

i=1 eDj jeDp k=

| DI

(6)

More specifically, the cross entropy is chosen as

the loss function,so the item of [(w, y., f%) in Eq. (6)
can be expressed as

Lw, v, 1) = =yloghi(w) = (1 =y)log(1 —f,(w))

(7)

Besides, the soft-max function is adopted as the

output unit in the neural network, and for the j-th sam-

ple,
exp(z;,)
=P(y,l zIl') = (8)
> ep(2)
where 7 = [, 2,,--+, z.] is the input vector of the

output unit layer of the neural network.

2 SGD-based training process

The learning problem is to find

w"* = argminL(w) (9)

When the gradient-descent method is used, the
process of the solving Eq. (9) can be expressed as

w(t) =w(t-1) —9VL(w(t-1)) (10)
where 7 is the learning rate.

Taking Eq. (2) into the derivative of L(w),

Eq. (11) can be obtained.
> D L(w)

Vi = I DI
211|Di| VL (w)
) D (11)
thus
"D VLW - 1))
W(t)=w(z—1)_nzz=l — w(t
XD vt =) —nVL(w(t = 1))

| DI
(12)
As for the local learning problem
w, = argminL,(w,) (13)
According to the gradient-descent-based method,
the local parameter vector w,(¢) is updated as
w(1) =W, (1= 1) = VL (W, (1-1))
(14)
It is necessary to note that since the local data set
D;# D;ifi#j, w(t) #w,(t) #w(t) and generally
w'. () # w,;(1) if the aggregation is performed at time
step t. However, it is an acceptable error of the DML
framework compared with the centralize training since
the convergence of DML with this error is proofed in
Ref. [6]. Therefore, taking Eq. (13) into Eq. (12),

the global parameter vector can be updated as
SD W 1) VLW (1 -1))]
| DI

YD w (1)
- ZLIIDI (15)

Obviously, how to use the local data to calculate

>

w(t)

Eq. (14) and to update the local parameter vector in
practice is crucial.

In this work, the stochastic gradient descent
(SGD) """ method is adopted for the local training in
In each local update step of the SGD
method, the gradient of the loss function is computed

each worker.

based on a randomly selected subset of the samples,
rather than the
whole sample dataset. So the mini-batch chosen at lo-

which is referred to as a mini-batch,

cal training step ¢ at the i-th worker can be defined as
S, C D,, which includes labeled and unlabeled sam-
ples. Then S,, C D, and S,, C D, are the sets of la-
beled and unlabeled samples inS, respectlvely. What’ s
more, the proportion of the pseudo-label samples in the
whole mini-batch can be defined aspu =1 S, 1 /1 S, .

Based on the above definitions and the local loss
function given in Eq. (5), the local loss function of
the i-th worker at time step ¢ in the SDG based training
process can be written as
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(16)
Combining Eq. (7) and Eq. (16) and consider-
ing that £ is the function of w,(t), the gradient of
L,(w;(t)) is derived as
VL (w(t))

=|;|2

ile | jeSy, k=

C
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(17)
Taking Eq. (17) into Eq. (14), the whole local

training process can be conducted.

+

|
Ng

ISy, jesy k=1

The distributed training process of this model can
be concluded to three parts: (1) the labeled data set
and pseudo-label based data set are prepared in each
worker; (2) each worker trains their local model based
on Eqs(13) and (16), and this process is referred to
as the local update; (3) after 7 local update steps, a
global aggregation is performed at the aggregator to up-
date the global parameter according to Eq. (14).

The complete procedure at the aggregator and
each edge node are presented in Algorithm 1 and 2, re-
spectively. To make the description clearly, the index of
the global aggregation is denoted by global _ step.

Algorithm 1 Training procedure at the aggregator

1 Initialize t <0, global _step <0

2 Initialize w(0) as a random vector and send it to all workers
3 Repeat:

4 If %7 =0
5

Receive w, (1) from each worker i
oD W)
I DI

7 Broadcast w(t) to all the workers

6 Compute w(t) =

8 global _ step «— global _step + 1
9 Until the model converges
10 Set STOP flag and send it o all the workers

Algorithm 2 Training procedure at the i-th worker

1 Initialize t — 0
2 Repeat ;
3 Select a mini-batch (including labeled data and unla-

beled data) from the local dataset of the i-th worker
4 Obtain the pseudo label following
yi = {1 k = argmax, f, (w, &)
/=
0

otherwise

5 Receive w(¢) from the aggregator, setw’, (1) «—w(t)
6 fory =1,2,---,7do

7 t—t+1

8 Compute :

wi(t) =wi(t-1)

| ¢
sl

jeSiph=1

9 ify < 7 then

10 w'i(1) —w(1)
11 else
12 Send w,(t) to the aggregator
13 end if
end for

14 Until STOP flag is received.

3 Experimentation

3.1 Hardware environment

A DML framework that consists of three workers
(workerQ, workerl and worker2 ) and a parameter
server(ps0) is adopted in the experiment. The experi-
ment demo is conducted on three laptops, which are in
a local area network and connected by a router, and
psO and workerQ are deployed on the same laptop. The
configuration parameters of the three PCs are as fol-
lows.

(1) workerO and psO PC. Processor: AMD Ryzen
74 800 H with Radeon Graphics 2. 90 GHz. Memory ;
RAM 32. 00 GB. System type:; 64-bit operating sys-
tem, based on the X64 processor. Operating system
version: Windows 10.

(2) workerl PC. Processor: Intel (R) Core
(T™M) i7-9750H CPU @2.60 GHz 2.59 GHz. Memo-
ry: RAM 16. 00 GB. System type; 64-bit operating
system, based on the X64 processor. Operating system
version: Windows 10.

(3) worker2 PC. Processor: Intel (R) Core
(T™M) i7-9750H CPU @2.60 GHz 2.59 GHz. Memo-
ry: RAM 32. 00 GB. System type; 64-bit operating
system, based on the X64 processor. Operating system
version: Windows 10.
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3.2 Software environment
The deep neural network of the target classifica-

') which is a convolution

tion model is Googl.eNe
neural network considering the local sparsity of the
model. It consists of 27 layers including convolution
layers, max pool layers, inception structure, dropout
layers, linear layers and softmax layers. At the end of
the neural network, the fully connection layer is re-
placed by an average pooling layer, but the use of
dropout remained essential.

The DML model is conducted based on the frame-
work of distributed TensorFlow'™®' | and Python 3.7 and
TensorFlow-gpu 1. 13. 1 with CUDA 10.0 and cuDNN
7.5 are used. WorkerQ, which is in charge of initial-
izing and restoring the model, is the chief worker in the
TensorFlow cluster, and others should wait for the chief
worker finishing his initialization and then start their
training. Since the value of local update steps 7 be-
tween every two global aggregations affects the conver-
gence of the training process, the results of different
values of 7 are evaluated under the condition of y =

20%.

3.3 Dataset

The dataset of CIFAR-10 is used, which includes
60 000 color images (50 000 for training and 10 000 for
testing) of 10 different types of classifications'"’. In
this experiment, the whole dataset is randomly divided
into three parts of 10 000 samples, 20 000 samples and
20 000 samples which are the local datasets of work-
er0, workerl and worker2, respectively. Thus each
worker has the uniform (but not full) information. In
the training process, the size of mini-batch is set as 20
for all the workers.

The proportion of the pseudo-label dataset is an-
other factor that affects the convergence performance,
thus different value of u are also evaluated when the
value of 7 is 3. Since all the samples in CIFAR-10 are
labeled originally, some samples are regarded as the
unlabeled data and their labels are ignored, and pseu-
do labels are sought for them following Eq. (4) in the

training process.
4 Results and analysis

4.1 Performance evaluation of different values of

In the first part of the experiments, the value of u
is fixed as 20% and the value of 7 is varied from 3 to 7.

The training results in Fig. 2 and Fig.3 show that
when the value of 7 is not greater than 5, the target
classification model is converged. But for different val-
ue of 7, the convergence performance is different. When

7 =3, the value of loss is close to 0.25 and the accura-
cy 18 97.7% after 12 000 global _step (36 000 local up-
date steps). When 1 =5, the model needs much more
time to get an acceptable performance. It converges af-
ter about 220 000 global _step (1 100 000 local update
steps) , and the final values of loss and accuracy are
about 0.48 and 96% , respectively. However, when
the value of 7 is greater than 5, taking 7 = 7 as the ex-
ample, the target classification model cannot converge.
The value of loss drops down at the first, and then rises
again after several global _siep. Meanwhile, the accu-
racy rises to about 56% and then falls. This is because
that when 7 is too large, the local gradient may deviate
too much from the global gradient, resulting in the poor
convergence.

1.0

0.8

0.6

Accuracy

0.4

0.2

1 1 1
100 000 150 000 200 000

Global_step

1
0 50 000

Fig.2 Training results of accuracy (u =20% )

Loss

1 1 1
100 000 150 000 200 000

Global_step

1
0 50 000

Fig.3 Training results of loss (u =20% )

The test results in Fig.4 and Fig.5 are consistent
with the training results in most cases, and the per-
formance of accuracy and loss are slightly worse than
that of the training performance due to the difference in
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training and test samples. When 7 = 3, the loss of the
test result is about 0.6 and accuracy is about 92% . It
is worth noting that when the value of 7 is equal to 5,
the loss performance cannot converge on the test data-
set. That is to say, the acceptable value of 7 is less
than 5 in practice.

Further, the performance of the well trained mod-
el is also tested. The models with the best training per-
formance in Fig. 2 for different value of 7 are selected,
and the test results are given in Fig. 6. The perform-
ance of 7 = 3 and 7 = 4 is as good as that given in
Fig.2 and Fig.5. However, whent =5and7 =6, the
performance is not good, which is consistent with the
phenomenon occuring in Fig. 5. Since 7 = 5 is the crit-
ical value and the performance is unstable, the distri-
butions of the loss for the test samples using models ob-
tained from different global _ step are counted in Fig.7.
When the average loss is 5, which is acceptable, the
loss values of most of the samples are less than 5. But

2.0f

1.5F R
Z
=
1.0+ R
0.5+ g
i i
0 40 000 80 000 120 000
Global_step
(a) Test results of loss ( 7=3 and 7=4)
100 | =6
80+ .
. 60r .
8
=
40+ .
20 .
0 -I 1 1 1 i
0 50 000 100 000 150 000
Global_step

(c) Test results of loss ( 7=6)

200 000

when the average loss is around 70, only 18. 8% of the
samples can gain the low loss which is less than 5, and
25.9% of the samples have extremely high loss which
is larger than 100.

1.0 1 T T T T T T T T
0.9
0.8
0.7
|
g
§ 0.6
> L
0.5
0.4 -}
0.3
0-2 1 1 1 1 1
50 000 100 000 150 000 200 000
Global_step
Fig.4 Test results of accuracy (u =20% )
150 F T T T T .
T=5
100 R
Z
=
S50+ R
or i
0 50000 100000 150000 200000
Global_step
(b) Test results of loss ( T7=5)
9 T T T T T
st |
7t |
6 - -
&
= st _
4 - -
3 - .
2 - -

0 10000 20000 30000 40000 50000
Global_step
(d) Test results of loss ( 7=7)

Fig.5 Test results of loss (u=20% )

4.2 Performance evaluation of different values of u
The impact of different proportion of pseudo-label
dataset on the performance is evaluated. Since the crit-

ical value foru = 20% is 7 =5, the value of 7 is set as
3 in the following experiments to ensure a certain mar-

gin, and w is set to 20% , 50% and 80% .
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Fig.6 The best test performance of different value of 7
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Fig.7 Proportion of samples with the different test loss results

As shown in Fig. 8 and Fig. 9, the target classifi-
cation model converges. Whenyu = 20% , the accuracy
can increase to 98% , and the loss value can descent to
0.17. Whenu = 50% , the model can also achieve an
acceptable accuracy of about 95% , and the value of
loss is about 0. 3. However, whenyu = 80% , the curve

1.0

Accuracy

1 1 1 1 1
0 50000 100000 150000 200000 250000
Global_step

Fig.8 Training results of accuracy (1 =3)

T T T ! I I
nl _
3 woumTm
L —(2)- n=50% i
I @/.L=80% b
£ ot |
—
L _
wg“‘l“‘],',“ TR RO e WP “-
IETHE P oty MO
ol _
I

1 1 1 1 1
0 50000 100000 150000 200000 250000
Global_step

Fig.9 Training results of loss (7=3)

is different from those whenu = 20% and u = 50%.
The convergence rate decreases obviously, and three
steps can be observed in the ascending stage. At the
beginning, the accuracy is kept in an extremely low
level, which is because the credible pseudo label for
the unlabeled data cannot be obtained based on the ini-
tial model. But after about 80 000 global _step, it rai-
ses up gradually, and the final accuracy can reach
94 % .

As for the test results given in Fig. 10 and Fig. 11,
the performance is slightly degraded, but still accepta-
ble. Wheny =20% andu = 50% , the accuracy of the
model can reach 92% . But wheny = 80% , which is very
large, the accuracy on the test dataset is only 87%.

1.0 = T T T T T

0.9
0.8
0.7
0.6
0.5

Accuracy

0.4
0.3
0.2

0.1

00 0 50000 100000 150000 200000 250000

Global_step

Fig. 10 Test results of accuracy (7=3)

4.3 Calculation and communication cost analysis

The cost of the pseudo-label based semi-super-
vised learning algorithm is composed of two parts,
i.e., the computational cost of the local training
process and the communication cost of the parameter

transmission.
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Fig. 11 Test results of loss (7=3)

The measurement of computational cost mainly focu-
ses on the number of floating-point operations ( FLOPs).
As mentioned in Section 3, the convolution neural net-
work GoogleNet is adopted, and the time complexity of
all convolution layers can be expressed as

2y, ~ O( ijlnl—l X s X, xmp) (18)
where [ is the index of a convolution layer, and d is the
depth (number of convolution layers) , s, is the spatial
size (length) of the filter, m, is the spatial size of the
output feature map, n, is the number of filters in the
[-th layer, and n,_; is also known as the number of in-
put channels of the [-th layer ™. For the local training
between two adjacent global updates in the experiment,
Tl S, |
(1 +u) FLOPs. Taking the specific hyper parameter of
GoogleNet into Eq. (14), the time complexity for one
sample is ;.. =1500 M FLOPs according to the cal-
culation in Ref. [17]. When7 =3, 1 S, 1 =20 andpu
= 20% , the time complexity for one local worker be-
tween two adjacent global updates is 108 000 M FLOPs.

The communication cost of the parameter trans-

the time complexity of one local worker is (2

lime

mission is proportional to the number of parameters.
For the convolution neural networks, the number of pa-
rameters can be expressed as
Q. ~00Y, jle? XCyxCi+ Y ;;MZ xC,)
(19)
This is the sum quantity of parameters and feature
maps of all layers, K is the size of convolution kernel,
C, is the number of output channels of the [-th layer,
and M is the length of the output feature map. Since
the worker needs to upload the local parameters to the
aggregator and get the updated global parameters from
the aggregator, the communication cost of one local
e As for GoogleNet,

the number of the parameters of the whole model is

0 ... =6.8 M according to the calculation in Ref. [17].

‘para

worker can be measured as 2.2

Thus, the communication cost of one local worker is
about 13.6 M.

Since all the workers train their local models in
parallel and communicate with the aggregator at the
same time, the cost of one global update can be esti-
mated as (2, 7! S, | (1 +u) +20
of time efficiency. Therefore, the cost of the whole dis-
1 S, 1 (1+w) +
20,1, where T, is the number of global updates.

from the aspect

ime para

tributed training process is T, [ {2,

ime

5 Conclusions

In this paper, the main work is the implementa-
tion of the semi-supervised DML based on the pseudo-
label method in a distributed framework. The local loss
function of each distributed learning worker is studied,
and the SGD-based parameter update equation is de-
rived. The GoogLeNet based target classification model
is evaluated by using the dataset of CIFAR-10. Results
show that the model converges when the local update
steps between every two global aggregation is less than
5 and the proportion of the pseudo-label dataset is
20% . Further evaluation results under the condition of
7 = 3 show that the increasing of the proportion of the
pseudo-label dataset slows down the convergence rate-
and reduces the accuracy. But even whenu = 80% ,
the model still converges.
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