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Abstract

Convolutional neural networks ( CNNs) have shown great potential for image super-resolution
(SR). However, most existing CNNs only reconstruct images in the spatial domain, resulting in in-
sufficient high-frequency details of reconstructed images. To address this issue, a channel attention
based wavelet cascaded network for image super-resolution ( CWSR) is proposed. Specifically, a
second-order channel attention (SOCA) mechanism is incorporated into the network , and the covar-
iance matrix normalization is utilized to explore interdependencies between channel-wise features.
Then, to boost the quality of residual features, the non-local module is adopted to further improve
the global information integration ability of the network. Finally, taking the image loss in the spatial
and wavelet domains into account, a dual-constrained loss function is proposed to optimize the net-
work. Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms
of both visual quality and quantitative metrics.
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0 Introduction

High-resolution (HR) images are able to signifi-
cantly improve the accuracy of image analysis in medi-
cal diagnosis''', remote sensing detection'”’ | intelli-
gent transportationm , facial recognition'*! and other
fields. However, because of the existence of imaging
equipment, atmospheric environment, noise and other
factors, the captured images are usually difficult to sat-
isfy the requirements of engineering applications. For
decades, to restore a latent HR image with rich de-
tailed information from its available low-resolution
(LR) image, varieties of image super-resolution ( SR)
methods with excellent performance have been pro-
posed.

With the development of deep learning, recent
deep convolutional neural networks ( CNNs) have been
extensively exploited in image SR tasks and achieved
considerable performance. To improve the feature rep-
resentation ability of CNN, the methods of modifying
the network structure, including increasing the network

depth or/and width, have attracted extensive attention
in recent years. For instance, both memory network
(MemNet) "’ and residual dense network ( RDN)'®
use dense blocks'”’ to develop deep network models
and take full advantage of hierarchical features extrac-
ted from the convolutional layers. Besides designing a
deeper or wider network, some networks, such as non-
local recurrent network ( NLRN) '™’ and squeeze-and-
excitation network ( SENet) ', strengthen their per-
formance by exploring feature interdependencies of
space or channels. For image SR, most of the recent
CNN-based models treat intermediate features of the
each channel equally, which limits flexibility in high-
lighting significant features to reveal high-frequency de-
tails"™®'. To break through this limitation, Zhang et al. "’
exploited a network
(RCAN) for image SR by designing the residual struc-
ture and channel attention mechanism. However, RCAN

residual channel attention

only exploits the first-order feature statistics and ignores
higher-order ones, which limits the representational
ability of CNN. To solve this problem, Dai et al. '
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built a second-order attention network ( SAN) for im-
age SR by developing a second-order channel attention
(SOCA) block to learning feature relationships be-
tween intermediate layers of the network.

In recent years, some models in Refs[ 12-14]
combining wavelet transform with CNN have also been
proposed. Kang et al. '"* proved that training CNN on
wavelet sub-bands is beneficial to feature learning, and
then proposed a wavelet residual network ( WavRes-
Net) to restore abundant texture details. By converting
the SR problem to a problem of wavelet coefficient pre-
diction, Guo et al. """’ presented a deep wavelet pre-
diction for image super-resolution (DWSR) to recover
lost details of wavelet coefficients of original images to
be reconstructed. Unfortunately, both WavResNet and
DWSR just explore one-level wavelet decomposition
and process each wavelet sub-band independently,
which ignores the dependencies between these sub-bands.
Inspired by the U-Net architecture, Liu et al. 14 devel-
oped a multi-level wavelet convolutional neural network
(MWCNN) , in which wavelet transform is adopted to
substitute the conventional pooling layer to avoid infor-
mation loss.

In addition, numerous studies on image restora-
tion in Refs[8,15] show that capturing the interde-
pendence of long-distance information from an image
can help restore more edge and texture details. For an
image, the convolution operation can handle local re-
gion information solely, and as for long-distance infor-
mation, it is necessary to continuously superimpose the
convolutional layer to expand the receptive field. How-
ever, such methods are inefficient and their network
structure are complex and difficult to optimize. To ad-

! proposed non-local

dress the issues, Wang et al. '
neural networks, which calculate the weighted sum of
features at each location and treat it as the response of
the corresponding location to effectively extract long-
distance feature dependencies. Besides, Liu et al. *
improved the non-local neural network and combined it
with recurrent neural networks ( RNNs) , which boosts
the utilization of parameters and the robustness of the
model.

Inspired by the above literatures, a channel atten-
tion based wavelet cascaded network for image super-
resolution (CWSR) is proposed by fully exploiting the
superiorities of the wavelet transform, CNN, SOCA
and non-local self-similarity prior. The primary contri-

(1) A novel
CWSR model is proposed to reconstruct as many high-

butions of this paper are as follows.

frequency details as possible. Extensive experiments
demonstrate that CWSR outperforms state-of-the-art
methods for comparison in both visual quality and

quantitative metrics. (2) SOCA is incorporated into
the network to adaptively rearrange channel-wise fea-
tures through exploring the inherent interdependencies
between different channels. (3) The non-local module
is integrated into the network to learn interdependen-
cies between each feature and its neighborhood to en-
hance the quality of residual features. (4) In the spa-
tial and wavelet domains, a dual-constrained loss func-
tion is proposed to optimize the proposed network to
minimize the differences between the reconstructed im-
age and its original HR image.

The subsequent structure of this paper is as fol-
lows. Section 1 introduces related work. Section 2 de-
scribes the detail of the proposed network. Section 3
presents the experimental results. And finally, the
conclusions of the paper are drawn in Section 4.

1 Related work

Recently, the deep CNNs have achieved unprece-
dented success in various machine vision tasks inclu-
ding image SR"""?'. However, most CNN-based mod-
els for image SR treat intermediate features of different
channels equally, which limits the super-resolution per-
formance. To deal with this problem, various attention
mechanisms in Refs [ 7,10, 11, 15-16,23-25] have
been explored in CNN-based approaches.

1.1 CNN-based SR approaches

In the image SR community, Dong et al. "' de-
veloped a three-layer lightweight CNN for image SR
(SRCNN) , which implements end-to-end mapping be-
tween LR and HR images. To reduce the computational
burden of SRCNN, Dong et al. '™ further proposed a
fast super-resolution CNN ( FSRCNN) by employing
the deconvolution layer to enlarge the image and utili-
zing smaller filter sizes and more mapping layers. Simi-
larly, Shi et al. "' built an efficient sub-pixel CNN
(ESPCN) by developing a sub-pixel convolution layer
to enlarge feature maps extracted from LR images.
Compared with SRCNN, FSRCNN and ESPCN achieved
significant improvement in both super-resolution per-
formance and computational efficiency. To further pro-
mote the super-resolution performance, Kim et al. .
utilized residual learning >’ to exploit a very deep con-
volutional network ( VDSR). Subsequently, by desig-

ning deeper and wider residual modules, Lim et al. '**’

built an enhanced deep SR network ( EDSR), which
achieves great success in both reconstruction accuracy
and computational efficiency.

1.2 Attention mechanism
Although the residual module facilitates to im-



HIGH TECHNOLOGY LETTERSI Vol. 28 No. 2| June 2022

199

prove the super-resolution performance by increasing
the network depth, the network becomes difficult to
converge after it reaches a certain depth. To tackle this
issue, the methods of embedding attention mecha-
nisms, such as spatial attention and channel attention,

into CNN-based models in Refs[ 10,11 ,15-16,24-25 ]
have received more and more attention. Wang et al. '
built a non-local neural network by developing non-lo-
cal operation to capture long-range dependency. It is
worth noting that non-local operations can be easily in-
corporated into various computer vision networks and
boost their performance. Liu et al. '®' also designed
non-local operations and incorporated them into the
RNN for end-to-end training to capture feature correla-
tion between each location and its neighborhood. The
difference between Ref. [ 16] and Ref. [ 8] is that the
former measures feature correlation of each location
throughout the whole image, while the later measures
feature correlation of each location only in its neighbor-
hood. Zhang et al. "’ built residual non-local attention
networks ( RNAN) , in which local and non-local at-
tention blocks were designed to capture the long-range
dependency between pixels to promote the representa-
tion ability of the network. Except for local and non-lo-
cal attention, channel attention is developed to explore
the dependency between network channels. RCAN''"
and SAN'"" respectively employed the first- and sec-
ond-order feature statistics to develop different channel
attention mechanisms to enhance the representational a-

bility of CNNs.
2  Proposed network

Considering that most existing CNN-based models
do not make full use of the information of the original
LR images and treat each channel-wise feature equal-
ly, a channel attention based wavelet cascaded network
for image super-resolution is proposed to further im-
prove the super-resolution performance.

2.1 Network framework

Wavelet transform possesses multi-resolution de-
composition characteristics, it is able to effectively de-
compose the ‘contour’ and °detail’ features of the
image. With this advantage of the wavelet transform,
the image SR is performed in the wavelet domain, rath-
er than in the spatial domain, to overcome the short-
coming that local features are hard to be well represen-
ted in the spatial domain'">"',

CWSR, as shown in Fig. 1, is essentially a U-Net
architecture network , and each level of the network in-

cludes a contracting sub-network and an expanding
sub-network. Considering that the discrete wavelet
transform ( DWT) is a reversible operation and can
simultaneously capture the frequency and position in-
formation of features, it is incorporated into the con-
tracting sub-network to replace the conventional pooling
operation to preserve the edge and texture features of
the input image and avoid the loss of information. In
the expanding sub-network, the inverse discrete wave-
let transform (IDWT) is used to implement the up-
sampling operation to achieve the mapping from LR to
HR features. At the same time, to explore and utilize
the feature interdependencies between the four wavelet
sub-bands, a convolutional layer is introduced in the
proposed model to strengthen the image details after
each level of DWT operation. Such methods, which have
been exploited in the exiting models in Refs[ 12-14],
can effectively improve the super-resolution perform-
ance.

As shown in Fig.1, CWSR consists of 3 parts.
Each group of DWT and IDWT of the same size consti-
tute a part of the network. That is, DWT1 and ID-
WT1, DWT2 and IDWT2, DWT3 and IDWT3 consti-
tute the first, second and third part of the network, re-
spectively. In a certain part, three CNN units and a
CSOCA module are connected after each level of
DWT, where each CNN unit contains a 4-layer fully
convolutional network ( FCN) and all sub-bands are
provided as inputs; the CSOCA module consists of a
convolutional ( Conv) layer and a SOCA block, and
the Conv layer of CSOCA is used for feature selection.
Specifically, each layer of the CNN unit contains three
Conv filters, batch normalization ( BN), and rectified
linear unit (ReLU). Tt is noteworthy that the last CNN
unit (CNNI18) in the network utilizes only one Conv
layer (without BN and Rel.U) to compress the channel
number. CSOCA module consists of Conv, global co-
variance block, Conv, ReLU and Sigmoid. After fea-
tures are input into the Sigmoid, it will output weights f
(as shown in SOCA module in Fig. 1) ranging from 0
to 1, which are used to measure the importance of the
features among channels. To realize the mapping from
shallow features to deep features and network training,
the features obtained by the CSOCAl and CSOCA2
modules and the features obtained by the CNN25 and
CNN15 modules are added with the element-wise sum-
mation, respectively. In addition, in the final stage of
obtaining the reconstructed image, a non-local module
was added before the CNN18 block to enhance residual

features.
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Fig.1 The architecture of CWSR

The workflow of CWSR is as follows. Firstly, to
achieve both odd and even magnification, an image of
the same size as the HR image are fed, which is ob-
tained by up-sampling the image to be reconstructed
into CWSR, instead of di-
rectly feeding the original LR image. Then, the LR im-

with bicubic interpolation,

age 1is first decomposed into four sub-bands by perform-
ing DWT1 operation, and then four sub-bands are sep-
arately fed into CNN11 as four channels to investigate
the relationship of the sub-bands.
performing each level of DWT operation or before each

Subsequently, after

level of IDWT operation, SOCA is employed to explore
interdependencies between channel-wise features of
four wavelet sub-bands. Next, the non-local module is
used to enhance the quality of the residual features be-
fore performing the last level IDWT (IDWT1) opera-
tion. Finally, four wavelet sub-bands obtained by
DWT1 are individually added to the corresponding re-
sidual images obtained by CNN18, and then IDWTI is
performed to obtain the final reconstructed image. It is
worth noting that each time a DWT operation is per-
formed, the size of the feature map will be reduced to
1/4 of the original size, and the number of the corre-
sponding channel will be increased to four times that of
the original one; on the other hand, all feature maps
obtained by DWT are input into the CNN module for
training, instead of training each sub-band separately.

As with DWSR!"

as the wavelet basis function. In CWSR, assuming that

, the Haar kernels are selected
the size of the input LR image is 4/ and the initial num-
ber of channels is n, the feature map size obtained by
performing a one-level DWT on the input is /, and the
corresponding number of channels is increased to 4n.
Among them, the feature corresponding to [ 1:n] chan-
nels is the low-frequency approximation sub-band LL,
the features corresponding to [n +1:2n],[2n +1:3n]
and [3n + 1:4n] channels are the high-frequency de-
tail sub-band LH, HL and HH in the horizontal , vertical

and diagonal direction, respectively.

2.2 Second-order channel attention

Compared with traditional CNN, the advantage of
DWT is that its frequency and location characteristics
facilitate the preservation of edges and textures because
(4], Moreover, since DWT

is reversible, down-sampling the image with DWT en-

of its biorthogonal property

sures that all image information will be preserved.
Considering that there is a meaningful relationship
among the four wavelet sub-bands obtained by DWT
decomposition, the CNN module is utilized to exploit
their relationship.

For CNN-based SR models,

and high-frequency information of the input image are

if the low-frequency

treated indiscriminately in each channel, the powerful
representation ability of CNN will be suppressed''*'"’.
To effectively explore dependencies between channel-
wise features, SOCA is incorporated into the proposed
CWSR, which enables the network to learn more high-
frequency features to boost its representational ability.
As shown in Fig. 1, SOCA block is fused with the last
Conv layer after each level of DWT operation, and the
fused module is named as CSOCA. Where, SOCA is
employed to learn feature dependencies adaptively by
utilizing second-order feature statistics for a more dis-
criminative representation. Assuming a W x H x C fea-
ture map F = [F,, F,,-,
with the size of W x H, then the feature map F is re-
shaped to a feature matrix X with S x C', (where, S =

F.] with C feature maps

W x H) , subsequently, the covariance matrix 3 is ob-
tained :

3 = XIX' (1)
where, I = 1?([ - %l) , Iis the S x S identity ma-

trix, 1 is the S X S matrix of all ones. Since 3 is sym-

metric positive semi-definite, covariance normalization

(CN) is performed on 3.
3 = UAU' (2)

where, U and A are an orthogonal matrix and diagonal
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matrix, respectively, and A = diag(A;,--*,A;). Sub-
sequently, CN can be converted to the power of eigen-

values.
Y = 3¢ (3)
where, o = L LetY = [y,,~*, ¥.,**, Yo, the

2
channel-wise statistics z € R“*' can be calculated by
shrinking Y, so the cth dimension of z is as

2, = Hip(3.) = = 3 3.() (4)

where, H.,( +) stands for the global covariance poo-
ling (GCP) function. Then, the channel attention map
w can be calculated by

w = sigmoid(conv2(ReLU(comvl(z)))) (5)
where, convl and conv2 respectively compress and ex-
pand the channel number of the input, whose purpose
is to increase the non-linear representation. In Fig. 1,
W, and W separately denote the set weights of convl
and conv2. Finally, the obtained w can be used to res-
cale the input feature.

fo =0 f (6)
where, w, and f, represent the scaling factor and the cth

channel of the feature map, respectively.

2.3 Non-local module

The non-local operation can be used to capture
long-range dependency, i. e. , capturing the dependen-
cy between a location and its neighborhood, which
breaks through the limitation of the local operation of
traditional CNNs'""®/. Then, the obtained dependency
can be used as a weight to represent the similarity be-
tween other locations and the current location to be cal-
culated.

Inspired by Ref. [26 ], the non-local operation is
wrapped as a non-local module by adding a skip con-
nection, as shown in Fig.2, and then the non-local
module is incorporated into the network to produce reli-
able feature dependencies to enhance the quality of re-
sidual features. Furthermore, to decrease the amount of
calculation, a bottleneck structure is also introduced.
Assuming the channel number of input feature is 4C,
its channel number is reduced to 1/4 of the original
channel number after it is operated by 6, ¢ and g,
where, 0, ¢ and g all represent 1 x 1 x C convolution

}_ softmax
— -¢ D Batch
\4 0 .
Y Normalization

‘lg
L= |

Fig.2 Non-local module

operation, v denotes a 1 X 1 X 4C convolution opera-
tion, ® and @ stand for dot multiplication and addi-
tion.

Concretely, the non-local module takes a multi-
channel input M as the image feature and generates an
output feature O. Its expression is
h, = softmax(0(m,) o (m,) ) g(m)

1 o(m) To(m
= We (m;) To( j)ngj (7)
A\
= BN(wh,) + m, (8)

where, m, represents the features of the current loca-

o,
tion i concerned , m; represents the neighboring location
ofm;; 6(m,) = W,m,, @(mj) = Wq;mj’ g(m}‘) =
Wm;, W,, W, and W, individually represent the
weight matrix to be learned, and can be obtained by 1

0(m;) T@(mj)

x 1 convolution;; Z i€ stands for the normal-
J

)T, . . ..
om)"e(m) - Jenotes calculating the simi-

ization factor; e
larity of m; and m;, and the superscript T stands for
transpose ; 0; denotes the output feature of the location
i, BN(+) denotes batch normalization, and » denotes
the weight matrix of 0; to be learned. From Eq. (7)
and Eq. (8), it can be seen that the non-local opera-
tion calculates the normalized correlation between each
feature and its neighborhood for the current feature
map, and its output is the weighted average of its
neighborhood.

2.4 Loss function

IDWT operation is performed to generate a recon-
structed image as a final result from a series of wavelet
sub-bands. On the one hand, the wavelet domain loss
is used to constrain the proposed model to recover more
high-frequency details. On the other hand, the spatial
domain loss is utilized to constrain the proposed model
to achieve a balance between edge texture features and
smooth features. Eventually, a dual-constrained loss
function is proposed to optimize the proposed CWSR.
Thus, the total loss is composed of the wavelet domain
loss loss,,, and the spatial domain one loss;,,.

Since the L, norm can not only be used to measure
the difference between two vectors, but also prevent
overfitting in model training, which greatly improves
the generalization ability of the model. Therefore, a
novel loss function is proposed based on the L, norm,
and its expression is as

+ (1 = A)loss, (9)

img

losslolal = )\losswa\'
where, A and 1 — A represent the weights of the wavelet
and spatial domain loss, respectively. Then, the loss

function can be obtained as

L&
loss = 27\]; | Lsg = Lyr | ? (10)
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where, N represents the number of training samples,
I, represents the reconstructed image, and I, repre-
sents the original HR image.

Wavelet domain loss. Due to taking full use of
the relationships between four sub-bands, the proposed
network can avoid information loss, which is conducive
to recovering more detailed information. Suppose y,,
represents the test LR image, and x,;, represents the
corresponding original HR image. The input of the pro-
posed network is a middle resolution (MR) image y,x
obtained by up-sampling y,,. It is necessary to learn
the relationship between the wavelet coefficients ob-
tained by feeding y,, and x,, to a one-level DWT, so
that the network output will be as close as possible to
the wavelet coefficients obtained by performing a one-
level DWT on the corresponding HR image.

Calculating the wavelet domain loss loss,, . in-
volves solving loss, in Fig. 3 and loss, in Fig. 4, where
loss,,, = loss, + loss;. The residuals obtained by the
CSOCA1 module are respectively added to the four
sub-bands to form DCS1(LL,, LH,, HL,, HH,).
Suppose that the four sub-bands, represented as
DWT,.(LL, LH, HL, HH) , are obtained by feeding
the original HR image x,; to a one-level DWT, then
loss, between DCS1 and DWT; can be solved according
to L, norm. Concretely, each sub-band of DCS1 first

solves the loss with its corresponding sub-band of DWT ,

DWT DWT

i DCS1 I i loss1 |

DWT1 P
| CSOCA1|—-| Conv

Fig.3 Loss of the shallow network

DWT
- s DWTHR

l IDWT

‘ IDCS1 H loss2 |

!

HR
DWT1 & CNN18|—>| DCST' }—»| loss3 |

IDWT

| Output}—»| loss4 |

f

Fig.4 Loss of the deep network

and then the losses of four sub-bands are summed to
obtain the final loss loss,, that is, loss, = loss;, +
loss,;, + lossy, + lossyy,. The purpose of calculating
loss, is to constrain the extracted features in the shallow
network so that the edge and texture features of the re-
constructed image are as close as possible to that of the
original HR image.

Similarly, loss; in Fig.4 can be solved by DCS1’
and DWT,, according to L, norm, where, DCS1' repre-
sents the residual images obtained by adding the four
wavelet sub-bands obtained by DWT1 to the corre-
sponding residuals obtained by CNNI8, as shown in
Fig. 1, which can be used as a supplement to the de-
tailed information of the MR image y,;; during the re-
construction process to boost the super-resolution per-
formance. Similarly, each sub-band of DCS1’ first cal-
culates the loss with its corresponding sub-band of the
HR image, and then the losses of four sub-bands are
summed to obtain the final loss loss,, that is, loss; =
loss; ;s + loss; s + lossys + Loss .

Spatial domain loss. To achieve a balance be-
tween detail and smooth features, in addition to the
wavelet domain loss, the spatial domain loss of the im-
age is also concerned. Calculating the spatial domain
loss loss;,, involves solving loss, in Fig.3 and loss, in
Fig. 4, where loss,,, = loss, + loss,. In Fig.3, IDCS1
represents the result obtained after the IDWT is per-
formed on DCSI(LL,, LH,, HL,, HH,). Since
IDCS]1 is essentially a rough reconstructed image to be
further optimized, loss, between IDCS1 and the original
HR image x,; can be solved according to L, norm. In
Fig. 4, since the reconstructed image xg, obtained by
performing a one-level IDWT on DCS1' is equivalent to
the output of the proposed CWSR, loss, between xg,

and x,;, can be calculated according to L, norm.

3 Experiment

3.1 Parameters, datasets and metrics

To train CWSR, a large training consists of the
images from the following dataset, including BSD'*' |
DIV2K'®) and WED'®'. Specifically, 200 HR images
were selected from BSD, 800 ones were selected from
DIV2K, and 4744 ones were selected from WED. Dur-
ing training, 24 x 6000 patches with the size of 240 x
240 were cropped from the training images. For the
network parameters, their initialization is the same as
Ref. [21]. ADAM optimizer ' was employed to train
the proposed CWSR. A min-batch size was 32, and
other hyper parameters of ADAM are set to default val-
ues. During the iteration, the learning rate decays from
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0.01 to 0.0001. Moreover, the neighborhood size is
45 x45 in the non-local module. The proposed CWSR
has been implemented on two Nvidia Titan RTX 24GB
GPUs.

To ensure the objectivity of the experiments, four
benchmark sets including Set5"!, Set14"*! | BSD100
(100 images derived from BSDS 300'”"') and Ur-
ban100'* were selected as test datasets. Moreover,
the reconstructed images are gauged with subjective
visual perception and objective evaluation metrics in-
cluding peak signal-to-noise ratio (PSNR) and struc-
tural similarity ( SSIM) e

3.2 Experimental results

To quantitatively evaluate the reconstructed im-
age, the MR images obtained by up-sampling LR ones
are regarded as the input images to be reconstructed,
and the original HR images are regarded as the refer-
ence ones.

3.2.1
To explore the feasibility and effectiveness of dif-

Analysis of different modules

ferent modules, the proposed CWSR model is com-
pared with two intermediate models, i.e. , WCN is the
model using only wavelet transform and CNN modules,
and WCN + SOCA are the model using wavelet trans-
form, CNN and SOCA modules. Essentially, CWSR is
the model using wavelet transform, CNN, SOCA and
non-local modules. Table 1 lists the average PSNR and
SSIM of reconstructed images obtained by three models
mentioned above. As can be seen from Table 1, al-
though WCN + SOCA performs much better than WCN,
CWSR achieves the optimal super-resolution perform-
ance with the highest average PSNR and SSIM. These
results indicate that almost all different modules of
CWSR have positive significance.

Table 1  Comparison of the average PSNR (dB) and SSIM

obtained by different modules with scale factor x 4

Images PSNR/SSIM~ WCN  WCN +SOCA CWSR
Sot PSNR 32.01 32.10 32.24
i

¢ SSIM 0.8942 0.8943 0.8947
PSNR 28.22 28.39 28.50

Setl4
SSIM 0.7819 0.7821 0.7828
B100 PSNR 27.43 27.56 27.67
SSIM 0.7354 0.7357 0.7360
PSNR 26.20 26.30 26.39

Urban100

SSIM 0.7896 0.7926 0.7929

3.2.2 Analysis of network structure
CWSR can essentially be extended to different
levels of DWT. However, higher level of DWT directly

means deeper network and higher computational com-
plexity. Accordingly, an appropriate level of DWT is
required to balance super-resolution performance and
computational efficiency. This experiment compared
the performance of the models (i. e., CWSR-1,
CWSR-2, CWSR-3 and CWSR4) with 1-, 2-, 3- and
4-level DWT with scale factor 4.

Table 2 presents the average PSNR, SSIM and
computational time of different models with the level of
1 to 4. As can be seen from Table 2, in terms of both
PSNR and SSIM metrics, CWSR-3 is significantly su-
perior to CWSR-1 and CWSR-2, while CWSR4 has
only a negligible improvement over CWSR-3; then,
combined with the computational time, it can be seen
that the CWSR-3 model, which is the default CWSR
model, has a better tradeoff between super-resolution
performance and computational efficiency than the oth-
er three models. The main reason is that LL, contains
scarcely effective low-frequency information for image
SR after an appropriate level of DWT.

Table 2 Comparison of the average PSNR (dB), SSIM and
computational time ( seconds) of CWSRs with differ-
ent levels of DWT with scale factor x4

PSNR/

Images  SSIM/ CWSR-1 CWSR-2 CWSR-3 CWSR4
Time

PSNR  31.66 32.05 32.24 32.25
Set5 SSIM  0.8901 0.8930 0.8947 0.8948
Time 0.306 0.403 0.517 0.649
PSNR  28.02 28.23 28.50 28.51
Set14 SSIM 0.7758 0.7802 0.7828 0.7830
Time 1.017 1.262 1.548 1.815
PSNR  27.46 27.60 27.67 27.68
B100 SSIM  0.7344 0.7349 0.7360 0.7363
Time 0.265 0.336 0.431 0.536
PSNR  25.77 26. 15 26.39 26.40
Urban100 SSIM  0.7724 0.7866 0.7929 0.7932
Time 3.610 4.919 6.803 8.546

3.2.3 Comparison with state-of-the-art methods

To further validate the effectiveness of CWSR, it
is compared with state-of-the-art methods, i.e., SRC-
NN VDSR' | LapSRN'*'  DRRN'*' IDN'*"',
DPSR™ | IMDN"™' and MWCNN'"'. Table 3 lists
the average PSNR and SSIM of reconstructed images
obtained by various methods with different scale factors
(i.e., x2, x3 and x4) on Set5, Setl4, B100 and
Urban 100. From Table 3, it can be seen that the av-
erage PSNR and SSIM of reconstructed images obtained
by CWSR are higher than that of most methods for
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comparison, which indicates that the proposed method
produces the leading result in overall super-resolution
performance. Specifically, as can be seen from Table 3,
for the case of scale factor with 2, the average PSNR of
CWSR is only slightly lower than that of IMDN on the
Set5 dataset, but the average SSIM is still higher than
IMDN; at the same time, both the average PSNR and
SSIM of the proposed CWSR are the highest on other

three datasets. And for the case of scale factor with 3,
although the average PSNR of the proposed method is
rarely insufficient on the Set5 and Setl4 datasets, the
average SSIM is also the highest on all datasets. For
the case of scale factor with 4, the proposed method al-
most achieves optimal or suboptimal performance in

terms of PSNR and SSIM metrics.

Table 3  Comparison of the average PSNR (dB) and SSIM obtained by different methods with different scale factors

Images PQSSI\R/I/ Scale SRCNN  VDSR  LapSRN DRRN IDN DPSR IMDN MWCNN CWSR
PSNR 36. 66 37.53 37.52 37.74 37.83 37.78 38.00 37.91 37.98

Set> SSIM 0.9542  0.9587 0.9590 0.9591 0.9600 0.9600 0.9605 0.9600 0.9608
PSNR 32.45 33.03 33.08 33.23 33.30 33.58 33.63 33.70 33.81

Setl SSIM 0.9067 0.9124 0.9130 0.9136 0.9148 0.9171 0.9177 0.9182 0.9213
PSNR x2 31.36 31.90 31.80 32.05 32.08 32.17 32.19 32.23 32.29

B100 SSIM 0.8879 0.8960 0.8950 0.8973 0.8985 0.8993 0.8996 0.8999 0.9003
PSNR 29.50 30.76 30.41 31.23 31.27 31.93 32.17 32.30 32.45

Urban 100 SSIM 0.8946 0.9140 0.9100 0.9188 0.9196 0.9264 0.9283 0.9296 0.9330
PSNR 32.75 33.66 - 34.03 34.11 34.33 34.36 34.17 34.25

Set> SSIM 0.9090 0.9213 - 0.9244 0.9253 0.9266 0.9270 0.9261 0.9272
PSNR 29.30 29.77 - 29.96 29.99 30.33 30.32 30.16 30.26

Setl SSIM 0.8215 0.8314 - 0.8349 0.8354 0.8424 0.8417 0.8414 0.8424
PSNR x3 28.41 28.82 - 28.95 28.95 29.11 29.09 29.12 29.16

BI00 SSIM 0.7863 0.7976 - 0.8004 0.8013 0.8057 0.8046 0.8060 0.8088
Uthan 100 PSNR 26.24 27.14 - 27.53 27.42 28.11 28.17 28.13 28.27
SSIM 0.7989  0.8279 - 0.8378 0.8359 0.8514 0.8519 0.8514 0.8545

PSNR 30.48 31.35 31.54 31.68 31.82 32.19 32.21 32.12 32.24

Set> SSIM 0.8628 0.8838 0.8850 0.8888 0.8903 0.8954 0.8946 0.8941 0.8947
PSNR 27.50 28.01 28.19 28.21 28.25 28.65 28.58 28.41 28.50

Setl SSIM 0.7513 0.7674 0.7720 0.7720 0.7730 0.7833 0.7811 0.7816 0.7828
PSNR x4 26.90 27.29 27.32 27.38 27.41 27.59 27.56 27.62 27.67

B100 SSIM 0.7101 0.7251 0.7280 0.7284 0.7297 0.7360 0.7353 0.7355 0.7360
PSNR 24.52 25.18 25.21 25.44 25.41 26.14 26.04 26.27 26.39

Urban 100 SSIM 0.7221 0.7524 0.7560 0.7638 0.7632 0.7867 0.7838 0.7890 0.7929

To intuitively compare reconstructed images of dif-
ferent SR methods from subjective visual perception,
Fig.5 — Fig. 8 illustrate the enlarged results of recon-
structed images at the same area with scale factor 4,
and the corresponding original HR image is given as a
reference image. From Fig. 5 — Fig. 8, it can be seen
that most compared methods are unable to accurately
reconstruct the edge and texture details, and even suf-
fer from serious artifacts. However, CWSR reconstructs
a sharper image and restores more high-frequency de-
tails.

Fig.5 presents the visual comparisons of various
methods on the image *butterfly” from Set5. It can be

seen from Fig. 5 that the images reconstructed by SRC-
NN, VDSR and LapSRN are not clear enough; the im-
age reconstructed by DRRN even has aliasing; IDN
and DPSR can only recover the main contour of the im-
age, but not more detailed information; in contrast,
IMDN, MWCNN and the proposed method can recover
more details and achieve better super-resolution re-
sults. However, compared with IMDN and MWCNN,
the reconstructed image of CWSR has sharper contours
and better preserves the edge and texture information of
the butterfly wings.

Fig. 6 shows the visual comparisons of various
methods on the image ‘ Baboon’ from Setl4. As can
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be seen from Fig. 6, the reconstructed image of CWSR
retains the details of the beard well, and the images re-
constructed by DPSR, IMDN and MWCNN are slightly
blurry. This is mainly because CWSR makes full use of
wavelet transform, channel attention and non-local pri-
or to jointly recover more high-frequency details.

Fig. 7 illustrates the visual comparisons of various
> from B100. As can be

although the reconstructed image of

methods on the image Zebra
seen from Fig. 7,

Reference

Butterfly-reference image
27.67/0.9137

N

SRCNN VDSR
25.45/0.8565

o i N N X

DPSR IM DN
27.16/0.9034

LapSRN algorithm is better than that of SRCNN, VD-
SR and IDN in edge sharpening, many artificial details
appear in its reconstructed images; compared with
LapSRN, the images reconstructed by DRRN, DPSR
and IMDN have only a few artificial details and contain
sharper edge; compared with the previous SR algo-
MWCNN can obviously restore more edge de-
tails, and there are almost no artificial details in its

rithms ,

reconstructed images ; however , thanks to the attention

LapSRN

27.29/0.9081 27.20/0.9006 27. 6()/0 9150

MWCNN
28.19/0.9176

CWSR

28.30/0.9131 28.32/0.9190

Fig.5 Visual comparison of super-resolution results of ‘ Butterfly’ (Set5) obtained by different algorithms with scale factor x4

Reference

Baboon-reference image IDN
22.87/0.5201

Fig.6 Visual comparison of super-resolution results of ‘ Baboon’

MMMW

Reference

Zebra-reference image

IDN

22.46/0.6946

Fig.7 Visual comparison of super-resolution results of ‘Zebra’

(1

SRCNN VDSR LapSRN
22.73/0.5029 22.82/0.5150 22.82/0.5154 22.86/0.5186
DPSR MWCNN CWSR
22.96/0.5178 22.98/0.5152 22.90/0.5267 22.98/0.5272

(Setl4) obtained by different algorithms with scale factor x4

SRCNN VDSR
21.90/0.6726  22.35/0.6906

DRRN
22.40/0.6033

LapSRN
22.40/0.6980

g

22.73/0.7082  22.62/0.7031 23.11/0.7093

23.03/0.7079
(B100) obtained by different algorithms with scale factor x4
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Reference

IDN

Img_006-reference image 22.21/0.6167

21.36/0.5661

22.30/0.6309

LapSRN
21.96/0.6049

SRCNN DRRN

21.80/0.5990 22.18/0.6170

DPSR IMDN

22.61/0.6319

MWCNN
22.68/0.6377

CWSR
22.79/0.6465

Fig.8 Visual comparison of super-resolution results of ‘Img 006’ (Urbanl00) obtained by different algorithms with scale factor x4

mechanism that can explore dependencies between
channel-wise features and the non-local module that
can further enhance the residuals, CWSR is slightly
better than MWCNN in restoring the edge details.

Fig. 8 presents the visual comparisons of various
methods on the image ‘Img 006’ from Urbanl00. Tt
can be seen from Fig. 8 that the reconstructed image of
SRCNN has some distortion, while the edge and texture
of reconstructed images of VDSR, IDN, LapSRN,
DPSR and DRRN are blurred; obviously, IMDN and
MWCNN outperform the previous methods, but also are
still inferior to CWSR. The image reconstructed by the
proposed CWSR has better visual effects than that by
MWCNN, with sharper edges and textures.

4 Conclusion

To obtain more high-frequency information, a
channel attention based wavelet cascaded network for
image super-resolution is proposed. A SOCA module is
incorporated into the proposed network to adaptively
learn the inherent correlations of channel-wise fea-
tures, and then the non-local module is utilized to cap-
ture interdependencies between each feature location
and its neighborhoods to boost residual features, finally
a novel dual-constrain loss function based on the spa-
tial and wavelet domains is proposed to strengthen the
constraints on network training. Experimental results
demonstrate the superiority of CWSR in comparison
with several state-of-the-art super-resolution methods.
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