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Abstract
Attention mechanism combined with convolutional neural network (CNN) achieves promising

performance for magnetic resonance imaging (MRI) image segmentation, however these methods on-
ly learn attention weights from single scale, resulting in incomplete attention learning. A novel meth-
od named completed attention convolutional neural network (CACNN) is proposed for MRI image
segmentation. Specifically, the channel-wise attention block (CWAB) and the pixel-wise attention
block (PWAB) are designed to learn attention weights from the aspects of channel and pixel levels.
As a result, completed attention weights are obtained, which is beneficial to discriminative feature
learning. The method is verified on two widely used datasets (HVSMR and MRBrainS), and the ex-
perimental results demonstrate that the proposed method achieves better results than the state-of-the-
art methods.
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0　 Introduction

Magnetic resonance imaging (MRI) is one of the
fundamental technologies to detect different diseases,
such as brain tumour, cardiovascular lesions and spinal
deformity[1] . This technology is widely used due to its
non-invasive characteristic and multi-modality informa-
tion. As the basis of medical image technologies, MRI
medical image segmentation is valuable for research
and practical application. For example, it can assist doc-
tors in clinical diagnosis, surgical guidance and so on.

With the development of deep learning, convolu-
tional neural network ( CNN) dominates the field of
MRI image segmentation. Some methods[2-3] apply the
fully convolutional network ( FCN) for segmentation,
which changes the fully connected layer into the convo-
lution layer and fuses the features of pooling layers and
the last convolution layer. Ronneberger et al. [4] de-
signed the U-shape architecture network (U-Net) for
biomedical image segmentation, which utilizes the con-
tracting path and the symmetric expanding path along

with skip connections to obtain the pixel-wise predic-
tion. Because of the superiority of U-Net, some vari-
ants[5-7] were proposed to apply in the field of medical
image segmentation.

Recently, the attention mechanism[8], which is
prone to pay attention to the important parts of an im-
age rather than the whole one, is introduced into the
medical image segmentation. With the attention mech-
anism, the attention-aware features were generated to
adaptively adjust the weights of features[9] . Pei et al. [10]

proposed the position attention module and the channel
attention module in single scale so as to make the net-
work concentrate on the core location of colorectal
tumour. Mou et al. [11] presented CS2-Net which ap-
plies the self-attention mechanism to learn rich hierar-
chical features for medical image segmentation. How-
ever, the above-mentioned attention-based methods on-
ly learn attention weights from single scale, which is
difficult to obtain completed attention information.

In this paper, a novel method named completed
attention convolutional neural network ( CACNN) is
proposed for MRI image segmentation, which learns
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channel-wise attention weights and pixel-wise attention
weights simultaneously. To this end, CACNN is de-
signed as the symmetric structure including the en-
coder, the decoder, the channel-wise attention block
( CWAB ), and the pixel-wise attention block
( PWAB). Specifically, CWAB learns the attention
weights for each channel so as to adaptively fuse the
feature maps of the encoder and the decoder at the
same scale. Meanwhile, PWAB learns the attention
weights for each pixel in order to fuse the feature maps
from different blocks of decoder. In a word, CACNN

could learn the attention weights for different aspects,
which forces the deep network to focus on extracting
the discriminative features for MRI image segmenta-
tion.

1　 Approach

The framework of the proposed CACNN is shown
in Fig. 1, which includes the encoder, the decoder,
CWAB, and PWAB. In this section, each component
of CACNN is introduced in detail.

Fig. 1　 The framework of the proposed CACNN

1. 1　 The structure of CACNN
CACNN is the symmetric structure where the en-

coder and the decoder both contain four blocks. As for
the encoder, each block consists of two convolution
layers and one max-pooling layer, where the kernel
size of convolution layer is 3 × 3 with the sliding stride
of 1 and the kernel size of max-pooling layer is 2 × 2
with the sliding stride of 2. As for the decoder, each
block includes the up-sampling operations to obtain the
feature maps with the same size of the corresponding
encoder block. Instead of the skip connections, the
feature maps of the corresponding blocks from the en-
coder and the decoder are fed into CWAB. Afterwards,
the outputs of CWAB1-3 and the minimum scale fea-
ture maps are fed into PWAB after up-sampling opera-
tions. Meanwhile, the output of CWAB4 is also as the
input of PWAB to generate the final segmentation map.

1. 2　 Channel-wise attention block
In order to fuse the information from the encoder,

some traditional segmentation methods[2-4] adopt the
skip connections to directly concatenate the feature
maps from the encoder and the decoder. However, the
skip connections neglect the importance of different
channels of feature maps. Hence, CWAB is proposed
to assign different attention weights to each channel.

Since there are four blocks of the encoder and the de-
coder, four CWABs are inserted into CACNN. The
structures of four CWABs are similar, and therefore
taken CWAB1 is an example. The structure of CWAB1
is shown in Fig. 2. The feature maps (I and T) of the
corresponding block from the encoder and the decoder
are as the input of CWAB1, and they are first conduc-
ted by the max-pooling operation to obtain H ∈ R1×128

and Q ∈ R1×128, respectively. Then, the attention
weights can be obtained as

W = softmax(θ(A × [H‖Q])) (1)
where, ‖ denotes the concatenation operation, A is
the learnable transformation vector; × indicates the
matrix multiplication operation; θ is the non-linear
transformation, and it is implemented by the LeakReLU
activation function in the experiment. As a result, W

Fig. 2　 The structure of CWAB
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contains the attention weights for each channel, and
the output of CWAB is represented as
　 　 O = W 􀱋 I (2)
where 􀱋 indicates the channel-wise multiplication. In
a word, the output of CWAB reflects the important of
feature maps, and therefore the representation ability is
improved.

1. 3　 Pixel-wise attention block
Most existing segmentation methods[4-5] utilized

the feature maps of the last block from the decoder to
calculate the final segmentation map, and they only
learn the feature maps from single scale. Therefore,
PWAB is proposed to fuse feature maps from different
scales in order to obtain accurate segmentation map as
shown in the right part of Fig. 1. Firstly, the feature
maps from different blocks are conducted by the up-
sampling operations to obtain the feature maps with the
same size, i. e. , 4 × 240 × 240. Then, the feature
maps are concatenated in a weighted way and utilize
the convolution operation to obtain df ∈ R4×240×240:

df = ϕ[4d1‖3d2‖2d3‖d4] (3)
where ϕ represents the convolution operation. The out-
put of CWAB4 is d5 ∈ R16×240×240, and then ds ∈
R4×240×240 is obtained after convolution operations. The
attention weights are defined as

C = ψ{ϕ(ReLU(df + ds))} (4)
where ψ represents the Sigmoid function. The final seg-
mentation map F is formulated as

F = C☉df (5)
where ☉ indicates the pixel-wise multiplication. As a
result, it could fuse the feature maps of multiple scales
by assigning attention weights to each pixel. In order to
train the network, the cross-entropy function is em-
ployed as the loss.

2　 Experiments and analysis

2. 1　 Datasets and implementation details
The experiments is conducted on two challenging

datasets: HVSMR[12] dataset and MRBrainS[13] date-
set. HVSMR has one modality information, i. e. , T2
sequences and it aims to segment blood pool and myo-
cardium in cardiovascular MR images. It includes 1868
training slices and 1473 test slices. The images in
HVSMR have different size, and the size of the original
images is maintained and fed into the network. MR-
BrainS contains MR brain scans of three modality infor-
mation, i. e. , T1, T1 inversion recovery and FLAIR
sequences. The task of MRBrainS is to segment cere-
brospinal fluid, gray matter and white matter. It con-
sists of 104 slices for training and 70 slices for testing,

where the size of each slice is 240 × 240. The training
images are conducted by a skull stripping pre-process-
ing.

The Adam algorithm is adopted for deep network
optimization with the weight decay of 5 × 10 - 4 and the
learning rate of 6 × 10 - 4 . Furthermore, the batch nor-
malization is utilized in CWABs.

In order to evaluate the performance of MRI image
segmentation, two matrices is employed, i. e. , pixel
accuracy and dice score[1,10] . The pixel accuracy indi-
cates the ratio between the number of correctly classi-
fied pixels and the total number of pixels. The dice
score reflects the overlap between the prediction results
and the ground-truth. The two matrices are defined as

Acc = (TN + TP) / (TP + TN + FP + FN)
(6)

Dice = 2 × TP / (FP + 2 × TP + FN) (7)
where TP is the true positive, FP is the false negative,
TN is the true negative and FN is the false negative.

2. 2　 Comparing to the state-of-the-art methods
The proposed CACNN is compared with the state-

of-the-art methods, such as FCN[2], SegNet[14] and
U-Net[4] where different encoders are utilized, i. e.
VGG16, ResNet50 and U-Net structure. The pixel ac-
curacy and the dice score are listed in Table 1, where
the following four conclusions can be drawn. Firstly,
CACNN gains the best results on the two datasets, be-
cause it learns completed attention weights including
the channel level and pixel level. The proposed CAC-
NN achieves the pixel accuracy and the dice score of
94. 15% and 88. 39% on the HVSMR dataset, and
97. 13% and 90. 48% on the MRBrainS dataset. Sec-
ondly, the proposed two attention mechanisms (CWAB
and PWAB) both boost the segmentation performance
compared with the baseline ( U-Net). Note that the
backbone of CACNN is designed as U-Net, and there-
fore it is reasonable to treat U-Net as the baseline.
Compared with U-Net, CWAB and PWAB raise the
dice score by 0. 12% and 1. 42% on the HVSMR data-
set. It proves that the channel-level attention and the
pixel-level attention are both essential for performance
improvement. Thirdly, U-Net structure performs better
than other network architecture. For example, U-Net
with VGG 16 and U-Net with ResNet 50 obtain the best
performance for the same encoder (VGG 16 or ResNet
50). Hence, U-Net is chosen as the backbone of
CACNN. Finally, MRBrainS contains three kinds of
modality information, while HVSMR includes one
kind. Comparing their performance, it shows that mul-
tiple information is beneficial to the performance im-
provement.
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Table 1　 Comparison on the HVSMR dataset and the MRBrainS dataset with different methods

Model
HVSMR

Pixel Acc Dice
MRBrainS

Pixel Acc Dice
FCN with VGG 16 0. 9165 0. 8368 0. 957 0. 8637

SegNet with VGG 16 0. 8928 0. 7118 0. 9484 0. 8294
U-Net with VGG 16 0. 9109 0. 8201 0. 9696 0. 8991

FCN with ResNet 50 0. 9095 0. 8266 0. 9488 0. 8347
U-Net with ResNet 50 0. 9192 0. 8371 0. 9701 0. 9039

FCN with U-Net 0. 9179 0. 8295 0. 9564 0. 8618
SegNet with U-Net 0. 9027 0. 8099 0. 9506 0. 8448
Baseline (U-Net) 0. 9270 0. 8593 0. 9705 0. 9021

CWAB 0. 9287 0. 8605 0. 9707 0. 9024
PWAB 0. 9368 0. 8735 0. 9710 0. 9038
CACNN 0. 9415 0. 8839 0. 9713 0. 9048

　 　 Fig. 3 illustrates some results of CACNN and other
methods on the two datasets. It shows that CACNN is

the superiority on dealing with detail information be-
cause of the completed attention learning.

Fig. 3　 Some results of CACNN and other methods (The first two rows are the samples from HVSMR
and the last two rows are samples from MRBrainS)

2. 3　 Parameter analysis
There are three key parameters in CACNN and

therefore a series of experiments are conducted to
search the optimal parameter values. Firstly, it tests
different number of fused feature maps for PWAB in
Eq. (3), and the results are listed in Table 2. It
shows the performance improvement with the number of
fused feature maps. Hence,the feature maps are fused
from four blocks. Then, it study which feature maps to
multiply with the attention weights for CWAB and
PWAB respectively in Eq. (2) and Eq. (5). From Ta-
ble 3 and Table 4, it shows that I and df are optimal in
CACNN.

Table 2　 Comparison of different numbers of fused feature
maps on the MRBrainS dataset

Different feature maps Pixel Acc Dice
d1 0. 9615 0. 8611
d1d2 0. 9623 0. 8624
d1d2d3 0. 9678 0. 8935
d1d2d3d4 0. 9713 0. 9048

Table 3　 Comparison of different feature map combination in
CWAB on the MRBrainS dataset

Feature maps Pixel Acc Dice
T with W 0. 9706 0. 9010
I with W 0. 9713 0. 9048
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Table 4　 Comparison of different feature map combination in
PWAB on the MRBrainS dataset

Feature maps Pixel Acc Dice
ds with C 0. 9686 0. 8955
df with C 0. 9713 0. 9048

3　 Conclusion

CACNN is proposed for MRI image segmentation
to learn completed attention weights. CACNN mainly
contains CWAB and PWAB which learn attention
weights for each channel and each pixel, respectively.
With the completed attention weights, the deep net-
work focuses on extracting the discriminative features.
CACNN is validated on two datasets HVSMR and MR-
BrainS, and the experimental results demonstrate that
the proposed method outperforms the other methods.
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