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Deep learning based curb detection with Lidar①
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Abstract
Curb detection provides road boundary information and is important to road detection. Howev-

er, curb detection is challenging due to the problems such as various curb shapes, colour, disconti-
nuity. In this work, a novel learning-based method for curb detection is proposed using Lidar point
clouds, considering that Lidars are not sensitive to illumination and are relatively stable to weather
conditions. A deep neural network, named EdgeNet, is constructed and trained, which handles
point clouds in an end-to-end way. After EdgeNet is properly trained, curb points are then segmen-
ted in the neural network output. In order to train, a curb point annotation algorithm is also designed
to generate training dataset. The curb detection method works well with different road scenarios in-
cluding intersections. The experimental results validate the effectiveness and robustness of this curb
detection method.
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0　 Introduction
Detecting road boundary is necessary for vehicles

with full or partial autonomy. Without road boundary
information, it would be difficult for vehicles to under-
stand their surroundings and to generate behaviour
plans. Curb detection is developing rapidly. Many
curb detection methods have been proposed.

Methods[1-2] of model curbs use parabolic curves
and random sample consensus[3](RANSAC) algorithm
to remove points that do not match the parabolic mod-
el. Ref. [1] employed three spatial cues to detect can-
didate curb points, i. e. , elevation difference, gradi-
ent value, and normal orientation. A particle filter was
also used to track curbs. Ref. [2] detected curb points
by using integral laser points ( ILP) features. In both
methods, parameters are preset and manual adjustment
is required.

Ref. [4] used a Gaussian differential filter to
process single line Lidar data. The method is simple
and fast, which is implemented in Defense Advanced
Research Projects Agency (DARPA) urban challenge
vehicles. Kalman filters[5] are also used to detect
curbs. Ref. [6] proposed curb detection and tracking
method, based on an extended Kalman filter using 2D
Lidar data. Other methods[7-9] use the probabilistic in-
teracting multiple model (IMM) algorithm, which con-
tains a finite number of Kalman filters, to determine

the curb existence. Filter-based methods also require
pre-selected thresholds and filter parameters.

Considering that curbs are not always continuous,
Ref. [10] proposed a sliding-beam model[11] to seg-
ment the road with intersections using Lidar data. This
method uses a series of beams emitted from selected
launching point, where beams are evenly spaced with a
given angular resolution. The sliding-beam model is
able to segment the current road and the road ahead by
moving the launching point. A probabilistic beam mod-
el based on 3D point cloud[12] is proposed to segment
the intersections. A machine learning method[13-14] is
used to classify road shapes using beam models.

Cameras and ultrasonic sensors are also used for
curb detection. Ref. [15] used an on-board camera to
detect curbs. Ref. [16] used multiple ultrasonic sen-
sors to implement a low-cost curb detection system. In
general, vision-based method would suffer from insuffi-
cient illumination and bad weather condition, while ra-
dar-based method has comparatively lower resolution.

In recent years, deep learning has been applied to
point cloud segmentation and classification, which
brings new ideas for curb detection. One way of point
cloud deep learning is to project a 3D point cloud onto
a 2D plane, and then process the plane as a 2D im-
age, for example, MV3D[17] and AVOD[18] . Curbs are
detected by deep learning on a 2D bird-eye’ s view of
3D Lidar point clouds[19-20] .
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In 2017, Refs[21,22] started the pioneering work
of PointNet and PointNet + + , which provide an end-
to-end way to classify and segment point clouds. A
PointNet ++ grasping approach[23] is proposed, which
can directly predict the poses, categories, and scores
(qualities) of all the grasps. Dynamic graph convolu-
tional neural network[24](DGCNN) is proposed, which
learns to semantically group points by dynamically up-
dating a graphic relation from layer to layer.

In this work, an end-to-end neural network (Ed-
geNet) is proposed for curb detection, which avoids
manual parameter adjustments and provides good seg-
mentation of curb points and non-curb points. The rest
of the paper is organized as follows. Section 1 intro-
duces training dataset preparation and the EdgeNet
structure. Section 2 performs contrast experiments using
PointNet, DGCNN and EdgeNet. Section 3 draws the
conclusions.

1　 Materials and methods

Since no open-source point cloud dataset with
curb labels is available, a curb annotation algorithm is
designed to annotate curb points for training EdgeNet.
In this dataset, data are obtained from the roads on
Baoshan campus of Shanghai University. The details of
the algorithm are illustrated in subsection 1. 1 - 1. 3.
The structure of EdgeNet is then introduced in subsec-
tion 1. 4.

1. 1　 Curb annotation algorithm
Fig. 1 shows that how Lidar lines intersect a curb.

Note that, when a Lidar line scans across a curb, the
distance from Lidar center to the curb is shorter com-
pared with that to the ground, i. e. , the point distance
L2(on the curb) is shorter than L1(on the ground) on
one scan line, as shown in Fig. 1(b) and Fig. 1(c).
In Fig. 1(b) and Fig. 1(c),‘a’ and ‘b’ are the two
intersecting end points. L1 and L2 denote the distance
from ‘a’ and ‘b’ to the coordinate origin, respective-
ly. The coordinate origin is the Lidar center (x direc-
tion points to the front; y and z axis are set up accord-
ing to the right-hand rule).

Fig. 1　 Diagrams of Lidar lines intersect a curb

According to the analysis above, a curb annota-
tion algorithm is designed based on the distance differ-
ence of point clouds. This algorithm detects the curb
points by looking for curb endpoints.

Fig. 2 shows the flowchart of the curb annotation
algorithm. The algorithm considers Lidar lines one by
one. First of all, cloud points of one Lidar line is pro-
jected onto XOY plane. For each point on the Lidar
line, the distance to the origin is calculated as shown
in Eq. (1). More important, distance variance of each
point is calculated as shown in Eq. (2). The maximum
and minimum of the distance variance are then selected
as two curb endpoints, where the points in between are
marked as curb points and the rest ones are non-curb
points.

di = x2
i + y2

i (1)

Δdi =
∑ j +k

n-j-k
dn

2k - di (2)

Let (xi, yi) represent the ith point coordinate in
XOY plane, where di represents the ith point distance
to the origin, and k represents the number of neigh-
bourhood points participating the distance variance cal-
culation.

Fig. 2　 Flow chart of the curb annotation algorithm

Fig. 3 is an example of the curb annotation algo-
rithm. Fig. 3(a) is one Lidar scan line. The points in
the black box are roughly curb points. Fig. 3(b) shows
the distance variance of each point on the line accord-
ing to Eq. (2). The maximum and the minimum are
marked out in Fig. 3(c) and they are selected as curb
end points, which are consistent with those in the
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black box in Fig. 3(a). After curb ends are found, all
the curb points are marked. For this example, the in-

dexes marked are 685 and 659, and k is selected as
30.

Fig. 3　 An example of the curb annotation algorithm

1. 2　 Algorithm applications in different scenarios
The algorithm performances are verified in differ-

ent scenarios. The road scenarios include straight
roads, curve roads, and intersections. Each scenario is
considered with and without obstacles.

Fig. 4 illustrates the curb annotation results.
Fig. 4(a) depicts results for a straight road. It is seen
that curb points have been detected correctly.
Fig. 4(b) shows results on a curved road. The results
validate algorithm robustness to different road shapes.
Fig. 4(c) shows the curb detection on intersections.
Lidar points are sparser in this case compared with
straight or curved roads. The algorithm still detects the
curb points well. Fig. 4(d) shows results for a road
with obstacles. It is seen that some points from the ob-
stacle are identified as curb points. The distance jump
from the ground to the obstacle is captured by the algo-
rithm while the real curb distance jump is missed.

In order to investigate the problem in Fig. 4(d),
Fig. 5(a) shows the XOY projection of a scan line
point cloud with obstacles, where obstacle points and
the curb points are in boxes. Fig. 5(b) is the distance
variance of each point calculated using Eq. (2). The
maximum and the minimum variance points are marked

Fig. 4　 The curb annotation results

out in circles in Fig. 5(b). Two circles on the left are
the maximum and the minimum variance curb points,
and two circles on the right are the maximum and the
minimum variance of this scan. According to the selec-
tion criteria, those two circles on the left are selected
instead of the right ones. This explains why the obsta-
cle points are mistaken as curb points.

Fig. 5　 The curb annotation results
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　 　 Once the reason is disclosed, distance variance
thresholds are set to avoid the influence of the variance
change from obstacles. Namely, variances beyond the
thresholds are disabled. Fig. 6(b) is the detection re-
sult according to this modification. It shows that the

curb points are properly selected in the presence of ob-
stacles. If the size of obstacles is large and curb points
are completely blocked by obstacles, a possible curb
portion may be left out.

(a) The detection results of the road with obstacles interference　 (b) The detection results after removing the obstacle points
Fig. 6　 Detection results of curb points

　 　 This algorithm is used for labelling. Besides this,
careful manual inspection is also applied. As a result,
a reliable training dataset is then built for neural net-
work training. The details on this dataset are explained
in the next section.

1. 3　 Dataset preparation
The curb annotation algorithm is used to classify

the curb points and non-curb points to generate data
samples. Let g = (g1, g2, …, gn) denote a set of de-
tected points, where gi = (p, n, l), i = 1, 2,…, n.
p = (px, py, pz) represents 3D coordinates of the de-
tected point. n = (nx, ny, nz) is the normal vector of
the detected point. l is the label of the detected point,
where ‘0’ represents non-curb points and ‘1’ repre-
sents curb points. Fig. 7 shows a few lines of the data
samples.

All the data are stored in H5 file format that is
compact for data storage and is commonly used for
point cloud datasets . The curb dataset built consists of

Fig. 7　 Data samples

25 × 200 × 4040 points, 10% of which are curb points
and the rest are non-curb points.

1. 4　 EdgeNet model
The purpose of EdgeNet is to discriminate curb

points from non-curb points. The backbone of the
PointNet model is adopted for EdgeNet, using shared
multi-layer perceptron (MLP) and max pooling to ac-
commodate the permutation of cloud points. Fig. 8 is
the EdgeNet architecture. An n × 6 point cloud is input

Fig. 8　 EdgeNet model structure
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to the neural network, which contains n number of
points and each point contains 6 features, as explained
in subsection 2. 3.

Firstly, n × 6 input points are passed through
shared MLPs with neurons numbers for each layer
defined as (64, 64), which outputs an n × 64 feature
matrix. Next, this n × 64 matrix is furtherly passed
through shared MLP with layer neurons numbers as
(64, 128, 1024), and generates an n × 1024 feature
matrix, which is considered as expanded local fea-
tures. Max pooling and average pooling are executed
afterwards, which generates two 1024-dimensional
global features. The next part is the fully connected
layer and outputs two 128-dimensional vectors. The
two 128-dimensional global features are concatenated
and a 256-dimensional global feature is obtained.

For the final segmentation part, the 256-dimen-
sional global feature is attached to each of the n × 1024
local feature, which generates a feature matrix with a
dimension of n × 1280. This n × 1280 matrix is then
passed through another shared MLPs. Finally, two seg-
mentations are generated for curb points and non-curb
points.

2　 Experiments and results

Comparison experiments are implemented in this
section. Results from PointNet and DGCNN are com-
pared with EdgeNet. All three networks are trained un-
der the same conditions.

2. 1　 Training configuration
Let Poverall denote the model overall detection accu-

racy as shown in Eq. (3). And curb detection accura-
cy Pedge is to evaluate the curb detection efficiency of
the networks, which is defined in Eq. (4).

Poverall =
Ckerb + Cnon-kerb

Npoints
(3)

Pedge =
Ckerb

Nkerb
(4)

In most of the cases, curb points are the minority
among all the points. For example, in the dataset,
curb points are about 10% whereas non-curb points are
about 90% . Curb detection accuracy Pedge is used to
depict how many curb points are correctly identified
among all the curb points instead of all the points.

2. 2　 Training results
EdgeNet training results are shown in Fig. 9 and

Fig. 10. And the training epoch is set as 50. Fig. 9
shows overall training accuracy Poverall and training loss.

It is seen that EdgeNet’s final overall accuracy Poverall is
around 98. 4% and training loss is around 0. 0417.

(a) EdgeNet overall detection accuracy Poverall

(b) EdgeNet training loss
Fig. 9　 EdgeNet training results

　 　 The curb detection accuracy Pedge of each training
cycle is shown in Fig. 10. It is seen that EdgeNet curb
detection accuracy is about 89. 4% .

Fig. 10　 EdgeNet curb detection accuracy Pedge

2. 3　 Comparison experiments
In this section, PointNet and DGCNN are trained

for comparison. Both PointNet and DGCNN are end-to-
end networks. DGCNN considers point segmentation
from the graph point of view. Training and testing are
performed under the same conditions for all three net-
works.

Table 1 shows the comparison training results. The
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comparison results include the training cycle number,
the training time in hours, the model overall accuracy
Poverall and the curb detection accuracy Pedge .

Table 1　 Comparison results for EdgeNet, PointNet and DGCNN

Model
Training
cycle

number

The
training
time / h

Model
overall

accuracy / %

Curb
detection

accuracy / %
EdgeNet 50 4. 77 98. 4 89. 4
PointNet 50 4. 27 97. 8 84. 7
DGCNN 50 9. 45 98. 3 88. 3

It is seen from Table 1 and Fig. 11 that EdgeNet is
better in the curb detection accuracy, which is about
5% higher than PointNet and about 1% higher than
DGCNN. Subsection 2. 4 compares the curb detection
results in different scenarios.

Fig. 11　 Curb detection accuracy Pedge

2. 4　 Test results in different scenarios
Figs12 - 15 show the comparisons results for four

different road scenarios, including straight roads,
curve roads, intersections and roads with obstacles.
Three methods (EdgeNet, PointNet and DGCNN), are
tested. Table 2 summarizes the detection accuracies of

Fig. 12　 Comparisons of curb detection results in a straight road

Fig. 13　 Comparisons of curb detection results in a curve road

Fig. 14　 Comparisons of curb detection results in an intersection

Fig. 15　 Comparisons of curb detection results in a road
with obstacles

these three methods in four scenarios, including Poverall

and Pedge . It is seen that all the methods can effectively
detect the curb points, and their Poverall accuracies are
above 95% . And EdgeNet Pedge accuracies are the
highest, which means its ability to detect curbs is the
best among them.
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Table 2　 Comparison results for different scenarios (% )

Model
Straight

Poverall 　 Pedge

Curve
Poverall 　 Pedge

Intersection
Poverall 　 Pedge

Obstacle
Poverall 　 Pedge

EdgeNet 98. 8　 96. 2 98. 9　 93. 2 99. 3　 97. 9 97. 8　 85. 1
PointNet 98. 3　 94. 2 98. 1　 86. 2 99. 0　 96. 9 95. 2　 81. 8
DGCNN 98. 9　 96. 1 98. 0　 82. 9 99. 2　 97. 9 98. 0　 82. 9

3　 Conclusions

In this work, an end-to-end deep learning network
(EdgeNet) is proposed for curb detection, which han-
dles Lidar cloud points directly. EdgeNet marks out
curb points in the output. A curb annotation algorithm
is also designed to generate dataset for training EdgeN-
et. Overall, this neural network method avoids tedious
manual parameter adjustments and provides good seg-
mentation of curb points and non-curb points under dif-
ferent road scenarios. The comparison results of Ed-
genet, PointNet and DGCNN are also provided. Com-
paratively, EdgeNet learns curb features for curb seg-
mentation better, which has been validated in the ex-
periments.
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