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Abstract
For high-speed mobile MIMO-OFDM system, a low-complexity deep learning (DL) based time-

varying channel estimation scheme is proposed. To reduce the number of estimated parameters, the
basis expansion model (BEM) is employed to model the time-varying channel, which converts the
channel estimation into the estimation of the basis coefficient. Specifically, the initial basis coeffi-
cients are firstly used to train the neural network in an offline manner, and then the high-precision
channel estimation can be obtained by small number of inputs. Moreover, the linear minimum mean
square error ( LMMSE) estimated channel is considered for the loss function in training phase,
which makes the proposed method more practical. Simulation results show that the proposed method
has a better performance and lower computational complexity compared with the available schemes,
and it is robust to the fast time-varying channel in the high-speed mobile scenarios.

Key words: MIMO-OFDM, high-speed mobile, time-varying channel, deep learning (DL),
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0　 Introduction
In the high-speed mobile scenarios supported by

5G or beyond 5G communication systems, such as
high-speed railway, ultra-high-speed rail railway, and
low orbit satellite, the higher mobile speed and larger
carrier frequency make the design of high-speed mobile
wireless communication systems more challenging. In
the high-speed mobile scenarios, the high-precision
channel estimation is important, which seriously affects
the performance of the systems[1-3] .

In recent years, the deep learning (DL) based
time-varying channel estimation has widely attracted in-
terest of many researchers. It mainly uses the neural
networks to learn the channel characteristics[4-8] . In
Ref. [4], a deep neural network (DNN) based chan-
nel estimation was given, where the historical channel
estimation and the whole received signal were collected
to train DNN. Although it has good performance, it has
too many input samples, which causes large computa-
tional complexity. Ref. [5] presented a channel esti-
mation scheme of jointing DL and decision-directed
(DD), where the channel estimation of pilot was used
as the input of the network to obtain the channel of da-

ta symbol, and then the high-precision channel estima-
tion can be obtained by the DD processing on the data
symbol. However, the combination of DL and DD will
bring high computational complexity. In Ref. [6], the
convolutional neural network ( CNN) and recurrent
neural network (RNN) were jointly used to estimate
the channel, while it has a complex network structure.
To avoid the performance loss caused by the random
initialization of network, a DL-based channel estima-
tion method with pre-training was given in Ref. [7],
which requires the pre-training and training in an off-
line manner to obtain the network model with optimal
parameters, but it also has high complexity. A RNN-
based scheme was discussed in Ref. [8], where a slid-
ing bidirectional gated recurrent unit is adopted to ex-
tract the features of input data, but the increase of the
length of sliding window leads to a sharp rise in com-
plexity, which makes the network difficult to converge.

Due to the complex network structure or excessive
input sample parameters, these existing algorithms in
Refs[4-8] had high computational complexity, which
limited their practical application. In addition, most of
previous DL-based techniques in Refs[4-8] adopted
the perfect and noiseless channel information during
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the training phase for the loss function, which will
make the existing DL-based algorithms impractical.

To solve the above problems, a low-complexity
channel estimation method is proposed for the MIMO-
OFDM system based on DL and basis expansion model
(BEM), which only uses the base coefficients and re-
ceives pilots to train the network. Moreover, the linear
minimum mean square error (LMMSE) based pre-pro-
cessed channel estimation ( not the true channel) is
considered in the training phase for the loss function.

The rest of this paper is organized as follows. Sec-
tion 1 introduces the signal model. Section 2 presents
the proposed method in detail. The simulation results
and conclusions are given in Section 3 and Section 4
respectively.

1　 Signal model

1. 1　 System model
Consider a MIMO-OFDM system with Nt transmit-

ting antennas and Nr receiving antennas, and Sm is the
mth transmitted OFDM block, i. e. ,

Sm = [S(1)T
m ,…,S(Nt)T

m ] T (1)
where S(nt)

m is mth transmitted OFDM symbol by the nth
t

transmitting antenna, S(nt)
m = [ S(nt)

m , …, S(nt)
m,1 , …,

S(nt)
m,(N - 1) ] T, S(nt)

m,k represents the transmitted complex
modulated data at the kth subcarrier during the mth

OFDM symbol by the nth
t transmitting antenna. In the

paper, S(nt)
m contains Np pilots and (N - Np) informa-

tion data, and N is the length of OFDM symbol. To
avoid interference, the pilots of different transmitting
antennas adopt the same design of those in the LTE
downlink system.

Assume that the duration of cyclic prefix is longer
than the maximum multipath delay of wireless channel,
and the perfect timing synchronization is considered at
the receiver. Therefore, the received signal during the
mth OFDM symbol in the frequency domain is

Ym =HmSm + Zm (2)
where Ym is the received signal in the frequency do-
main, Ym = [Y(1)T

m ,…, Y(Nr)T
m ] T, Y(nr)

m = [Y(nr)
m,0 ,…,

Y(nr)
m,N - 1] T, and Y(nr)

m,k represents received signal at the
kth subcarrier during the mth OFDM symbol of the nth

r

receiving antenna; Zm∈CC NNr × 1 denotes the zero-mean
additive complex Gaussian noise with the variance ma-
trix σ2

z INNr
; Hm is the NNr × NNt MIMO channel matrix

during the mth OFDM symbol, i,e. ,

Hm =
H(1,1)

m … H(1,Nt)
m
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H(Nr,1)

m … H(Nr,Nt)
m
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(3)

where H(nr,nt)
m is the N × N channel matrix during the

mth OFDM symbol between the nth
r receiving antenna

and the nth
t transmitting antenna, and

[H(nr,nt)
m ] i,i′ = 1

N∑
L-1

l = 0
e
-j2πi′l

N ∑
N-1

n = 0
h(nr, nt)
l,m (n)e

j2π( i′-i)n
N

(4)
where h(nr,nt)

l,m ( n) denotes the channel coefficient dur-
ing the mth OFDM symbol of the lth path between the nth

r

receiving antenna and the nth
t transmitting antenna.

1. 2　 BEM channel model
To reduce the number of the estimated parame-

ters, BEM scheme is usually adopted to approximate
the time-varying channel, which can greatly reduce
computational complexity[9-12] . By BEM, the channel
coefficients h(nr,nt)

l,m (n) in Eq. (4) can be written as

h(nr,nt)
l,m (n) = ∑

Q-1

q = 0
bn,qc(nr,nt)q,l,m + δ(nr, nt)

l,m (n) (5)

where Q represents the number of BEM coefficients,
bn,q is the nth element of qth basis function ( q = 0,1,
…, Q - 1), c(nr,nt)q,l,m is the basis coefficient of qth basis
function during the mth OFDM symbol of the lth path be-
tween the nth

r receiving antenna and the nth
t transmitting

antenna,δ(nr,nt)
l,m (n) is the modeling error.

To simplify the expression, the vector expression
form of Eq. (5) is

h(nr,nt)
l,m = Bc(nr,nt)

l,m + δ(nr,nt)
l,m (6)

where B is basis function matrix, [B] n,q = bn,q, and
h(nr,nt)

l,m = [h(nr,nt)
l, m (0),…,h(nr,nt)

l,m (N - 1)] T (7)
c(nr,nt)
l,m = [c(nr,nt)0,l,m ,…, c(nr,nt)Q-1,l,m] T (8)
δ(nr,nt)
l,m = [δ(nr,nt)

l,m (0),…, δ(nr,nt)
l, m (N - 1)] T (9)

Using BEM channel modeling and ignoring the
BEM modeling error, the received signal in Eq. (2)
can be rewritten as

Ym =Γmcm + Zm (10)
where cm = [c(1,1)T

m ,…,c(1,Nt)T
m ,…,c(Nr,1)T

m ,…,
c(Nr,Nt)T
m ] T, and

c(nr,nt)
m = [c(nr,nt)

0,m ,…, c(nr,nt)
L-1,m ] T,

Γm = INr 􀱋 [Γ(1)
m ,…,Γ(Nt)

m ],
Γ(nt)

m = [γ(nt)
0,m ,…,γ(nt)

L-1,m] / N,
　 γ(nt)

l,m = [M0diag{S(nt)
m } fl,…,MQ-1diag{S(nt)

m } fl]
(11)

where fl is the lth column of the N × L Fourier transform
matrix F, Mq is a N × N basis function matrix, i. e. ,

[F] k,l = e - j2πklN

[Mq] k,k′ = ∑
N-1

n = 0
bn,qe

j2π(k′-k)n
N

(12)
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2　 Proposed channel estimation method

In the field of DL, back propagation (BP) neural
network is a multi-layer feed forward neural network,
which is trained by the error back propagation algo-
rithm. BP neural network has a strong nonlinear map-
ping ability and a wide range of applications[13-15] .
Considering the complex correlation of data in high-
speed mobile scenario, BP neural network is employed
to estimate time-varying channel in the proposed meth-
od. In the section, the framework of BP neural network
is briefly introduced at first, and then the proposed
method is given in detail.

2. 1　 BP neural network
In the proposed method, a single hidden layer BP

neural network is adopted, which is shown in Fig. 1. It
is assumed that BP neural network includes D neurons
in input layer, E neurons in hidden layer and R neu-
rons in output layer. The nonlinear mapping between
input and output of the neural network can be ex-
pressed as

g = Ф(x) = f (2)( f (1)(x;Θ1);Θ2) (13)
where x∈RR i and g∈RR j represent the input and output
of the network respectively; Ф(·) is the nonlinear
operation of the neural network; Θ1 and Θ2 denote the
sets of learning parameters between the hidden layer
and the output layer; f (1)(·) and f (2)(·) repre-
sent the activation functions of the hidden layer and
output layer respectively, which are given as

f(1)(x) = 1 / (1 + e - x) , f (2)(x) = max{0, x}
(14)

Fig. 1　 The structure of BP neural network

2. 2　 BP-based channel estimation with BEM
The proposed method is mainly divided into two

phases: training phase and estimating phase. Based on
the received pilot signal, the base coefficient estimation
is firstly obtained. Then, the basis coefficient estima-
tion and the received pilot are employed to construct
samples to train BP neural network in an offline man-

ner. Finally, an accurate estimation of the current
channel can be directly obtained by the trained net-
work.

Since the process of channel estimation between
each transmitting and receiving antenna is the same
and the pilots at different antennas are orthogonal, the
index of the antenna ( nt, nr) will be omitted in the
following.

(1) Basis coefficient estimation
As the polynomial BEM (P-BEM) can effectively

overcome the Doppler leakage and the channel edge
model error caused by CE-BEM[12], the time-varying
channel will be modeled by P-BEM in the proposed
method, whose qth basis function can be written as

bq = [(0 - N / 2) q,…, (n - N / 2) q,…,
(N - 1 - N / 2) q] T (15)

By using the received pilot signal and least square
(LS) estimation, the basis coefficient estimation of the
mth OFDM symbol can be obtained as

ĉm = [(􀭺Γm)H􀭺Γm] -1(􀭺Γm)H 􀭵Ym (16)
where 􀭵Ym is the received pilot signal during the mth

OFDM symbol in frequency domain, and
􀭺Γm = 1

N [􀭵γ0,m,…,􀭵γL-1,m] (17)

where 􀭵γl,m = [M0diag{􀭰sm} fl,…,MQ-1diag{􀭰sm} fl],
and 􀭵Sm is the transmitted pilot symbol in frequency do-
main.

(2) Training phase
Construct training sample sets by the basis coeffi-

cient estimation in Eq. (16) and the received pilots,
i. e. ,
um = {(x(1)

m ,g(1)
m ),…,(x(v)

m ,g(v)
m ),…,(x(V)

m ,g(V)
m )}
(18)

where V is the number of training samples, x(v)
m =

[ 􀭵Y(v)
m ,ĉ(v)

m ] T, x(v)
m is the vth input sample of the mth

OFDM symbol, and g(v)
m is the vth output sample.

In the existing algorithms[4-8], g(v)
m is the true

channel for the loss function lloss, i. e. , g(v)
m = H(v)

m .
Since the true channel is unkown in practice, it is not
appropriate to use the true channel as the training tar-
get of neural network. Therefore, the pre-processed
channel 􀭾Hm

[16] will be adopted as the training target of
loss function in the proposed method, i. e. , g(v)

m =
􀭾Hm . Here, LMMSE method will be used to obtain 􀭾Hm,
and

lloss = 1
V∑

V

v = 1
‖Ĥ(v)

m - g(v)
m ‖2

= 1
V∑

V

v = 1
‖Ĥ(v)

m - 􀭾H(v)
m ‖2 (19)

Since the real-valued neural network is relatively
simple and easy to implement, the real neural network
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is used to estimate the channel. Therefore, the training
sample in Eq. (18) can be rewritten as

um = {Ξ(x(1)
m ,g(1)

m ),…, Ξ(x(v)
m ,g(v)

m ),…,
Ξ(x(V)

m ,g(V)
m )} (20)

where Ξ(·) represents operation of converting data
in complex domain into real domain, and Ξ(x) = [Re
(x), Im(x)].

Based on the training sample sets given in
Eq. (20), one can initialize the parameters of the net-
work randomly and update the network parameters with
the quantized conjugate gradient descent scheme, and
then the potential relationship between the input and
output can be learned by adjusting the network parame-
ters.

(3) Estimating phase
In the estimating phase, based on the received pi-

lots and the basis coefficient estimation, the trained BP
neural network is used for real-time channel estima-
tion. Assume that the input of the network is

Wm = [Ξ( 􀭵Ym),Ξ( ĉm)] T (21)
Then, the channel estimation during the mth

OFDM symbol can be obtained as
ĝm = Φ(Wm) (22)
Finally, the channel estimation in the frequency

domain during the mth OFDM symbol is
Ĥm = Ψ( ĝm) (23)

where Ψ(·) represents reverse operation of conver-
ting data in real domain into complex domain.

2. 3　 Complexity analysis
Table 1 gives the comparison of computational

complexity of different channel estimation methods. In
Table 1, results for the LS estimator with linear inter-
polation, the DNN-based scheme with two hidden layers
in Ref. [4], and the DL-based channel estimation with
pre-training in Ref. [7] are also given. The number of
floating point operations (FLOPs) is considered as the
criterion of complexity. Moreover, only the complexity
of channel estimation between single-transmit and sin-
gle-receive antennas is given. For multi-antenna sce-
narios, it only needs to multiply by the number of
transmitting and receiving antennas based on the sin-
gle-antenna scenario.

Fig. 2 shows the computational complexity caused
by the initial estimation and offline training of different
channel estimation methods. In Fig. 2, N = 128, Np =
32, E = 80, R = 256, Q = 4, L = 5. From Table 1
and Fig. 2, compared with the DL-based channel esti-
mation, LS has lowest computational complexity. Since
the two training processes (i. e. , pre-training and train-
ing) are adopted and the input is too much in Ref. [7],

its complexity is highest. Ref. [4] employed the DNN
with two hidden layers and larger inputs, while the sin-
gle hidden layer BP and basis coefficient estimation is
used by the proposed method. Therefore, the proposed
method has lower complexity compared with the
schemes in Ref. [4] and Ref. [7].

Table 1　 The comparison of computational complexity
Estimator Computational complexity (FLOPs)

LS 　 6N - 2Np ≈22 Np

Ref. [4]
initial estimation 6N - 2Np≈22 Np

offline　 training V(4NE + ER + E2)
online　 estimation 4NE + ER + E2

Ref. [7]
initial estimation 8Np

offline　 training V(4NE + 2ER + 8NPE)
online　 estimation 4NE + 2ER + 8NPE

Proposed
method

initial estimation 2 NP(2Q + 1)
offline　 training V[2(LQ + NP)E + ER]
online　 estimation 2(LQ + NP)E + ER

where 2(LQ + Np) < 4N.

Fig. 2　 The computational complexity contains initial estimation
and offline training of different channel estimation meth-
ods

3　 Simulation results

In this section, the simulation results are given for
the proposed algorithm. The simulation parameters are
given as: a MIMO-OFDM system has two transmitting
antennas and two receiving antennas, the length of
OFDM symbol is 128, and the number of pilots is 32.
The carrier frequency is 2. 35 GHz, and the subcarrier
spacing is 15 kHz. The maximum mobile velocity is
500 km / h, and the Ricean channel with five paths is
adopted, and Ricean factor is 5. In the simulation, the
number of BEM coefficients is 4, the number of neu-
rons in hidden layer is 80, and the network is trained
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with a range of signal noise ratio ( SNR). Moreover,
the LS with linear interpolation, the DNN-based scheme
with two hidden layers in Ref. [4] and Ref. [7] are al-
so simulated.

Fig. 3 shows the mean square error (MSE) per-
formance of the proposed method with different num-
bers of training samples. It can be seen from the Fig. 3
that as the number of training samples increases, the
estimation performance of the proposed method also im-
proves. When the number of the training samples is
larger than 2000, the estimation performance improves
very little and tends to be stable.

Fig. 3　 MSE of proposed method with different numbers of samples

Table 2 shows the time required to train the net-
work of the proposed method using different numbers of
training samples. From Table 2, one can see that the
more training samples, the more time is required to train

the network, which means the computational complexi-
ty is higher. Therefore, the number of training samples
should be a compromise between estimated performance
and complexity in the practical. In following simula-
tions, the number of training samples is set as 1000.

Table 2　 Training time under different numbers of samples
Number of training

samples Training time / s

500 84. 396 679
1000 214. 725 877
2000 396. 254 342
3000 661. 830 811

Fig. 4 gives the channel tracking curve by using
different channel estimation methods, where SNR is
10 dB. Compared with LS estimator and Ref. [4], the
Ref. [7] and the proposed estimator exhibit more accu-
rate channel tracking. Fig. 5 shows the MSE perform-
ance of different channel estimation methods. As shown
in Fig. 5, the DL-based estimation algorithms signifi-
cantly outperform LS estimator. Since the historical
channel estimation with estimation error is employed in
Ref. [4], its MSE performance is worse than those of
proposed method and Ref. [7], especially it has an er-
ror floor in the region of the high SNRs. Moreover, the
performance of the proposed method is slightly worse
than that of the Ref. [7], that is because Ref. [7]
used the dual training processing and input more train-
ing sample parameters, such as the historical channel
estimation, the received signal, and the current channel

Fig. 4　 Channel tracking curve by using different channel estimation methods
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Fig. 5　 MSE performance of different channel estimation methods

estimation, while the proposed method only uses one
training processing and inputs the basis coefficient esti-
mation of the current channel and the received pilot
signal. In addition, as the SNR increases, the per-
formance of the proposed method is getting closer to
that of Ref. [7].

Fig. 6 shows the MSE performance of different
schemes under the different Doppler shifts, where SNR
is 20 dB. It can be seen that the MSE performance will
be deteriorated as the Doppler shift increases, but the
DL-based schemes are still robust under the high
Doppler shift. With the increase of Doppler shift, the
proposed method has almost the same estimation per-
formance as that in Ref. [7], especially the proposed
method only uses little inputs.

Fig. 6　 MSE of different schemes under the different
Doppler shifts

Fig. 7 shows the MSE performance of proposed
method with different training goals. In Fig. 7, ‘ true
channel’ is the method adopts the true channel as the
training goal in the training phase for the loss function,

and ‘LMMSE estimated channel’ indicates that the es-
timated channel by LMMSE is used as the training goal
in the training phase for the loss function. As shown in
Fig. 7, the proposed method still has a good perform-
ance when the LMMSE estimated channel is used as
the training goal in the training phase.

Fig. 7　 MSE performance of proposed method with
different training goals

4　 Conclusion

A DL-based time-varying channel estimator with
BEM is designed for the MIMO-OFDM system. The
proposed method not only has better performance, but
also has low complexity. Moreover, the LMMSE esti-
mated channel (not the true channel) is employed for
the loss function in training phase, which makes the
proposed method more practical.
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