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Abstract
Lane detection is a fundamental necessary task for autonomous driving. The conventional meth-

ods mainly treat lane detection as a pixel-wise segmentation problem, which suffers from the chal-
lenge of uncontrollable driving road environments and needs post-processing to abstract the lane pa-
rameters. In this work,a series of lines are used to represent traffic lanes and a novel line deforma-
tion network (LDNet) is proposed to directly predict the coordinates of lane line points. Inspired by
the dynamic behavior of classic snake algorithms, LDNet uses a neural network to iteratively deform
an initial lane line to match the lane markings. To capture the long and discontinuous structures of
lane lines, 1D convolution in LDNet is used for structured feature learning along the lane lines.
Based on LDNet, a two-stage pipeline is developed for lane marking detection: (1) initial lane line
proposal to predict a list of lane line candidates, and (2) lane line deformation to obtain the coordi-
nates of lane line points. Experiments show that the proposed approach achieves competitive per-
formances on the TuSimple dataset while being efficient for real-time applications on a GTX 1650
GPU. In particular, the accuracy of LDNet with the annotated starting and ending points is up to
99. 45% , which indicates the improved initial lane line proposal method can further enhance the
performance of LDNet.

Key words: autonomous driving, convolutional neural networks (CNNs), lane detection, line
deformation

0　 Introduction

With the rapid development of high-precision op-
tics and electronic sensors, and computing capability,
autonomous driving has received much attention in both
academy and industry. In these systems, camera-based
lane detection plays a critical role in the semantic un-
derstanding of the world around a vehicle[1-2] . It is
challenging to perform accurate lane detection for the
following reasons. First, lanes are usually thin and
long curves travelling through the entire scenario, and
have diverse patterns, such as solid, broken, splitting
and merging. Furthermore, the driving road scenarios
are complex, highly variable, and uncontrollable due
to lighting / weather conditions.

Traditional methods on lane detection adopt the
hand-crafted features to identify lane markings. Fea-
tures like color, intensity, gradient, edge, geometric
shapes, and texture are widely used to describe the
segments of lane markings. As these hand-crafted fea-

tures are usually based on strong assumptions ( e. g. ,
flat ground-planes) and lack high-level semantic infor-
mation, these traditional methods have difficulty in de-
tecting the lanes in complex situations. Thanks to the
strong high-level semantic representation learning abili-
ty, recent convolutional neural networks (CNNs) have
pushed lane detection to a new level. Most of these
methods treat lane detection as a two-stage semantic
segmentation task. In the first stage, a network is de-
signed to classify each pixel in an image if it belongs to
one of lanes or not. Post-processing in the second stage
usually uses some curve-fitting strategy to filter the
noise points or cluster the intermittent lane segments.
Although the state-of-the-art methods already achieve
great progress in lane detection, there are still some
important and challenging problems to be addressed.
Firstly, the segmentation-based methods with square
shape kernels are hard to capture the thin and long
curve property of lanes[3-5] . Due to ignoring the high-
level global semantic features ( or contextual informa-
tion), these methods often suffer from discontinuous
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and noisy detection results. Secondly, the desired out-
put for autonomous driving is control-related parame-
ters, i. e. , vehicle lateral offset, turning angle and
curvature. However, the outputs of most CNN-based
lane detection methods are pixel-level lane instance
masks in the image view. To fill this gap, some post-
processing procedures are required, e. g. , inverse per-
spective mapping (IPM), and lane model fitting[6] .

In this paper, a structure-focused lane marking
detection network, named line deformation network
(LDNet), is proposed to address the problems. LDNet
can better capture the long and discontinuous structures
of lane lines and predict the coordinates of lane line
points in an end-to-end manner. Inspired by the dy-
namic behavior of previous snake methods[7-10], LDNet
takes initial lane lines as input and deforms them by
regressing vertex-wise offsets. Pick Np = 64 points
along each line as the features of the line and apply the
standard 1D convolutions on the point features. The 1D
convolution kernel not only captures the features of
each point but also the relationship from neighboring
points. This enhances feature representation and focu-
ses on learning of the long and discontinuous structures
of lane markings. Based on LDNet, a pipeline is de-
veloped for lane detection. Given a set of initial lane
lines, LDNet iteratively deforms them to match the lane
markings and obtain the coordinates of lane line points.
In this paper, the straight line between the starting
point and ending point of each lane is used as its initial
lane line. Define the starting point of one lane as the
lane point closest to the bottom boundary of the image.
As the starting points of different lanes in an image are
usually far apart from each other according to the traffic
rules, the heat map based keypoint estimation method
is used for starting points detection. Different from the
starting points, the ending points are converged togeth-
er around the farthest point of the visible lane. Inspired
by VPGNet[6] and CHEVP[8], which use vanishing
point as a global geometric context to infer the location
of lanes, a vanishing point prediction task is designed
to estimate the locations of the ending points.

In summary, this work has the following contribu-
tions.

(1) A novel LDNet is proposed, which focuses on
the long and discontinuous structure learning of lane
markings and directly predicts the coordinates of lane
line points.

(2) Based on LDNet, the lane detection method
is implemented by proposing the initial lane with two
branches, in which heat map and probability map are
used to predict lane lines’ starting point and ending
points, respectively.

(3) The proposed method achieves comparable
performance with state-of-the-art methods in terms of
both accuracy and speed on the TuSimple dataset. In
particular, the accuracy of LDNet with ideal starting
and ending points is up to 99. 45% , which indicates
improved initial lane line proposal method can further
enhance the performance of the method.

1　 Related work

1. 1　 Deep learning based lane detection
Due to the strong representation learning ability,

CNN based approaches have been used for lane mark-
ing detection. VPGNet[6] proposed a multi-task net-
work guided by vanishing points for lane and road
marking detection. LaneNet[11] used a lane edge pro-
posal network for pixel-wise lane edge classification,
and used a lane line localization network in stage two
for lane line localization prediction. Neven et al. [12]

regarded lane detection as an instance segmentation
problem, in which a embedding branch disentangled
the segmented lane pixels into different lane instances.
Zhang et al. [13] established a framework that accom-
plished lane boundary segmentation and road area seg-
mentation simultaneously. Ko et al. [14] first obtained
the exact lane points by a confidence branch and an
offset branch, then clustered the generated points by
the point cloud instance segmentation method. To get
rid of the perspective effect in the image, the inverse
perspective mapping (IPM) was used by several meth-
ods[11,15-18] . Although these methods already achieved
great progress in lane detection, there are still some
important and challenging problems to be addressed.
These methods often suffer discontinuous and noisy de-
tection results due to the thinness of traffic lanes[19-22] .
Furthermore, post-processing is needed to filter the
noise points and get the lane line information from pix-
el-level segmentation results[6,12,14,18] .

To deal with the first problem, several schemes
have been proposed to capture richer scene features (or
contextual information). Zhang et al. [23] added one
convolutional gated recurrent unit (ConveGRU) in the
encoder phase to learn more accurate low-level fea-
tures. Hou et al. [24] adopted a self-attention distillation
(SAD) approach to allow the network to exploit atten-
tion maps within the network itself during the training
stage. Zou et al. [25] combined CNN and recurrent neu-
ral network (RNN) to infer lanes from multiple frames
of a continuous driving scene. SALMNet[4] used a se-
mantic-guided channel attention module to enhance
features representation to the structures of lane mark-
ings and suppresses noisy features from the back-
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ground, and a pyramid deformable convolution module
to capture the structures of long and discontinuous lane
markings. Message passing between pixels can help
capture spatial structures of objects having long struc-
ture region and could be occluded. SCNN[3] and RE-
SA[20] utilized slice-by-slice convolutions to enable
message passing between pixels across rows and col-
umns in the feature map. Though message passing im-
proves the performance of segmentation results, the
dense pixel-wise communication-based message passing
required more computational cost. To collect more in-
formation concerning a whole lane boundary, Spin-
Net[26] designed a novel convolution layer to allow the
convolutions to be applied in multiple directions. Line-
CNN[27] utilized a line proposal unit (LPU) to propos-
al potential lanes, which forced the system to learn the
global feature representation of the entire traffic lanes.

To avoid post-processing and predict the coordi-
nates of lane line points directly, Chougule et al. [19]

treated the lane detection and classification problems as
CNN regression task, which relaxed per-pixel classifi-
cation requirement to a few points along lane bounda-
ry. Qin et al. [5] and Yoo et al. [28] translated the lane
detection problem into a row-wise classification task
using global features. PRNet[22] and PolyLaneNet[21]
are proposed to use polynomial curves to represent traf-
fic lanes and then use a polynomial regression network
to predict the polynomial coefficients of lanes. Gan-
sbeke et al. [29] proposed a deep neural network that
predicted a weights map like a segmentation output for
each lane marking and used a differentiable least-
squares fitting module to directly regress the lane pa-
rameters. Instead of representing traffic lanes by
curves, PointLaneNet[30] considered lane line as a se-
ries of points, and proposed the ConvLaneNet network
to predict the lane line offset, start point and confi-
dence. RONELD[31] first extracted lane points from the
probability map outputs, followed by detecting curved
and straight lanes before using weighted least squares
linear regression on straight lanes to fix broken lane ed-
ges resulting from fragmentation of edge maps in real
images.

1. 2　 Snake algorithms
The proposed method is inspired by the dynamic

behavior of classic snake algorithms[7], which have
been used for contour-based instance segmentation.
Snake algorithms treat the coordinates of the vertices as
a set of variables. By applying proper forces at the con-
tour coordinates, the algorithms could push the contour
to the object boundary. The implementation of these al-
gorithms contains two stages. Firstly, the contour verti-

ces for image representation are initialized. Then, the
contour is deformed to the object boundary by learning-
based methods. Recently, Ling et al. [9] followed the
pipeline of traditional snake algorithms and used a
graph convolutional neural network to predict vertex-
wise offsets for contour deformation. Instead of treating
the contour as a general graph, deep snake[10] lever-
aged the cycle graph topology and introduced the circu-
lar convolution for efficient feature learning on a contour.
Wang et al. [8] proposed a B-snake based lane model to
describe a wider range of lane structure. In this work,
a learning-based snake algorithm LDNet is implemen-
ted to deform the initial lane line to match the lane
markings. As LDNet utilizes the features along the lane
line to directly predict the coordinates of lane line
points, it can solve the two problems mentioned above.

2　 Methodology

In this paper, a novel lane detection is performed
by deforming the initial lane lines to match lane mark-
ings in an image. Specifically, LDNet takes initial lane
lines as input and predicts per-vertex offsets pointing to
the lane boundary. The vertex offsets are predicted
based on the features of lane line points extracted from
the input image with a CNN backbone.

2. 1　 Lane representation
In general, lanes are drawn on roads with a shape

of line or curve. It is improper to represent a lane with
circular contour, which is used to represent compact
object[9-10] . A line or curve can be accurately repre-
sented by a series of points, which can be obtained by
using spline interpolation between points. A lane line
can be determined by the following elements: starting
point, ending point, and lane line center points. To
facilitate the operation of LDNet, the number of lane
points are kept fixed. As a result, the lane lines in an
image are transformed into a learnable structured repre-
sentation, as illustrated in Eq. (1).

lane1 = [(x,y) 1,1,(x,y) 1,2,…,(x,y) 1,N]
lane2 = [(x,y) 2,1,(x,y) 2,2,…,(x,y) 2,N]
　 　 　 　 　 　 …
laneL = [(x,y) L,1,(x,y) L,2,…,(x,y) L,N]

ì

î

í

ï
ï

ïï

(1)
where N is the number of points for each lane line, L is
the number of lanes in an image, and (x, y) is the co-
ordinate of a lane point.

Fig. 1 illustrates the overall network architecture of
the work. It contains three modules: (1) a feature ex-
traction backbone (subsection 2. 2) that takes a single
image as input and provides shared intermediate feature
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Fig. 1　 An overview of the network architecture

maps for the successive modules; (2) an initial lane
proposal module ( subsection 2. 3) which outputs the
candidate initial lane lines; (3 ) the learning-based
snake algorithm module LDNet (subsection 2. 4) which
predicts vertex-wise offsets between initial lane line
points and their target points. The output of the net-
work are the coordinates of lane line points. The sys-
tem is fully end-to-end trainable with stochastic gradi-
ent descent.

2. 2　 Backbone
The function of the backbone network is to extract

semantically meaningful features for the successive
modules. Choose stacked hourglass network as the back-
bone for its efficiency and effectiveness. The input ima-
ges with size 512 × 256 RGB are resized to a smaller
size (e. g. , 64 × 32) by the resizing layer, which con-
tains a sequence of convolution layers. The resized im-
age is fed to multiple hourglass modules, each inclu-
ding one encoder, one decoder, and two output bran-
ches. The intermediate predictions and features output
from the previous hourglass stage are integrated togeth-
er to implement intermediate supervision. The total loss
of the network is the sum of the loss on those hourglass
modules.

2. 3　 Initial lane proposal module
Evidently, lane lines start from the boundary (bot-

tom or left or right) of an image and converge together
due to the perspective effect. Although lane line is not
always straight, the straight line between its starting
point and ending point could be used to represent its
direction and range. Here the straight line between the
starting point and ending point of each lane is used as
its initial position. The lane line initialization task is
transformed into starting points and ending points de-
tection problems. As the starting points of different
lane lines in an image are usually far apart from each
other, the heatmap based keypoint estimation method
can be used to predict them.

The ending points of traffic lanes in an image are

often close to each other due to perspective projection,
it is difficult to accurately localize them by the same
method of starting point detection. Inspired by VPG-
Net[6] and CHEVP[8], which use vanishing point as a
global geometric context to infer the location of lanes, a
vanishing point prediction task is designed to estimate
the locations of the ending points. As shown in Fig. 1,
these two subtasks are implemented by two branches
which share the input features. The pseudocode of the
initial lane line proposal module is given in Algorithm 1.

To predict starting points, a network head that
consists of two 1 × 1 convolution layers is designed to
transfer the feature maps into 1 channel heatmap.
Peaks in this heatmap correspond to lane starting
points. Training the starting point prediction branch
follows Law and Den[32] . For each ground truth starting
point p, a low-resolution equivalent p̂ = ⌊p / S」 is com-
puted, where S is the output stride. Then all ground
truth starting points are splatted onto a heatmap by
using a Gaussian kernel Yxy,which is defined in Eq. (2).

Yxy = exp( -
(x - p̂x) 2 + (y - p̂y) 2

2σ2
p

) (2)

where σp is an object size-adaptive standard deviation.
At inference time, the non-maximum suppression
(NMS) is first used to remove duplication around cor-
rect predictions. As the number of lanes is not greater
than 5, the peaks in the heatmap are extracted and the
just top 5 peaks are kept. Let ps be the set of 5 detec-
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ted peak points ps = {(xl, yl)} 5
l = 1 . Each peak point

location is given by an integer coordinate. The point
values Yxlyls is used as the scores {sl} 5

l = 1 of its detection
confidence. Furthermore, only peak points whose
scores are larger than threshold T can be considered as
valid lane starting points. The lane number L is deter-
mined by the number of detected starting points.

For ending point location prediction, a network
head is designed that consists of two 1 × 1 convolution
layers to transfer the feature maps into 1 channel prob-
ability map and estimate the location and width of van-
ishing point in the input image. Firstly, the lane point
map is extracted by picking points more than an adap-
tive confidence threshold T. This confidence threshold
is selected based on the confidence point in the proba-
bility map outputs. Then, the lane point map is scanned
from the first row. Here the width between the first and
the last lane line points is defined as the range R i of the
lane points in row i. After the first row with lane points
is found, assume that this row is the vanishing row
where lanes disappear. For robustness and to exclude
low-confidence noise, its range Rv is compared with the
rang of its subsequent row Rs . If Rv < Rs / 2, the subse-
quent row is set as the vanishing row, and its range is
compared with its subsequent row. This process is re-
peated until Rv ≥ Rs / 2 and the estimated ending points
are generated, as defined in Eq. (3).

Pe = { Pel + ( l - 1)
Rv

L - 1}
L
l = 1 (3)

where Pe1 is the first lane point of vanishing row. To
generate the initial lane lines, it is necessary to sort the
detected starting points in counterclockwise to prevent
the initial lane lines from crossing each other. Finally,
the generated lane candidates can be expressed as
{ lanel} L

l = 1 = { Psl, Pel} L
l = 1 .

2. 4　 Learning-based snake algorithm module
The snake algorithm module takes a list of candi-

date lane lines along with the feature maps of the image
from the backbone network as the input and predicts

the per-point offsets pointing to the lane boundary. For
each candidate lane line, the feature vector for each
lane line point (x, y) l,n is first constructed. The input
feature fl,n for a point (x, y) l,n is the concatenation of
learning-based features and the point coordinate:
[F((x, y) l,n); (x, y) l,n] where F denotes the fea-
ture maps. The feature maps F are obtained by apply-
ing a CNN backbone on the input image as shown in
Fig. 1. The feature for one point is computed using the
bilinear interpolation at the vertex coordinate
(x, y) l,n . The appended point coordinate is used to
encode the spatial relationship among lane points.

The concatenated feature vectors are passed into
LDNet, which implements the learning-based snake al-
gorithm. LDNet first predicts offsets based on the ini-
tial lane line points and then deforms the initial lane
lines by point-wise adding the offsets to their point co-
ordinates. The deformed lane lines can be used for the
next iteration. The impact of inference iterations will
be studied in subsection 3. 2.

Following the idea from deepsnake[10], the LDNet
consists three parts: a feature learning block, a fusion
block, and a prediction head, as shown in Fig. 2. To
adapt to the long and discontinuous structure of lane
lines, the circular convolution of deep snake is re-
placed by a 1D convolution. The feature learning block
is composed of 8 ‘Conv1d-Bn-ReLU’ layers and uses
residual skip connections for all layers. In all experi-
ments, the kernel size of 1D convolution is fixed to be
nine. The fusion block aims to fuse the information
across all lane points at multiple scales. It concate-
nates features from all layers in the feature learning
block and forwards them through a 1 × 1 convolution
layers followed by max pooling. The fused feature is
then concatenated with the feature of each point. The
prediction head applies three 1 × 1 convolution layers
to the point features and outputs point-wise offsets be-
tween initial lane points and the target points, which
are used to deform the initial lane.

Fig. 2　 Architecture of LDNet
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3　 Experiments
In this section, the accuracy and efficiency of the

method are demonstrated with extensive experiments.
The following sections mainly focus on three aspects:
experimental settings, ablations studies of the method,
and results on TuSimple dataset.

3. 1　 Implementation setup
In the experiments, the input images are resized

to 512 × 256 during the data augmentation process.
Then the resized image is compressed into smaller size
data by a resizing layer, which contains a sequence of
convolution layers and max pooling layers. The out
channel of the resizing layer is 128.

Training strategy. For starting points detection, the
training objective is a penalty-reduced pixel-wise logis-
tic regression with focal loss[32]:

Lk = - 1
Ns
∑ xyc

(1 - Ŷxyc) α log( Ŷxyc)　 　 Yxyc = 1

(1 - Yxyc) β( Ŷxyc) α·log(1 - Ŷxyc)
　 　 　 　 　 　 　 　 　 　 　 otherwise

ì

î

í

ïï

ïï

(4)
where α and β are hyper-parameters of the focal loss,
and Ns is the number of starting points in image. α = 2
and β = 4 are used in all experiments, following Ref. [33].

For the probability map prediction, the loss func-
tion for confidence branch is used, which was proposed
by Ko et al. [14] as shown in Eq. (5).

Lp = 1
Ne
γe∑ g∈Ge

(g∗
c - gc)2 + 1

Nn
γn∑ g∈Gn

(g∗
c - gc)2

(5)
where Ne, Nn denote the number of grids that a point
exists or not, G denotes a set of grids, gc denotes a
confidence output of the grid, g∗

c denotes the groundt-
ruth, and γ denotes each coefficient.

For the interactive lane deformation, the loss
function is defined in Eq. (6).

Liter = 1
N∑

N

i = 1
l1(xi - xgt

i ) (6)

where l1 is the smooth L1 loss defined in Ref. [34]; xi

is the deformed lane point and xgt
i is the ground-truth

boundary point.
The total loss Ltotal equals to summation of the

above three loss terms, and the whole network is
trained by end-to-end procedure using the following to-
tal loss:

Ltotal = λkLk + λpLp + λ iterLiter (7)
where λk, λp and λ iter are loss coefficients. Set λk =
0. 5, λp = 1, and λ iter = 10 in the experiments. Adam
with weight decay 1e-5 is used as the optimizer to train
the model and the learning rate is set to be 1e-3[35] .

The total number of training epochs is 500 for TuSimple
dataset. All models are trained with PyTorch[36] .

Dataset. To evaluate proposed approach, TuSim-
ple lane dataset[38] is used to conduct the experiment.
Tusimple dataset is collected with good and medium
weather conditions in highways. It consists of 3626
training and 2782 testing images. They are recorded on
2-lane / 3-lane / 4-lane or more highway roads, at differ-
ent daytime. For training, randomly apply simple data
augmentation methods like flip, translation, and
adding shadow, which contribute to a more comprehen-
sive dataset.

Evaluation metrics. The main evaluation metric of
TuSimple is accuracy, which is calculated as the aver-
age correct number of points per image. The accuracy
is defined as the average correct number of points per
image.

accuracy =
∑ clip

Cclip

∑ clip
Sclip

(8)

In which Cclip is the number of lane points predic-
ted correctly and Sclip is the total number of ground truth
in each clip. A point is correct when the difference be-
tween the ground-truth and predicted point is less than
a certain threshold. Together with the accuracy, they
also provide the false positive and false negative
scores.

FP =
Fpred

Npred
(9)

FN =
Mpred

Ngt
(10)

where, Fpred is the number of wrongly predicted lanes;
Npred is the number of predicted lanes;Mpred is the num-
ber of missed ground-truth lanes and Ngt is the number
of all ground-truth lanes.

3. 2　 Ablation study
Effectiveness of LDNet. To prove the effectiveness

of LDNet, the annotated starting points and ending
points extracted from the annotation of TuSimple data-
set are used to avoid the influence of staring points and
ending points prediction.

The results of LDNet model with annotated starting
points and ending points are shown in Table 1. The ac-
curacy of the proposed method is above 99. 2% across
all inference iterations. Fig. 3 illustrates qualitative re-
sults of LDNet with two iterations on TuSimple dataset.
From Fig. 3, it can be seen that LDNet with annotated
starting points and ending points performs well for oc-
cluded lanes ( a-d), curve lanes ( e-h) and lanes in
non-flat plane (i-l) . Both the quantitative and qualita-
tive results indicate that LDNet has a strong ability to
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deform proper initial lane line to match the lane mark-
ings. Therefore, LDNet can be applied in both online
and offline scenarios, such as accurate lane detection,
fast interactive lane annotation, and HD map modeling.

In LDNet, the iteration number is an important
hyper-parameter, which influences the model size and
speed. Table 1 also shows the evaluation results of LD-
Net models with various iterations. The accuracy is up
to 99. 45% when LDNet has two iterations. However,

Table 1　 Results of LDNet with different iterations. Here the in-
itial lane lines are generated with the annotated start-
ing points and ending points directly

Iteration Accuracy / % FP FN Model size(MB)
1 99. 27 0. 0069 0. 0064 71
2 99. 45 0. 0027 0. 0026 92
3 99. 37 0. 0033 0. 0029 112
4 99. 41 0. 0030 0. 0028 133
5 99. 42 0. 0033 0. 0030 153

Fig. 3　 Examples of results from the TuSimple lane detection benchmark (the initial lane lines are generated with the annotated starting
points and ending points, the first row shows cases lane markings are occluded by vehicles, the second row shows curve lanes,
and the third row shows lanes in non-flat ground plane)

adding more iterations does not further improve the per-
formance, which shows that it might be harder to train
the network with more iterations. In the following ex-
periments, the iterations of LDNet are fixed to two.

Effects of output stride S. Output stride S is an-
other main hyper-parameter for LDNet, which denotes
how much the feature maps are scaled down relative to
the input image size. In principle, bigger output stride
represents more / higher semantic but spatially coarser.

Table 2 shows the results of LDNet with different
output stride S, and the following observations. First,
with the increase of output stride, the accuracy drops
from 96. 87% to 95. 87% . Second, for a large output
stride ( e. g. , 8), the accuracy of LDNet with initial
lane generated by the annotated starting points and end-
ing points is less than 99% . For smaller output stride
(e. g. , 2 and 4), the accuracy is above 99. 4% . This
indicates that the spatial information is much more im-
portant than the semantics information for LDNet.
Third, the accuracy of LDNet with initial lane genera-

ted by SP
~

and EP
︿

is much higher than initial lane gen-

erated by SP
︿

and EP
~

across all output strides. Thus,
ending point location prediction is the bottleneck of im-
plementation. More accurate ending point estimation

can further improve the accuracy of the LDNet model.

Table 2　 Ablation study of output stride

S
Initialization
methods

SP︿ SP
~ EP︿ EP

~

Metric

Accuracy / % FP FN

8

√ 　 √ 　 98. 63 0. 0136 0. 0116
√ 　 　 √ 96. 35 0. 0294 0. 0254
　 √ √ 　 98. 05 0. 0355 0. 0223
　 √ 　 √ 95. 87 0. 0252 0. 0440

4

√ 　 √ 　 99. 45 0. 0027 0. 0440
√ 　 　 √ 97. 38 0. 0061 0. 0053
　 √ √ 　 98. 12 0. 0268 0. 0200
　 √ 　 √ 96. 39 0. 0275 0. 0347

2

√ √ 99. 51 0. 0018 0. 0017
√ 　 　 √ 97. 54 0. 0068 0. 0057
　 √ √ 　 98. 35 0. 0264 0. 0251
　 √ 　 √ 96. 87 0. 0645 0. 0216

3. 3　 Results
The initial lane lines generated from detected

starting points (SP
~
) and ending points (EP

~
) are illus-

trated in Fig. 4. The results indicate that the straight
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line between starting point and ending point can repre-
sent the direction and range of lane, especially when
the lane lines are straight (Fig. 4(a - d)). This figure
also indicates that the heatmap based keypoint estima-
tion method could effectively detect the starting points,

even when the starting points are occluded by vehicles.
Though the vanishing point-based method could provide
proper ending points in most cases, it cannot deal with
the situation where the ending points are not converged
together as shown in Fig. 4(k).

Fig. 4　 Initial lane lines generated from the predicted starting points and ending points

　 　 Table 3 reports the performance comparison of the
LDNet model against the previous representative meth-
od. To show the generalization of LDNet, models with
Hourglass, ResNet and DLA are used as the back-
bone. For a fair comparison, their lane marking detec-
tion results reported in their paper or website are used
directly. The proposed models are represented as “LD-
Net-S-B”, where S is the output stride and B denotes
the used backbone. It can be seen that the proposed
models with various backbones achieve comparable
performance with state-of-the-art methods.

The final detected lane lines corresponding to the
initial lane lines proposed in Fig. 4 are illustrated in
Fig. 5. As the initial lane lines nearly match the straight
lane lines (Fig. 4(a - d)), the proposed method can
detect straight lane lines precisely, even when the lanes
are occluded by vehicles (Fig. 5(a - d)). Although the

initial lane lines do not match the target lane lines well
(Fig. 4(e - l)), our LDNet model still accurately pre-
dicts the offset between the initial lane line points and

Table 3　 Performance of different methods on TuSimple
Method Accuracy / % FP FN
LaneNet[12] 96. 38 0. 0780 0. 0244
SCNN[3] 96. 53 0. 0617 0. 0180
Line-CNN[27] 96. 87 0. 0442 0. 0197
RESA[20] 96. 82 0. 0363 0. 0248
PRNet[22] 97. 18 0. 0397 0. 0172
Ultra-Fast[5] 96. 06 -- --
LDNet-4-4h 96. 53 0. 0231 0. 0325
LDNet-2-2h 96. 87 0. 0645 0. 0216
LDNet-4-DLA 96. 58 0. 0223 0. 0353
LDNet-4-ResNet 96. 52 0. 0228 0. 0339

Fig. 5　 Results of LDNet with two hourglass modules and S = 4　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　
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the target boundary points for curve lanes (Fig. 5(e - h))
and lanes in non-flat ground plane (Fig. 5(i - l)). Most
notably, the proposed model precisely predicts the curves
when they are occluded by vehicles (Fig. 5(e,h)).
Comparing with Fig. 3(g), the predicted lane lines in
Fig. 5(g) are longer than the predicted lane lines in
Fig. 3 ( g) whose initial lane lines are generated from
the annotated starting points and ending points. These
results indicate that LDNet model has a strong ability in
capturing the structures of lane markings.
　 　 Table 4 compares proposed approach with other
methods in terms of running time. The running time of
proposed method is recorded with the average time for
100 runs. For 256 × 512 input images, proposed meth-
od runs at 32 FPS on a laptop with an Intel i7 2. 60 GHz
and GTX 1650 GPU. The performance of GTX 1080-Ti
is 2. 7 times higher than that of GTX 1650[38] . The
performance of Titan X is 0. 81 times higher than that
of GTX 1650[39] .

Table 4　 Run-time performance of different methods
Method Platform Input size FPS
Line-CNN[27] Titan X 288 × 512 30
SCNN(VGG16) [3] GTX1080Ti 208 × 974 20
SAD(ENet) [24] GTX1080Ti 208 × 974 79
PRNet[22] GTX1080Ti 256 × 512 110
LDNet-4-2h GTX1650 256 × 512 24
LDNet-4-4h GTX1650 256 × 512 15
LDNet-2-2h GTX1650 256 × 512 13
LDNet-DLA GTX1650 256 × 512 32
LDNet-ResNet GTX1650 256 × 512 23

Though the proposed model achieves comparable
performance with state-of-the-art methods, it cannot
predict the lane lines well in complex driving road sce-
narios shown in Fig. 6. In these situations, the lanes
are not converged together, thus the vanishing point
based ending point prediction method cannot propose
proper ending points and initial lane lines. How to im-
prove the ending point prediction method and the initial
lane line proposal method will be the future work.

4　 Conclusion

This paper proposes to use a series of lines to re-
present traffic lane and proposes a novel Line Deforma-
tion Network (LDNet) to iteratively deform an initial
lane line to match the lane boundary. Heatmap based
keypoint estimation method and vanishing point predic-
tion task are used to propose the initial lane lines.

Fig. 6　 Results of LDNet for lanes not converged together. The
left figures show the ground truth and the right figures
show the detected lanes.

The experimental results on TuSimple lane dataset
show that the proposed method achieves comparable
performance with state-of-the-art methods. The accura-
cy of LDNet with ideal starting points and ending points
is up to 99. 4% . Although the proposed initial lane
lines do not match the target lane lines well, the LDNet
model still accurately predicts the offset between the in-
itial lane line points and the target boundary points.
This shows that the LDNet has a strong ability in captu-
ring the structures of lane markings.
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