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Abstract
The privacy and security of data are recently research hotspots and challenges. For this issue,

an adaptive scheme of distributed learning based on homomorphic encryption and blockchain is pro-
posed. Specifically, in the form of homomorphic encryption, the computing party iteratively aggre-
gates the learning models from distributed participants, so that the privacy of both the data and mod-
el is ensured. Moreover, the aggregations are recorded and verified by blockchain, which prevents
attacks from malicious nodes and guarantees the reliability of learning. For these sophisticated priva-
cy and security technologies, the computation cost and energy consumption in both the encrypted
learning and consensus reaching are analyzed, based on which a joint optimization of computation re-
sources allocation and adaptive aggregation to minimize loss function is established with the realistic
solution followed. Finally, the simulations and analysis evaluate the performance of the proposed
scheme.
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0　 Introduction

Today, people and Internet of Things are genera-
ting unprecedented amounts of data. Based on these
data, machine learning as a data analytics tool learns
from data, recognizes patterns, and makes decisions,
becoming an important part of artificial intelligence
(AI). However, collecting abundant data to the cen-
tral server is usually expensive and time consuming, or
even impossible due to privacy and security issues.
Therefore, distributed machine learning (DML) as an
alternative approach has attracted more and more atten-
tion[1] . DML allows the owner to retain the original da-
ta, compute and update the model parameter locally
using its data, which is periodically transmitted to the
central server. Subsequently, the central server up-
dates the global model by aggregating the received local
parameter. In this way, the privacy of the original data
is protected, and also the huge cost of data collection is
avoided. However, there are still cyber risks in the in-
teraction and message transmission, and potential mali-
cious attacks can still extract some of their data infor-
mation.

In order to resist attacks and enhance privacy,dif-
ferential privacy and cryptography technologies are in-
troduced in the existing work. Differential privacy
(DP) can protect the sensitive information by adding
random noise, therefore, attackers cannot infer from
the results of some random algorithms[2-3] . However,
this differential noise needs to be smaller than the ran-
dom noise of the sample, otherwise it will adversely af-
fect the accuracy and privacy of the learning model[4] .
On the other side, cryptography with a mechanism of
encryption can also protect the confidentiality of sensi-
tive data. Therein, secure multiparty computing
(SMC) and homomorphic encryption ( HE) are the
two main technologies. Comparatively, HE processing
the underlying plaintext data in encrypted form without
decryption is less complicated. In the current stud-
ies[5-7], the solutions using partial homomorphic en-
cryption to protect the privacy in DML are more effec-
tive than those based on SMC. Considering the effi-
ciency, Ref. [8] proposed an HE-based batch encryp-
tion technology to solve the encryption and communica-
tion bottleneck problems.

In the DML system, another challenge is security.
Ref. [9] analyzed the potential threats, including
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semi-honest and malicious internal and external at-
tacks. Some researchers have proposed distributed
learning systems based on blockchain[10-11] . Blockchain
is a representative paradigm of distributed control tech-
nology. It provides a peer-to-peer network that enables
sensitive participants to communicate and collaborate in
a secure manner without the need for a fully trusted
third party or an authorized central node. Ref. [10]
proposed a blockchain based decentralized learning
system for medical data and utilized blockchain as an
information exchange platform. Refs[12-14] presented
blockchain based distributed learning processes to re-
sist different threats.

Currently the attention to both privacy and securi-
ty in DML has become a key issue, however, the prob-
lems of computation and energy consumption brought
by sophisticated privacy protection technology have
been ignored in the most existing work. Here, a valua-
ble business model is considered, in which the compu-
ting party as the beneficiary hires participants to jointly
learn a desired global model. Specifically, the compu-
ting party aggregates the local models of the data from
participants, but doesn’ t share the aggregated results
with any participants, so that it owns the value of the
model. Therefore, an adaptive distributed machine
learning scheme based on blockchain and homomorphic
encryption is proposed. First, the Paillier encryption
algorithm is used in the linear regression mode, where
the computing party issues the global ciphertext param-
eters, and the participants always make ciphertext up-
dates, so that the privacy of both the data and the mod-
el are satisfied. Second, the blockchain is introduced
to complete the privacy-protected distributed linear re-
gression process, which ensures the integrity and cor-
rectness of the updating and the final results of the
model. Finally and most importantly, the total energy
consumption of the system are analyzed from the per-
spective of computation complexity and computation re-
sources, based on which a joint optimization of the
computation resources allocation and adaptive aggrega-
tion in the case of limited system energy is given.
Analysis and simulation results show the efficiency of
the scheme in terms of security, privacy and learning
convergence.

1　 System model

In this section, a distributed learning framework is
proposed based on homomorphic encryption and block-
chain, which can complete the trusted learning process
of the model without leaking private information.

1. 1　 System overview
The system completes a secure and private distrib-

uted learning based on the blockchain network, as
shown in Fig. 1. The system model includes two roles:
the participants owning their private data and the com-
puting party having requirements of data analytics
( commercial requirements, etc. ) . Therefore, the
computing party initiates the collaboration with partici-
pants to derive a global model from their data. Since
the local model parameters of each participant are sen-
sitive information having certain commercial value for
others, the partial homomorphic encryption algorithm
Paillier is used to encrypt them providing privacy pro-
tection. Besides, these ciphertext model parameters
are uploaded to the blockchain, and the underlying
distributed consensus guarantees the data sharing of
model parameters in a reliable manner, thereby impro-
ving the transparency and trace ability of the learning.

Specifically, it is assumed that the data required
by computing party is distributed among participants,
then the system nodes composed of the participants P
and the computing party C are denoted as I = {P, C},
| I | = N + 1, where | · | represents size of sets. In
the set P = {P1, P2,…, PN}, the element P i( i∈1,
2,…,N) represents the participant having a sub-data
set Di and the total data set is D = {D1,D2,…,DN} .

Fig. 1　 System model

1. 2　 Distributed gradient descent
For simplicity, the distributed learning of linear

regression model is concerned. For each data sample
(xij, yij), the loss function can be expressed as

f(wi, xij, yij) = 1
2 (yij - wT

i xij) 2 (1)

where xij and yij respectively denote the j-th input vector
and output of dataset Di, and wi is the local parameter.
Then the local loss function of P i based on each dataset
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Di is

F i(wi) = 1
| Di |

∑
j
f(wi, xij, yij) (2)

Accordingly, the global loss function is defined as

F(w) =
∑N

i = 1
| Di | F i(w)
| D | (3)

where w is the global parameter.
During the learning process, t( t = 1,2,…,T) is

set as the number of iterations, and T is the total num-
ber of iterations. In each iteration, it contains a local
update and a possible global aggregation. When t = 0,
the local parameters of all participants are initialized to
the same value. When t > 0, the local model wi( t) of
P i is computed according to the gradient descent (GD)
rule based on its previous iteration. After certain local
updates, the computing party performs global aggrega-
tion to derive a global model, which is a weighted aver-
age of the local models of all participants.

After global aggregation, the local model wi( t) at
P i usually changes. For convenience, 􀭾wi( t) represents
the local model at P i after the updating. If no global ag-
gregation is performed at iteration t, 􀭾wi( t) = wi( t) is
set. If global aggregation is performed at iteration t,
then 􀭾wi( t) ≠ wi( t) and 􀭾wi( t) = w( t) is set.

Therefore, the local update at P i using gradient
descent algorithm with local loss function can be de-
scribed as

wi( t) = 􀭾wi( t - 1) - η∇F i(􀭾wi( t - 1)) (4)
where η > 0 is the learning rate. If global aggregation is
performed by computing party C at iteration t, the glob-
al model is defined as Eq. (5).

w( t) =
∑N

i = 1
| Di | wi( t)
| D | (5)

1. 3　 Learning based on blockchain and Paillier
It is defined that there are τ local updates between

every two global aggregation. It is assumed that T is a
multiple of τ, and G is the total number of global aggre-
gations, then T = Gτ.

In a cryptographic system, the public key Pk is
used for encryption and the private key Sk is used for
decryption. Here, [[ ·]] is used to represent the ci-
phertext message encrypted by Paillier. During the en-
crypted learning, the computing party owns the public
key and the private key to obtain the global model,
while the participants only hold the public key, so that
the model parameters are only shared among the partic-
ipants in the form of ciphertext, ensuring the privacy of
the system model.

The encrypted learning process can be divided in-
to model initialization, local update, and global aggre-

gation.
(1 ) Model initialization. The computing party

and participants as the blockchain nodes, form a point-
to-point decentralized network. Before learning, the key
pair (Pk, Sk) is generated, then all nodes agree on
the Pk and the hyperparameters of the learning model,
such as the learning rate and the initial local ciphertext
model, etc. .

(2) Local update. In the ciphertext state, the
participants use the gradient descent algorithm to up-
date the local model in the current iteration based on
the local ciphertext model completed in the previous it-
eration. During the encrypted updating, the partici-
pants compute local gradient using the homomorphic
property [[am1 + bm2 ]] = [[m1 ]] a·[[m2 ]] b . At itera-
tion t, the local ciphertext gradient of P i can be written
as
[[∇Fi(wi(t)) ]] =

[[[∇i,1
t ]],[[∇i,2

t ]],…,[[∇i,k
t ]]…] 　 (6)

where [[∇i,k
t ]] is the ciphertext gradient of the local

loss function F i(wi( t)) to the k-th element in wi( t) =
[w i,1( t), w i,2( t),…, w i,k( t),…] . Then [[∇i,k

t ]]
can be derived as

[[∇i,k
t ]] = ∂F i(wi( t))

∂w i,k( t)
[ ][ ] = - 1

| Di |
∑ j

∇ij,k
t[ ][ ]

= (∏
j∈Di

[[∇ij,k
t ]])

1
| Di| modn2 (7)

where n is the parameter for the key[15], and [[∇ij,k
t ]]

is the ciphertext gradient corresponding to sample xij,k

and can be obtained by

　 [[∇ij,k
t ]] = ∂f(wi( t), xij, yij)

∂w i,k( t)
[ ][ ]

= [[ - (yij - wT
i ( t)xij)xij,k]]

= [[yij]] xij,k(∏
j∈Di

[[w i,k( t)]] xij,k) -xij,kmodn2

(8)
Based on the above theory and Eq. (4), the ele-

ment [[w i,k( t) ]] in the local ciphertext model of P i at
iteration t can be expressed as
　 [[w i,k( t) ]] = [[ 􀭹w i,k( t - 1) - η∇i,k

t-1 ]]
= [[ 􀭹w i,k( t - 1) ]] × [[∇i,k

t-1 ]] -ηmodn2

(9)
Using Eqs(8), (7) and (9), the participants

can obtain [[wi( t) ]] . After τ local updates, each par-
ticipant encapsulates local ciphertext model into a
transaction ELWPi

= ( t,[[wi( t) ]]) and broadcasts it to
other nodes.

(3) Global aggregation. The computing party C
performs global aggregation after τ local updates. Spe-
cifically, the computing party collects N transactions
ELWP1

, … , ELWPN
from the participants to obtain the
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local ciphertext model [[wi( t) ]] at iteration t, and up-
dates the global model in the encryption as

[[w( t) ]] = (∏
N

i = 1
[[wi( t) ]]

| Di| )
1

| D| (10)

Then, the consensus based on PBFT protocol is
performed. It is considered that C as the primary node,
and it is responsible to pack transactions containing the
global ciphertext model and the received local cipher-
text model into the new block Bg

B t = ([[w( t) ]], ELWP1
, ELWP2

,…, ELWPN
)

(11)
where g = 1,2,…,G; the number of blocks is the
same as the number of global aggregations. As the rep-
licas in the consensus, P i performs verification, inclu-
ding the signature of each transaction, MAC, and the
correctness of Eq. (10) according to the public key.

2 　 Joint optimization for computation re-
sources and adaptive aggregation

　 　 The distributed learning, especially the computa-
tion and learning in encryption, will consume lots of
computing and energy resources. For the computing
party C to obtain the value of its data analysis, it is
necessary to keep operating costs low. Therefore, how
to effectively use the given resources to optimize the
learning effect ( minimize the loss function) has be-
come an important issue. To solve this problem, the
computation cost and energy consumption at each node
is analyzed, based on which the convergence perform-
ance of the model is improved by optimizing the com-
putation resources allocation and the adaptive aggrega-
tion (dynamically adjust aggregation frequency τ ).

2. 1　 Resources consumption and analysis
For resources consumption, from the aspect of

learning (including local learning and global learning)
and the blockchain consensus respectively to analyze
it, it is assumed that the computing resources used by
node i( i ∈ I) for learning and consensus are fLi (CPU
cycle frequency) and fSi , respectively.

(1) In learning (subsection 1. 3), it is assumed
that the average of the CPU cycles consumed by the
participants and the computing party to complete a step
of ciphertext calculation is μ1 CPU cycles, and the av-
erage of the CPU cycles consumed to complete a step of
plaintext calculation is μ2 CPU cycles.

Local update. P i′( i′ ∈ I, i′ = 1,…,N) updates
the local ciphertext model as shown in Eq. (9), and
broadcasts it to the blockchain in the form of ELWPi′

transaction. In this step, the computation complexity is

O( | w | | Di′ | ) . Accordingly, the computation costs
ΔL

1i′ and computation time εL
1i′ are

ΔL
1i′ = μ1( | w | | Di′ | )

εL
1i′ =

ΔL
1i′

fL1i′

(12)

Global aggregation. The computing party C(C =
i″ ∈ I, i″ = N + 1) collects ELWPi′

from P i′, and up-
dates the global ciphertext model as shown in Eq. (10).
In this step, the computation complexity is O(N | w | ).
Since Paillier cannot handle the problem of ciphertext
multiplication, the computing party needs to decrypt
the ELWPi′

transaction, and computes the optimization
parameter φ, δ ( see subsection 2. 2 for details) . Its

computation complexity is O(∑
N

i′ = 1
N | w | | Di′ | ) . The

computation costs ΔL
2i″ and computation time εL

2i″ are

ΔL
2i″ = μ1N | w | + μ2∑

N

i′ = 1
N | w | | Di′ |

εL
2i″ =

ΔL
2i″

f2i″

(13)

(2) In the PBFT consensus run between partici-
pants and the computing party, it can resist at most F
= 3 -1(N - 1) failed nodes. It is assumed that the av-
erage value of the CPU cycles consumed by computing
tasks is α, and generating or verifying a signature and
generating or verifying a MAC require β and θ CPU cy-
cles, respectively. The consensus protocol consists of
five steps.

Step 1 Request. Participants submit K transac-
tions containing model parameters to computing party C
(primary node i″ ). The primary node i″ packs the ver-
ified transactions into a new block. Afterwards, it
broadcasts the produced block and pre-prepare messa-
ges to other nodes for verification. The computation
costs ΔS

1i″ and computation time εS
1i″ are

ΔS
1i″ = K(β + θ) + β + Nθ

TS
1i″ =

ΔS
1i″

fS1i′

(14)

Step 2 Pre-prepare. P i′( i′ ≠ i″) as replica re-
ceives a new block of pre-prepare message, then veri-
fies the signature and MAC of the block and the signa-
ture and MAC of each transaction in turn. Finally, the
computation result is verified according to the smart
contract. If the result is verified successfully, P i′ will
send the prepare messages to all the others. The com-
putation costs ΔS

2i′ and computation time εS
2i′ are

ΔS
2i′ = β + θ + K(β + θ) + α + β + Nθ

εS
2i′ =

ΔS
2i′

fS2i′

(15)
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Step 3 Prepare. All the nodes receive and check
the prepare message to ensure that it is consistent with
the pre-prepare message. Once the node receives 2F
prepare messages from others, it will send the commit
messages to all the others. The computation costs ΔS

3i

and computation time εS
3i are

ΔS
3i = 2F(β + θ) + β + Nθ

TS
3i =

ΔS
3i

fS3i

(16)

Step 4 Commit. All the nodes receive and check
the commit message to ensure that it is consistent with
the prepare message. Once the node receives 2F com-
mit messages from others, it will send the reply mes-
sage to the primary node. The computation costs ΔS

4i

and computation time εS
4i are

ΔS
4i = 2F(β + θ) + K(β + θ)

εS
4i =

ΔS
4i

fS4i

(17)

Step 5 Reply. The primary node receives and
checks the reply messages. After receiving 2F reply
messages, the new block will take effect and be added
to the blockchain. The computation cost ΔS

5i″ and com-
putation time εS

5i″ are
ΔS

5i″ = 2F(β + θ)

εS
5i″ =

ΔS
5i″

fSi″

(18)

As analyzed above, the efficiency ( computation
time) of a node in each step is constrained by compu-
tation cost and computation resources. Following the-
model in Ref. [14], the energy consumption of local
update can be given as

FJ( f) = ∑
N+1

i = 1
δL1iΔL

1iγ( fL1i) 2 (19)

the energy consumption of global aggregation can be
given as

FQ( f) = ∑
N+1

i = 1
δL2iΔL

2iγ( fL2i) 2 +∑
N+1

i = 1
∑

5

σ = 1
δSσiΔS

σiγ( fSσi) 2

(20)
where γ is a constant related to the hardware, δi =
[δL1i,δL2i,δSσi], σ = 1,2,3,4,5; and the element δ·,i

= 0,1 indicates whether the node i participates in each
step. For example, δi″ = [0,1,1,0,1,1,1] and δi′≠i″

= [1,0,0,1,1,1,0] represent the participation of the
computing party as a primary node and the participates
as replicas at each step in the learning and consensus
process, respectively.

Therefore, the energy consumption of the system
is expressed as

Fe( f,T,τ) = T FJ( f) + FQ( f)
τ( ) (21)

where f = { fLi , fSi } is the overall computation re-
sources.

2. 2　 Optimization model and solutions
For the loss function F(w), linear regression sat-

isfies the following assumptions[16] . F i(w′) and F(w)
are convex, φ -smooth. For any w, w′. ‖∇F i(w) -
∇F i(w′)‖≤ φ‖w - w′‖ to capture the divergence
between the gradient of a local loss function and the
gradient of the global loss function. This divergence
has to do with how data is distributed across different
nodes, and the measure factors φ,δ will affect the opti-
mization model. For any t, φ̂ = ∑ i

| Di | φ̂i / | D | is
defined to approximate φ, where

φ̂i =
‖∇F i(wi( t)) - ∇F i(w( t))‖

‖wi( t) - w( t)‖ (22)

Similarly, ω̂ = ∑ i
| Di | ω̂i / | D | is approxima-

ted, where
ω̂i = ‖∇F i(w( t)) - ∇F(w( t))‖ (23)
In view of the learning effect, the loss function

F(w∗) is introduced (w∗ represents the ideal mod-

el) . For any τ, h(τ) = ω
φ ((ηφ + 1) τ - 1) - ηωτ.

If ηφ≤1 is set, then η(1 - φη
2 ) -

B0h(τ)
τ > 0 is sat-

isfied, where B0 is control parameter and is constant for
the same dataset. In the above theorem, the upper
bound on the convergence after T iterations can be ob-
tained as Eq. (24).

F(w(T,τ)) - F(w∗) ≤ 1

T η 1 - φη
2( ) -

B0h(τ)
τ( )
(24)

Therefore, the optimization model is defined as

min
T,τ

1

T η 1 - φη
2( ) -

B0h(τ)
τ( )

(25)

s. t. C1: Fe( f,T,τ) ≤ E
C2: fLi + fSi ≤ fi

C3: T
τ (max

τΔL
1i′

fL1i′
+
ΔL

2N+1

fL2N+1
) ≤ ξ, i′ = 1,…,N

C4: max T
τ ∑

5

σ = 1

ΔS
σi

fSσi
≤ ξ

C5: τ ≤ τmax

where the loss function is minimized under the con-
straint of C1 - C5. The total system energy E is limited
by C1, and the computation resources of the node is
limited by C2. Moreover, the total time in the learning
process and the consensus process are limited by C3
and C4, respectively, where ξ makes the time of the
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two processes consistent. Since τ is unbounded and the
problem is difficult to solve,the search space is restrict-
ed by τmax in C5 and on integers.

Since the denominator of Eq. (25) is always posi-
tive, then combining Eq. (21) and C1, the parameter
T can be replaced by the optimal value T =
(Eτ)(τFJ( f) + FQ( f)) -1 . Note that φ and δ in
Eq. (25) are ideal values, and only the alternative ap-
proximated φ̂ and δ̂ can be updated along the learning.
In each global aggregation, the computation resources
allocated for each node to complete each step and the
aggregation frequency τ are optimized by the convex op-
timization theory. The joint optimization is repeated to
decide the global aggregation until the energy of the
system is consumed out, as shown in algorithm 1.

Algorithm 1 Process of learning and optimization
Input: E, η, B0, ξ
Output: [[w(T) ]]
1. Initial t = 0, τ = 1, R = 0 ∥ R is the energy count
2. Initial E′ = E and use Pk to obtain [[w(0) = 0 ]]
3. Initial f, evenly distributed to each process
4. while ( t ≥0&E > 0) do
5. 　 for i = 1,2,3,…,N do
6. 　 　 Pi downloads global parameter from blockchain
7. Pi completes τ local updates
8. 　 　 Pi broadcasts ELWPi

9. 　 end for
10. 　 t = t + τ
11. 　 C receives [[wi( t) ]] from Pi

12. 　 C aggregates [[w( t) ]] and calculates δ̂, φ̂
13. 　 C calculates R = R + τFJ( f) + FQ( f)
14. 　 C updates E = E′ - R
15. 　 C uses Eq. (25) to obtain the optimal f and τ, where τ

∈ [1,τmax]
16. 　 if R > E′ then
17. 　 reduce to τ the maximum value within E′
18. 　 set E = 0
19. 　 end if
20. 　 C creates a block and upload to blockchain
21. end while

3　 Simulation and analysis

3. 1　 Security and privacy analysis
The system addresses data privacy and model se-

curity by combining distributed machine learning with
homomorphic encryption and blockchain.

For privacy, the Palillier encryption algorithm is
used to protect the model parameters, where the en-

crypted parameters prevent attackers from obtaining lo-
cal data by eavesdropping on the broadcast and also
protect every model parameter from other participants.
Only the computing party as the sponsor can know the
parameters.

For security, blockchain is used to make point-to-
point interaction between computing party and partici-
pants to ensure the reliability of the system. Through
the PBFT consensus, the participants are able to verify
transactions and the updated ciphertext model from the
beginning to the end results, which confirms the contri-
bution of each participant.

3. 2　 Simulation
In this section, the proposed joint optimization

scheme for computation resources and adaptive aggre-
gation is simulated. To verify its performance, the pro-
posed joint optimization is compared with the other two
optimization cases using the loss function value as a
metric.

Only-aggregation. Ref. [16] proposed an adap-
tive aggregation algorithm. Assuming that the computa-
tion resources are fixed ( the computation resources al-
located to each node in different steps are equal and
fixed), only the aggregation frequency is adaptively
optimized so that the loss function reaches minimum.

Only-resource. A comparison scheme for joint op-
timization, where the aggregation frequency is fixed,
and only the allocation of computation resources is opti-
mized.

In order to prove the generality of the joint optimi-
zation, it is validated on the Boston house price dataset
with 14 features and the fish toxicity dataset with 7 fea-
tures, respectively. 506 pieces of sample data are se-
lected on each dataset and all sample data are prepro-
cessed to the interval [ - 1,1]. 80% of them are se-
lected for training and others for testing. For simula-
tions, the parameter settings are shown in Table 1.

Fig. 2 and Fig. 3 show the relationship between
the loss value and the aggregation frequency τ. In order
to find the optimal fixed τ in the only-resources optimi-
zation through simulations, it is considered that the
value of τ is from 10 to 90. It can be seen that the opti-
mal value of τ varies with different number of partici-
pants and dataset, and a fixed value of τ will not be
suitable for all cases. Note that this optimal value can
not be obtained in practical work. In order to facilitate
comparison, according to the changing trend of the
curve, τ = 25 is set in the Boston dataset and τ = 30 is
set in the fish dataset.
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Table 1　 The simulation parameters

Simulation parameters House
dataset

Fish
dataset

The learning rate η 0. 001
The total time ξ 300 s

The maximum computation
resource fi

1500 M cycles

CPU cycles for completing a step
ciphertext calculation μ1

10 M cycles

CPU cycles for completing a step
plaintext calculation μ2

0. 5 M cycles

CPU cycles for computing tasks α 0. 2 M cycles
CPU cycles for generating or

verifying a signature β 8 M cycles

CPU cycles for generating or
verifying a MAC θ 0. 05 M cycles

The hardware parameter γ 10 - 28

The maximum value of aggregation
frequency τmax

10τ

The control parameter B0 1. 5 2

Fig. 2　 Loss value with different τ in Boston dataset

Fig. 3　 Loss value with different τ in fish dataset

　 　 Fig. 4 shows the relationship between system ener-
gy and loss value when the number of participants is N
= 5. Since the Boston dataset has more feature dimen-
sions than the fish dataset, it consumes more energy
during learning and requires more energy to converge
( i. e. different orders of magnitude on the horizontal
axis) . It can be seen that with the increase of the sys-
tem energy, the loss values of the three cases de-
crease, and the joint optimization scheme has the smal-
lest loss value. It adjusts the computation resources al-
location of each node in each step according to the
complexity, so that the energy consumption of each it-
eration reaches an ideal value and the distributed
learning process can complete more iterations under the
constraint of limited system energy. When the system
energy is small, the effect of the joint optimization
scheme is more obvious. In addition, there is a small
difference between the loss value of joint optimization
and only-resources optimization. It can be seen that in
the distributed machine learning, optimizing computa-
tion resources allocation plays a more important role
than optimizing aggregation frequency.

Fig. 4　 Loss value with different energy consumption

Fig. 5 shows the relationship between the number
of participants and the loss value. It can be seen that
as the number of participants increases, the change
trend of the loss value under different datasets is differ-
ent. The reason is that the loss value is not only affect-
ed by the number of participants, but also related to
the data distribution. With the same number of partici-
pants, the proposed joint optimization scheme has the
smallest loss value.

4　 Conclusions

A distributed learning scheme is proposed using
homomorphic encryption and blockchain as the privacy
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Fig. 5　 Loss value with different number of participants

and security guarantee. In the scheme, data is leaved
to its owner and only the encrypted model parameters
derived from data are transmitted to the global aggrega-
tion, all of which are recorded and verified by block-
chain consensus. In this way, the privacy of both the
data and model as well as the security of the learning
are ensured. Most importantly, the computation re-
sources and the adaptive aggregation in the distributed
learning and consensus are optimized. Simulation re-
sults show the efficiency of the scheme.
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