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Abstract
A novel variational Bayesian inference based on adaptive cubature Kalman filter (VBACKF)

algorithm is proposed for the problem of state estimation in a target tracking system with time-varying
measurement noise and random measurement losses. Firstly, the Inverse-Wishart (IW) distribution
is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman
filter framework. Secondly, the Bernoulli random variable is introduced as the judgement factor of
the measurement losses, and the Beta distribution is selected as the conjugate prior distribution of
measurement loss probability to ensure that the posterior distribution and prior distribution have the
same function form. Finally, the joint posterior probability density function of the estimated variables
is approximately decoupled by the variational Bayesian inference, and the fixed-point iteration ap-
proach is used to update the estimated variables. The simulation results show that the proposed
VBACKF algorithm considers the comprehensive effects of system nonlinearity, time-varying meas-
urement noise and unknown measurement loss probability, moreover, effectively improves the accu-
racy of target state estimation in complex scene.

Key words: variational Bayesian inference, cubature Kalman filter (CKF), measurement un-
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0　 Introduction

Nonlinear dynamic system has been widely ap-
plied in many applications, such as rocket guidance,
inertial navigation of aircrafts and ships, radar or sonar
detection and target tracking[1] . Recently, although
extended Kalman filter has been applied in various
fields, its inherent shortcomings also limit its develop-
ment. Due to the use of linearization to approximate
nonlinear function, the estimation accuracy is reduced,
and the tedious Jacobian matrix needs to be calculat-
ed[2] . Particle filter is a random sampling filter, which
approximates the posterior mean of the state by a series
of sampling points, and approximates the probability
distribution function of the state by random particles.
However, its estimation accuracy is excessively de-
pendent on the number of sampling points[3] . Sigma-
point Kalman filter includes filters such as unscented
Kalman filter ( UKF ) and cubature Kalman filter

(CKF). These filter algorithms are all based on cer-
tain sampling strategies to obtain the determined sam-
pling points, and then these sampling points are used
to calculate the approximate Gaussian integral. Howev-
er, for high-dimensional nonlinear systems with higher
vector dimensions, the covariance of UKF may be non-
positive in the filtering process, which results in unsta-
ble or even divergent filtering values[4] . Compared
with above algorithms, CKF has higher filtering accura-
cy, better numerical stability and lower computational
complexity[5] .

Due to the limitations of sensor performance and
the surrounding environment, the infinite accurate
measurement information cannot be obtained. Consid-
ering the influence of weather, humidity and other en-
vironmental factors may lead to time-varying measure-
ment noise[6], Ref. [7] proposed the Sage-Husa adap-
tive filter ( SHAKF) to solve the problem that the
measurement noise is time-varying and the prior infor-
mation such as its statistics is unknown. The filter re-
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cursively estimates the noise statistics based on the
maximum a posteriori criterion to reduce the influence
of noise on the estimation results. However, the use of
SHAKF cannot guarantee the convergence to the cor-
rect noise covariance matrix, which may lead to filte-
ring divergence. Ref. [8] realized the joint estimation
of measured noise distribution parameters and system
state in the state space model system under the variable
Bayesian (VB) framework combined with inverse gam-
ma distribution. However, the use of inverse gamma
distribution leads to large amount of calculation and
poor universality. Ref. [9] proposed an adaptive linear
Kalman filter based on VB, which uses the Inverse-
Wishart (IW) distribution as the conjugate prior distri-
bution of the measurement noise covariance matrix, up-
dates the approximate posterior distribution of the sys-
tem state and noise parameters through the fixed-point
iterative method. In addition to the time-varying noise,
the hardware failure of the sensor will also cause the
random measurement losses. The sensor only receives
pure noise, which does not contain any useful informa-
tion of the target[10] . If the sensor knows whether the
measurement is lost in advance, the minimum variance
estimation (MVE) of the linear Gaussian system can
be provided by the intermittent Kalman filter
( IKF) [11] . In reality, the sensor cannot predict wheth-
er the measurement information is lost. Ref. [12] pro-
posed BKF-I and BKF-II based on the maximum a pos-
teriori probability estimation criterion to solve the meas-
urement losses, but they cannot adaptively estimate the
measurement loss probability. Ref. [13] proposed a
new VB-based adaptive Kalman filter (AKF) to solve
the problem of unknown measurement loss probability,
but this algorithm has not been extended to the nonlin-
ear field.

In this paper, a new adaptive cubature Kalman
filter based on variational Bayesian inference is pro-
posed. Aiming at the problem of unknown measure-
ment noise covariance matrix and measurement loss
probability in measurement model, the conjugate prior
distribution of unknown parameters and estimated state
is established firstly, and then the posterior probability
density function(PDF) of state, noise covariance ma-
trix, decision factor and measurement loss probability
are updated to Gaussian distribution, inverse Wishart
distribution, Bernoulli distribution and Gamma distri-
bution by variational Bayesian inference. Finally, the
estimated variables can be obtained; at the end of the
paper, the simulation results verify the effectiveness of
the proposed VBACKF.

1　 Problem description

Consider the following discrete-time non-linear
stochastic system described by the state-space model.

xk = f(xk-1) + wk-1 (1)
zk = ξkh(xk) + vk (2)

where xk ∈ RR n and zk ∈ RR m are the state vector and
measurement, respectively; f(·) represents the nonlin-
ear state transition function, h(·) represents the non-
linear observation function; wk ∈ RR n and vk ∈ RR m are
respectively Gaussian process and measurement noise
vectors with zero mean vectors and covariance matrices
Qk and Rk . The initial state vector x0 ∈ RR n is assumed
to have a Gaussian distribution with mean vector x̂0| 0

and covariance matrix P0| 0 . ξk obeys a Bernoulli distri-
bution with only two possible values: 1 and 0. Obvi-
ously, ξk = 1 represents the real measurement informa-
tion obtained by the sensor at time k, and ξk = 0 repre-
sents the measurement lost at time k. The probabilities
of the Bernoulli random variables ξk taking the values of
1 and 0 are given as

Pr(ξk = 1) = 1 - τk (3)
Pr(ξk = 0) = τk (4)

where, Pr(ξ) represents the probability of ξk taking 0
or 1, and τk represents the measurement loss probabili-
ty at time k. Moreover, wk, vk, ξk and x0 are assumed
to be mutually uncorrelated for any time.

2　 Methodology

2. 1　 The choice of prior distributions
One-step prediction probability density function

p(xk ∣ z1:k-1) satisfies Gaussian distribution.
p(xk ∣ z1:k-1) = N(xk;x̂k| k-1, Pk| k∗1) (5)

where, N(·; μ,Σ) denotes the Gaussian PDF with
mean vector μ and covariance matrix Σ; x̂k| k-1 and
Pk| k-1 are the one-step prediction state estimation at k
time and the corresponding estimation error covariance
matrix, respectively. At the same time, since the
measurement noise covariance matrix Rk is time-var-
ying, it is necessary to find its posterior distribution,
which requires selecting the appropriate conjugate prior
distribution for Rk, that is because the conjugate can
ensure that the posterior distribution and the prior dis-
tribution have the same function form. In Bayesian sta-
tistics, IW distribution is usually chosen as the conju-
gate prior distribution of covariance matrix of Gaussian
distribution with known mean[14] . Therefore, IW dis-
tribution is selected as the prior distribution of Rk

p(Rk ∣ z1:k-1) = IW(Rk; ûk| k-1,Ûk| k-1) (6)
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where IW(Rk; ûk| k-1,Ûk| k-1) denotes the IW distribu-
tion with degree of freedom parameter ûk∣k-1 and in-
verse scale matrix Ûk| k-1 . The probability density func-
tion of IW distribution can be expressed as
IW(A;u,U) =

| U | u / 2 | A | -(u+n+1) / 2 exp{ - 0. 5tr(UA -1)}
2du / 2 Γn(u / 2)

(7)
where A is the covariance matrix of n-dimensional
time-varying Gaussian vector, u is the degree of free-
dom parameter, U is the n-dimensional inverse scale
matrix, tr(·) represents the trace of the matrix, and
Γn(·) is an n-dimensional Gamma function. When A
~ IW(A;u,U) and u > n + 1 are satisfied, E[A -1]
= (u - n - 1)U -1 is established[15] .

The prior parameters of predicting measurement
noise are obtained by

ûk| k-1 = ρ( ûk-1| k-1 - n - 1) + n + 1

Ûk| k-1 = ρ Ûk-1| k-1
{ (8)

where ρ∈(0,1] denotes the forgetting factor. Suppose
the prior probability density function of initial measure-
ment noise covariance matrix R0 satisfies a IW distribu-
tion: R0 ~ IW(R0; û0| 0,Û0| 0), then R0 = Û0| 0 / ( û0| 0

- n - 1) .
Although the prior information of measurement

noise is obtained, the random measurement losses will
also reduce the estimation accuracy. It is necessary to
estimate the probability of measurement losses, and
then the measurement noise covariance matrix is modi-
fied.

The conditional likelihood probability density
function in Eq. (2) can be expressed as
p(zk ∣ xk,τk,Rk)

= ∑
1

ξk = 0
p(zk,ξk ∣ xk,τk, Rk)

= Pr(ξk = 1)p(zk ∣ xk,ξk = 1,Rk)
　 + Pr(ξk = 0)p(zk ∣ xk,ξk = 0,Rk)
= (1 - τk)pvk(zk - h(xk)) + τkpvk(zk) (9)

where pvk(·) denotes the probability density function of
measurement noise. Eq. (3) and Eq. (4) can be
transformed into the following probability-mass function
(PMF).

p(ξk ∣ τk) = (1 - τk) ξkτ(1-ξk)
k (10)

Combining Eq. (9) and Eq. (10), the likelihood
probability density function p(zk ∣ xk,τk,Rk) can be
rewritten as
p(zk ∣ xk,τk, Rk)

= ∑
1

ξk = 0
p(ξk ∣ τk)p(zk ∣ xk,ξk, Rk)

= ∑
1

ξk =0
[(1 - τk)ξkpvk(zk - h(xk))ξkτ(1-ξk)

k pvk(zk)
(1-ξk)]

= ∑
1

ξk = 0
p(ξk ∣ τk)[pvk(zk - h(xk))] ξk[pvk(zk)]

(1-ξk)

(11)
So conditional likelihood probability density func-

tion p(zk ∣ xk,ξk,Rk) can be expressed as the follow-
ing exponential multiplication form.
p(zk ∣xk,ξk,Rk) = [pvk(zk - h(xk))]ξk[pvk(zk)]

(1-ξk)

(12)
Further, the probability density function p(zk ∣

xk,ξk, Rk) can be rewritten as
p(zk ∣ xk,ξk, Rk)

= N(zk; h(xk), Rk) ξkN(zk;0,Rk) (1-ξk)

(13)
In addition, zk depends not only on xk and Rk, but

also on ξk and τk, so it is necessary to calculate the
joint prior probability density function.
p(Ξ∣ z1:k-1)
= p(xk ∣z1:k-1)p(ξk ∣τk)p(τk ∣z1:k-1)p(Rk ∣z1:k-1)
= N(xk; x̂k| k-1, Pk∣k-1)(1 - τk)ξkτ(1-ξk)

k p(τk ∣ z1:k-1)
　 × IW(Rk; ûk| k-1,Ûk| k-1) (14)
where Ξ≜ {xk,ξk,τk,Rk} represents the set of esti-
mated variables, p(τk ∣ z1:k-1) represents the prior
probability density function of the measurement loss
probability at time k. The prior distribution p(τk ∣
z1:k-1) is selected as a Beta PDF since the Beta distri-
bution is a conjugate prior to the Bernoulli distribution,
so that the prior distribution and posterior distribution
of τk have the same form[16]:

p(τk ∣ z1:k-1) = Be(τk| k-1;α̂k| k-1,β̂k| k-1) (15)
where α̂k| k-1 and β̂k| k-1 can be obtained respectively by
the following equation

α̂k| k-1 = ηα̂k-1

β̂k| k-1 = ηβ̂k-1
{ (16)

here, η ∈ (0,1] denotes a forgetting factor used to
spread the posterior PDF p(τk ∣ z1:k-1) .

Suppose the prior probability density function of
initial τ0 obeys the Beta distribution. Then, p(τ0) =
Be(τ0; α̂0∣0, β̂0∣0) can be obtained. Initial prior pa-
rameters α̂0∣0 and β̂0∣0 can be obtained by Eq. (17).

E[τ0] =
α̂0∣0

α̂0∣0 + β̂0∣0

= τ̂0 (17)

2. 2 　 The variational approximation of posterior
probability density function

　 　 In order to estimate xk together with ξk,τk and Rk,
the joint posterior PDF p(xk,ξk,τk, Rk | z1:k) needs to
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be computed. Since the form of joint posterior proba-
bility density function p(xk,ξk,τk,Rk | z1:k) is very
complex and its analytical solution cannot be directly
obtained. To make the joint posterior distribution easy
to handle, the approximate free solution of joint poste-
rior probability density function is obtained by VB
method. Then, it can be obtained
p(xk,ξk,τk, Rk ∣ z1:k-1) ≈ q(xk)q(ξk)q(τk)q(Rk)

(18)
where q(·) represents the variational approximate pos-
terior probability density function of p(·) .

According to the VB approximation idea,the opti-
mal approximation of the posterior probability density
function of the estimated variable is obtained by mini-
mizing the Kullback-Leibler divergence ( KLD) be-
tween the factored approximate posterior PDF
q(xk)q(ξk)q(τk)q(Rk) and true joint posterior PDF
p(xk,ξk,τk,Rk ∣ z1:k-1)

{q(xk), q(ξk), q(τk), q(Rk)} = argminKLD
{q(xk), q(ξk), q(τk), q(Rk)‖
p(xk,ξk,τk, Rk ∣ z1:k-1)}

(19)

where KLD(q(x)‖p(x)) ≜ ∫q(x)log q(x)p(x)dx, KLD

is between q(x) and p(x) .
According to VB approach, the optimal solution of

Eq. (19) satisfies the following equation.
logq(θ) = EΞ( -θ)[logp(Ξ, z1:k)] + cθ (20)

where E[·] represents the expectation operation, and
log(·) represents the logarithmic function. θ is an ar-
bitrary element of Ξ, Ξ( -θ) is the set of all elements in
Ξ except for θ. cθ represents the constant term related
to θ.

According to Eq. (20), the expectation of loga-
rithmic joint posterior probability density function is re-
quired to obtain the approximate posterior probability
density function of the estimated variables. However,
since the approximate posterior distribution q(xk),
q(ξk), q(τk) and q(Rk) are coupled with each other,
the analytical solution cannot be obtained directly by
Eq. (20). Therefore, the fixed-point iteration method
is adopted to solve this problem[9] .

According to the conditional independence of the
state space model, the joint probability density function
p(Ξ, z1:k) can be expressed as

p(Ξ, z1:k) = p(zk ∣ xk,ξk,Rk)p(xk ∣ z1:k-1)
× p(Rk ∣ z1:k-1)p(ξk ∣ τk)
× p(τk ∣ z1:k-1)p(z1:k-1) (21)

Substituting Eq. (5), Eq. (6), Eq. (10), Eq. (13)
and Eq. (15) into Eq. (21), Eq. (22) can be ob-
tained

p(Ξ, z1:k) = N(zk; h(xk),Rk) ξkN(zk;0,Rk) (1-ξk)

× N(xk;x̂k∣k-1, Pk∣k-1)
× IW(Rk; ûk∣k-1,Ûk∣k-1)(1 - τk)ξkτ(1-ξk)

k

× Be(τk∣k-1;α̂k∣k-1, β̂k∣k-1)p(z1:k-1)
(22)

According to Eq. (22), logp(Ξ, z1:k) can be ex-
pressed as
logp(Ξ, z1:k) = - 0.5ξk(zk - h(xk))TR-1

k (zk - h(xk))
- 0. 5(1 - ξk)zTkR -1

k zk - 0. 5(xk - x̂k| k-1) TP -1
k∣k-1(xk

- x̂k| k-1) + ( α̂k| k-1 - 1) logτk - 0. 5tr(Ûk| k-1R -1
k )

+ ξk log(1 - τk) + (1 - ξk)logτk - 0. 5(m + ûk| k-1

+ 2)log | Rk | + ( β̂k| k-1 - 1) log(1 - τk) + cΞ
(23)

Let θ = Rk and substitute Eq. (23) into Eq. (20),
logq( i +1)(Rk) can be written as given by
logq( i +1)(Rk) = - 0. 5(m + ûk| k-1 + 2)log | Rk |

- 0. 5tr((A( i)
k + Ûk| k-1)R -1

k ) + cR
(24)

where q( i +1)(·) represents the approximated probability
density function of p(·) at the ( i + 1)th iteration. A( i)

k

is given by
A( i)

k = E( i)[(zk - h(xk))(zk - h(xk)) T]

= ∫(zk - h(xk))(zk - h(xk))TN(xk ;̂x(i)k| k,P(i)
k| k)dxk

= 1
2n∑

2n

j = 1
(zk - h(x( i), j

k| k ))(zk - h(x( i), j
k| k )) T

(25)
where E( i)[·] represents the expectation operation at
the ith iteration, x( i)

k| k and P( i)
k| k denote the estimated state

vector and corresponding estimation error covariance
matrix at the ith iteration, respectively. x( i), j

k| k is ob-
tained by the operation of volume transformation of
x( i)
k| k . According to Eq. (24), q( i +1)(Rk) can be upda-

ted as an inverse Wishart probability density function
with parameter û( i +1)

k and inverse scale matrix Û( i +1)
k 　

　 q( i +1)(Rk) = IW(Rk; û( i +1)
k ,Û( i +1)

k ) (26)
where û( i +1)

k and Û( i +1)
k can be obtained by

û( i +1)
k = ûk| k-1 + 1 (27)

Û( i +1)
k = A( i)

k + Ûk∣k-1 (28)
Let θ = xk and substitute Eq. (23) into Eq. (20),

logq( i +1)(xk) can be written as given by
logq( i +1)(xk) = - 0. 5 E( i)[ξk](zk - h(xk)) T

× E( i +1)[R -1
k ](zk - h(xk))

- 0. 5(xk - x̂k| k-1) TP -1
k∣k-1

× (xk - x̂k| k-1) + cx (29)
According to Eq. (29), q( i +1)(xk) can be upda-

ted as
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q( i +1)(xk) = N(xk; x̂( i +1)
k| k , P( i +1)

k| k ) (30)
E( i +1)[R -1

k ] can be obtained according to the na-
ture of the IW distribution.

E( i +1)[R -1
k ] = ( û( i +1)

k - m - 1)(Û( i +1)
k ) -1

(31)
Exploiting Eq. (31), the modified measurement

noise covariance matrix R̂( i +1)
k satisfies

R̂( i +1)
k = 1

E( i)[ξk] E( i +1)[R -1
k ]

(32)

where E( i)[ξk] can be obtained through Eq. (42) at
the ith iteration.

Let θ = ξk and substitute Eq. (23) into Eq. (20),
logq( i +1)(ξk) can be written as
logq( i +1)(ξk) = - 0. 5(1 - ξk)zTk E( i +1)[R -1

k ]zk
- 0.5ξk E(i+1)[(zk - h(xk))T] E(i+1)

[R -1
k ] E( i +1)[(zk - h(xk))]

+ ξk E( i)[log(1 - τk)]
+ (1 - ξk) E( i)[logτk] + cξ (33)

According to Eq. (33), the posterior probability
of the Bernoulli random variable ξ taking the values of 1
and 0 are given by
　 Pr( i +1)(ξk = 1) = Λ( i +1) eE( i)[log(1-τk)] -0. 5tr(A( i+1)k R-1k )

(34)
Pr( i +1)(ξk = 0) = Λ( i +1) eE( i)[logτk] -0. 5tr(B( i+1)k R -1k )

(35)
where Λ(i+1) is the normalizing constant at the (i +1)th
iteration, and the expectations E( i)[log(1 - τk)] and
E( i)[logτk] can be obtained through Eq. ( 43 ) and
Eq. (44) at the ith iteration, A( i +1)

k and B( i +1)
k are giv-

en by
A( i +1)

k = E( i +1)[(zk - h(xk))(zk - h(xk)) T]

= 1
2n∑

2n

j = 1
(zk - h(x( i +1), j

k| k ))(zk - h(x( i +1), j
k| k )) T

(36)
B( i +1)

k = zkzTk (37)
Let θ = τk and substitute Eq. (23) into Eq. (20),

logq( i +1)(τk) can be written as
　 logq( i +1)(τk) = ( β̂k∣k-1 + E( i)[ξk] - 1)log(1 - τk)

+ ( α̂k∣k-1 - E( i)[ξk]) logτk + cτ
(38)

According to Eq. (38), q( i +1)(τk) can be upda-
ted as

q( i +1)(τk) = Be(τk; α̂( i +1)
k , β̂( i +1)

k ) (39)
where the shape parameters α̂( i +1)

k and β̂( i +1)
k are given

by
α̂( i +1)

k = α̂k| k-1 - E( i +1)[ξk] + 1 (40)
β̂( i +1)
k = β̂k| k-1 + E( i +1)[ξk] (41)

The expectations E( i +1)[ξk], E( i +1)[ logτk] and
E( i +1)[log(1 - τk)] are given by

E( i +1)[ξk] =
Pr( i +1)(ξk = 1)

Pr( i +1)(ξk = 1) + Pr( i +1)(ξk = 0)
(42)

E( i +1)[ log(1 - τk)] = ψ(β( i +1)
k ) - ψ(α( i +1)

k + β( i +1)
k )
(43)

E( i +1)[logτk] = ψ(α( i +1)
k ) - ψ(α( i +1)

k + β( i +1)
k )
(44)

where ψ(·) is a Digamma function[17] .
The implementation of VBCKF algorithm is as fol-

lows.

Algorithm 1 VBCKF
Input: x̂k-1| k-1, Pk-1| k-1, f(·), h(·), zk, ûk-1| k-1,

Ûk-1| k-1, Qk-1, α̂k-1, β̂k-1, n, m,ρ,η,ε,N
Time update:
1. x̂k | k - 1 and Pk| k-1 are obtained by the time update of the tra-
ditional CKF.
Variational measurement update:
2. Initialization: x̂(0)

k| k = x̂k| k-1, P(0)
k| k = Pk| k-1, Ûk| k-1 = ρ

Ûk-1| k-1, ûk| k-1 = ρ( ûk-1| k-1 - m - 1) + m + 1, α̂(0)
k = α̂k-1,

β̂(0)
k = β̂k-1, E(0) [ξk] = β̂k-1 / ( α̂k-1 + β̂k-1), E(0) [ logτk]

= ψ( α̂(0)
k ) - ψ( α̂(0)

k + β̂(0)
k ), E(0) [log(1 - τk)] =

ψ( β̂(0)
k ) - ψ( α̂(0)

k + β̂(0)
k )

for i = 0:N - 1
3. Update q(i+1)(Rk) using Eq. (25), Eq. (27) and Eq. (28);
4. Compute R̂( i+1)

k using Eq. (32);
5. x̂k| k and Pk| k are obtained by the measurement update of the
traditional CKF;
6. Compute A( i+1)

k and B( i+1)
k using Eq. (36) and Eq. (37);

7. Compute α̂( i+1)
k and β̂( i+1)

k using Eq. (40) and Eq. (41);
8. Compute E( i+1) [ log(1 - τk)] and E( i+1) [logτk] using
Eq. (43) and Eq. (44);
9. Compute Pr(i+1)(ξk = 1) and Pr(i+1)(ξk = 0) using Eq. (34)
and Eq. (35);
10. Compute E( i+1) [ξk] using Eq. (42);
11. While ‖x( i+1)

k| k - x( i)
k| k‖ /‖x( i)

k| k‖ ≤ ε, stop iteration;
end for

x̂k| k = x̂(N)
k| k , Pk| k = P(N)

k| k , α̂k = α̂(N)
k , β̂k = β̂(N)

k , ûk = û(N)
k ,

Uk = U(N)
k

Output: x̂k| k, Pk| k, α̂k, β̂k, ûk, Uk

3　 Simulation results and analysis

The simulation experiment scene is set as a typical
two-dimensional plane target tracking. The proposed
VBACKF is compared with cubature Kalman filter
(CKF) [5], variational Bayesian cubature Kalman filter
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( VBCKF ) [9], Bayesian cubature Kalman filter
(BCKF1) [12], posterior distribution Bayesian cubature
Kalman filter (BCKF2) [12], adaptive cubature Kalman
filter (ACKF) [13] and intermittent cubature Kalman fil-
ter (ICKF) [11] . In the above algorithms, ICKF is used
as the standard algorithm, because it has the best filte-
ring accuracy with the correct measurement statistics.
The feasibility and effectiveness of the proposed
VBACKF are verified by comparing multiple metrics.

3. 1　 Simulation model and parameters
The state equation and measurement equation in

the target tracking model are given as

xk =

1 sinωT
ω 0 - 1 - cosωT

ω( )
0 cosωT 0 - sinωT

0 1 - cosωT
ω 1 sinωT

ω
0 sinωT 0 cosωT

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

xk-1 + wk-1

(45)
rk
θk

( ) = x2
k + y2

k

arctan(yk / xk)
é

ë
ê
ê

ù

û
ú
ú+ vk (46)

where xk = [xk, ẋk, yk, ẏk] T is the state vector, xk and
ẋk represents the position and velocity of the target in
the horizontal direction at time k, respectively; yk and
ẏk represents the position and velocity of the target in
the vertical direction at time k, respectively; ω is the
turn rate; T is the sampling interval; wk-1 is the zero-
mean Gaussian process noise vector and its covariance
matrix Qk = diag[qM qM], q is the scalar parame-
ter, M is given by

M = T3 / 3 T2 / 2
T2 / 2 T[ ] (47)

The measurement noisy vector vk is time-varying,
and its covariance matrix changes as

Rk = (0. 1 + 0. 05cos(πk / ts))R′k (48)
where R′k = diag[102 0. 1], ts is the total steps of a
certain Monte Carlo run.

The number of Monte Carlo runsM, the number of
iterations Nm and other simulation experiment parame-
ters are given in Table 1.

Table 1　 Simulation parameters
Parameters Value Parameters Value

ω - 0. 105 rad / s ρ 0. 990
T 0. 01 s η 0. 900
α̂0 5 ε 10 -16

β̂0
5 Nm 30

q 0. 001 M 500
ts 50 s 　 　

3. 2　 Performance metrics
The root-mean square error (RMSE) and the aver-

aged root-mean square error (ARMSE) of the position
are chosen as the performance metrics to evaluate the ac-
curacy of all algorithms, their definitions are as follows.

RMSE = 1
M∑

M

j = 1
((x j

k - x̂ j
k) 2 + (y j

k - ŷ j
k) 2)

(49)

ARMSE = 1
Mts

∑
ts

k = 1
∑
M

j = 1
((x j

k - x̂ j
k) 2 + (y j

k - ŷ j
k) 2)

(50)
where (x j

k, y j
k) and ( x̂ j

k, ŷ j
k) are respectively the true

and estimated position vector of the target at time k in
the jth Monte Carlo run.

In order to evaluate the estimation accuracy of
measurement noise covariance matrix, the square root
of normalized Frobenius norm is selected as the per-
formance metrics.

SRNFN = 1
m2M∑

M

j = 1
‖R̂ j

k - R j
k‖2( )

1
4

(51)

where ‖X‖2 = tr(XXT), R̂ j
k and R j

k represent the es-
timated measurement noise covariance matrix and the
real measurement noise covariance matrix at time k in
the jth Monte Carlo run, respectively.

3. 3　 Simulation results and analysis
Two scenarios are designed to test the performance

of the filter, which are scenario 1 with constant meas-
urement loss probability (P(τk) = 0. 1) and scenario
2 with time-varying measurement loss probability. The
measurement loss probability in scenario 2 changes as
follows.

P(τk) = 0. 1　 k ≤ ts / 2
P(τk) = 0. 2　 k > ts / 2

{ (52)

　 　 Fig. 1 and Fig. 2 show the RMSEs estimated by

Fig. 1　 RMSEs of different filters (scenario 1)
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Fig. 2　 RMSEs of different filters (scenario 2)

seven filtering algorithms in two different scenarios.
Fig. 3 and Fig. 4 show the measurement loss probability
estimated by ACKF and VBACKF in two different sce-
narios.

In order to more intuitively compare the estimation
accuracy of all algorithms, Table 2 shows the ARMSE
from 5 s to 50 s estimated by seven filtering algorithms
in two scenarios.

Table 2　 ARMSE of position estimation

Algorithm ARMSE / m
(scenario 1)

ARMSE / m
(scenario 2)

ICKF 2. 3885 2. 3405
CKF 8. 8224 13. 2584

VBCKF 5. 2956 7. 6571
BCKF1 4. 8727 6. 6668
BCKF2 6. 8639 10. 716
ACKF 3. 7293 3. 7090

VBACKF 3. 2411 3. 1994

Through Table 2, it can be seen that the ARMSE
of VBACKF is 38. 80% higher than that of VBCKF.
This is because VBCKF cannot process random meas-
urement losses, which results in low filtering accuracy.
In addition, the estimation accuracy of BCKF1 and
BCKF2 is 33. 48% and 52. 80% lower than that of
VBACKF, respectively. The reason is that the two fil-
ters rely on the correct prior information. When they
cannot obtain accurate measurement loss prior informa-
tion, the estimation accuracy will decrease significant-
ly. However, the VBACKF algorithm proposed in this
paper can adaptively estimate the measurement loss
probability, as shown in Fig. 3 and Fig. 4. The estima-
tion accuracy of VBACKF is 13. 10% higher than that
of ACKF. As shown in Fig. 5, the measurement noise
used by VBACKF is closer to the real measurement
noise. This is because ACKF cannot solve the problem

of time-varying measurement noise. In addition, the
use of measurement noise covariance with too large de-
viation will also lead to inaccurate corrected measure-
ment noise covariance, which will reduce the accuracy
of the algorithm to estimate the measurement loss prob-
ability, as shown in Fig. 3 and Fig. 4.

Fig. 3　 Measurement loss probability estimation (scenario 1)

Fig. 4　 Measurement loss probability estimation (scenario 2)

Fig. 5　 SRNFN of measurement noise covariance matrix

Fig. 6 and Fig. 7 show the real measurement losses
and estimated measurement losses of 50 steps in a sin-

063 HIGH TECHNOLOGY LETTERS | Vol. 28 No. 4 | Dec. 2022　



gle Monte Carlo simulation under the scenarios with
measurement loss probabilities of 0. 1 and 0. 2, respec-
tively. The circle indicates the true measurement los-
ses, and the dot indicates the estimated measurement
losses. When the circle and the dot coincide, the judg-
ment is correct. The diagram shows that the proposed
VBACKF filter can accurately judge whether the meas-
urement is lost.

Fig. 6　 Measurement loss of truth and judgment( τk = 0.1 )

Fig. 7　 Measurement loss of truth and judgment( τk = 0.2 )

Fig. 8 shows the influence of different sensor
measurement loss probability on VBACKF position esti-
mation. The figure shows that when the sensor meas-
urement loss probability increases from 0. 1 to 0. 5, the

Fig. 8　 RMSE of position target estimation under different
loss probabilities

RMSE increases slowly. The reason is that the proposed
algorithm can estimate the measurement loss probability
in real time, and further modifies the measurement
noise covariance according to the estimation results.
However, the measurement loss probability of the sen-
sor gradually increases to 0. 5, the RMSE value increa-
ses significantly, which is because the measurement
loss occurs more frequently. As shown in Fig. 9, when
the loss probability increases from 0. 5 to 0. 9, the de-
tection success rate of VBACKF decreases sharply,
meanwhile resulting in a significant decrease in the es-
timation accuracy.

Fig. 9　 Success rate of VBACKF detection under different loss
measurement probability

4　 Conclusions

A novel variational Bayesian inference based on
adaptive cubature Kalman filter (CKF) is proposed to
improve the influence of unknown measurement noise
covariance and measurement loss probability on estima-
tion accuracy. In the CKF framework, the VB method
is introduced, and the IW distribution is selected as
the conjugate prior distribution of the measurement
noise covariance matrix. The beta distribution is select-
ed to model the measurement loss probability density
function. The fixed-point iteration method is used to it-
eratively solve the posterior distribution of the coupling
estimated variables. The proposed VBACKF has higher
estimation accuracy, adaptability and robustness than
traditional filtering algorithms. It can be further ex-
tended to group target tracking and extended target
tracking.
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