
　 doi:10. 3772 / j. issn. 1006-6748. 2024. 01. 004

BAR: a branch-alternation-resorting algorithm for locality
exploration in graph processing①

DENG Junyong(邓军勇)∗, WANG Junjie②∗, JIANG Lin∗∗, XIE Xiaoyan∗∗∗, ZHOU Kai∗
(∗School of Electronic Engineering, Xian University of Posts and Telecommunications, Xian 710121, P. R. China)

(∗∗School of Computer, Xian University of Science and Technology, Xian 710054, P. R. China)
(∗∗∗School of Computer, Xian University of Posts and Telecommunications, Xian 710121, P. R. China)

Abstract
Unstructured and irregular graph data causes strong randomness and poor locality of data acces-

ses in graph processing. This paper optimizes the depth-branch-resorting algorithm (DBR), and pro-
poses a branch-alternation-resorting algorithm (BAR). In order to make the algorithm run in parallel
and improve the efficiency of algorithm operation, the BAR algorithm is mapped onto the reconfigu-
rable array processor (APR-16) to achieve vertex reordering, effectively improving the locality of
graph data. This paper validates the BAR algorithm on the GraphBIG framework, by utilizing the re-
ordered dataset with BAR on breadth-first search (BFS), single source shortest paht (SSSP) and
betweenness centrality (BC) algorithms for traversal. The results show that compared with DBR and
Corder algorithms, BAR can reduce execution time by up to 33. 00% , and 51. 00% seperatively. In
terms of data movement, the BAR algorithm has a maximum reduction of 39. 00% compared with the
DBR algorithm and 29. 66% compared with Corder algorithm. In terms of computational complexity,
the BAR algorithm has a maximum reduction of 32. 56% compared with DBR algorithm and
53. 05% compared with Corder algorithm.

Key words: graph processing, vertex reordering, branch-alternation-resorting algorithm
(BAR), reconfigurable array processor

0　 Introduction

Graph processing is widely used in many impor-
tant fields, from social networks to bioinformatics[1],
from power grid management to criminal network detec-
tion[2] , etc. Graph processing is developing rapidly and
deeply. The industry and academia have carried out
some promising research and exploration. However, the
large-scale unstructured and irregular graph data cau-
ses strong randomness and poor locality which limit the
efficiency of graph processing systems. Multiple types of
input graph data make a graph processing system suffer
from input dependencies and show a huge performance
gap.

Conventional wisdom holds that graph algorithms
are inherently random access. Specifically, they have a
strong community structure, corresponding to commu-
nities in the real world. In addition, vertices are more

popular than other vertices in many graphs, so they are
accessed more frequently, and graph algorithms there-
fore provide potential locality[3] . This locality can often
be explored and analyzed through traversal operations,
trarevsal operations are the order in which the vertices
and edges of the graph are processed. However, the ex-
isting locality model runs at the program level of regu-
lar loops and arrays, or runs at the trace level of arbi-
trary access streams, so they are not sufficient to char-
acterize the relationship between locality and connec-
tivity. The efficiency of graph computing depends heav-
ily on the bandwidth between processors, because the
graph structure is sent over the network after each iter-
ation. Although much data may remain the same be-
tween iterations, the data must be reloaded and repro-
cessed with each iteration, fetching a high computa-
tional ratio. This results in unnecessary I / O, poor data
locality, wasted network bandwidth and processor re-
sources.

　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024 | pp. 31-42

①

②

Supported by the National Key R&D Program of China (No. 2022ZD0119001), the National Natural Science Foundation of China (No.
61834005), the Shaanxi Province Key R&D Plan (No. 2022GY-027), the Key Scientific Research Project of Shaanxi Department of Education
(No. 22JY060), the Education Research Project of XUPT (No. JGA202108)and the Graduate Student Innovation Fund of Xian University of
Posts and Telecommunications (No. CXJJZL2022011).
To whom correspondence should be addressed. Email:wangjunjie9706@ 163. com.
Received on May. 6, 2023

In order to alleviate the problem of low graph pro-
cessing efficiency, previous work has designed different
graph processing accelerators[4] to improve graph pro-
cessing efficiency. However, graph processing accelera-
tors often only effectively accelerate some graph calcu-
lations, and often cannot achieve the acceleration effect
when faced with other graph data or graph calculations.
Therefore, Researchers have focused on the prepro-
cessing of graph data for acceleration. By mining the lo-
cality of graph data in graph processing, a good accel-
eration effect is achieved. In recent years, a large num-
ber of algorithmic ideas have emerged around the pre-
processing of graph data, including popular graph par-
titioning algorithms[5] and graph vertex reordering algo-
rithms[6] . This paper will preprocess graph data in
graph processing based on the idea of reordering graph
vertices to alleviate the problem of poor locality of
graph data. Because breadth-first search (BFS) [7] and
depth-first search (DFS) [8] are the two most widely
used traversal methods in graph data sorting, they can
effectively optimize the locality of most graph data. Due
to the fact that some vertices in graph data are more
popular and accessed more frequently than others, in
the previous work, the traversal advantages of BFS and
DFS are to propose a depth-branch-resorting algorithm
(DBR) [9], which effectively alleviates the problem of
poor locality of graph data in graph processing. Howev-
er, after a large number of analysis and experiments,
vertices in graph data have a strong community struc-
ture. How to maximize the mining of graph data locality
will be the focus of this paper.

In order to alleviate the problem of poor locality of
graph data in the process of graph processing , this pa-
per optimizes the DBR, and proposes a branch-alterna-
tion-resorting algorithm (BAR). The BAR algorithm is
mapped onto the reconfigurable array processor (APR-
16) [10], effectively alleviating the challenges of poor
graph data locality and high memory access processing
rate. Finally, the results are applied to the Graph-
BIG[11] framework to verify and analyze the results.

In this paper, Section 1 introduces and analyzes
the development status of graph computing in recent
years. In Section 2, the BAR algorithm is proposed and
its traversal method is introduced. Section 3 introduces
the mapping scheme of the BAR algorithm on APR-16.
In Section 4, the performance of the BAR algorithm
and the mapped scheme is evaluated. In Section 5, the
paper is summarized.

1　 Background and motivation

In recent years, many important issues in social

network analysis, artificial intelligence, business anal-
ysis[12], and computational science require graph pro-
cessing. However, optimizing the locality problem of
graph processing is a challenging task[13] due to the
size of large graphs and the inherently irregular struc-
ture of graphs. Based on this, many researchers have
carried out in-depth research on it. Combining the stor-
age characteristics, memory accesses characteristics,
and data locality of different processing platforms, re-
searchers improve the locality by designing correspond-
ing data organization formats, graph vertex reordering
scheme and graph partitions.

The graph reordering algorithm optimizes the data
layout and calculation order by changing the index or-
der of vertices without changing their underlying con-
nections, and improves the locality of graph data ac-
cess and processing. The graph reordering algorithm
can accelerate a large number of mainstream graph al-
gorithms without modifying each algorithm itself. Com-
plex graph reordering algorithms greatly speed up graph
processing while incurring significant computational
overhead.

Ref. [14] introduced a new metric that quantifies
cache data reuse, resulting in a heuristic pH value that
enhances temporal locality in the memory access pat-
terns (MAP) of the graph algorithm. A concept of dy-
namically matching MAP and cache content is defined,
which can jointly maximize cache data reuse and cache
line utilization. Ref. [15] rearranged the vertices in
the graph in decreasing order(referred to as degree sor-
ting),which was thoroughly motivated and described as
RADAR. This is a system that combines duplication
and reordering into a single graph processing optimiza-
tion, reaping the benefits and eliminating the costs of
both. RADAR improves performance of graph applica-
tions by reducing the number of atomic updates and
improving locality of memory accesses.

The bounded depth first scheduling (BDFS) pro-
posed by Ref. [3] is an online locally aware scheduling
strategy. A hardware accelerated traversal scheduler
(HATS) is designed to improve graph locality. Ref. [16]
proposed a cache simulation technique for processing
large graphs and a spatial location metric called neigh-
bor to neighbor average ID distance to investigate how
graph reordering algorithms affect the positions of dif-
ferent vertices. Ref. [6] proposed a community aware
reordering (CAR) algrithm, which finds the communi-
ty structure using breadth-first traversal and takes ad-
vantage of the power-law nature exhibited by real-world
graphs by coarsely binning them into different groups to
preserve the explored graph structure.

Ref. [17] proposed a cache aware graph reorde-

23 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

ring algorithm called Corder, which implements paral-
lelism by using a dynamic scheduler to unroll loops. In
other words, loop iterations are dynamically allocated
to each thread to achieve workload balancing. Based on
a dynamic scheduling strategy, the Corder algorithm
further fine-tunes the computational cost of each itera-
tion through graph reordering.

In order to alleviate the problem of poor locality of
graph data during graph processing, based on the idea
of graph vertex reordering algorithm, this paper optimi-
zes the DBR[9], and proposes BAR algorithm. The
BAR algorithm is mapped onto the reconfigurable array
(APR-16) [18] to achieve parallel acceleration of algo-
rithm operation.

2　 The BAR algorithm

2. 1　 The DBR algorithm
Distributed graph processing systems increase lo-

cality by studying data organization formats, resorting
graph data, or dividing graphs. Sophisticated graph re-
sorting techniques can effectively reduce the runtime of
graph applications, but the resorting step also brings
corresponding computational overhead. DBR combines
the advantages of hierarchical community mining and
deep community mining, and can reduce the computa-
tional overhead of data preprocessing and algorithm op-
eration.

In hierarchical locality community mining, locality
mining is performed hierarchically until the entire
graph is fully traversed. In depth locality community
mining, the locality of graph data is mined branch by
branch of a specified depth, and then other branches
are explored until the entire graph is completely trav-
ersed.

To achieve the above-mentioned purpose, the
DBR algorithm comprises two parts: the first part is
conducted through hierarchical local community min-
ing, with the ability to automatically adjust the number
of layers for partitioning; the second part involves a
depth-first traversal based on the branches of the nodes
identified in the first part. The fundamental idea is as
follows: conduct hierarchical traversal on the source
node s and keep track of the traversed layers. When
the specified number of layers is reached, perform a
depth-first traversal on the remaining graph data. The
process diagram of the DBR algorithm is illustrated in
Fig. 1.

2. 2　 The BAR algorithm
In order to reduce the amount of computation and

execution time of graph data processing during graph
processing, this paper optimizes the DBR algorithm,
aiming to further explore the community locality of
graph data. In this paper, combining the advantages of
breadth first search and depth first search, and based
on the characteristics of different graph data, corre-
sponding traversal levels will be specified to alternately
perform breadth first search and depth first search to
realize the improvement of local differences in graphics
data.

(a)Sample graph

(b)DBR tree

(c)DBR ordering of a layer of child nodes
Fig. 1　 DBR algorithm vertex reordering process

In order to achieve the above objectives, the idea
adopted in this paper is to first use the breadth first
search traversal method for the source node s. After
reaching the specified number of layers, the first node j
of the last layer previously traversed is traversed using
the depth first search traversal method. After reaching
the specified number of layers, the last node is used as
the source node to continue the breadth first search.
After reaching the specified number of layers, perform
a depth first search on the vertices of that number of
layers at once. After all traversal of node j is comple-
ted, start traversing other nodes in the same manner.

33　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024

As shown in Fig. 2, an example of 36 vertices is
shown. This paper sets the number of breadth first
search layers to 1, and the number of depth first search
layers is set to 2. Start traversing from source node 1,
and first perform a breadth-first search. Traverse nodes
2, 3, and 4 in turn. Then, starting with node 2 as the
source node, a depth first search is performed through
two layers, traversing nodes 5 and 6. Conduct a layer of
breadth first search with node 6 as the source node.
Perform a depth first search on nodes 17, 18, and 19
in turn. After that, the other branches of node 2 are
traversed in the same manner. After the traversal of node
2 is completed, the other child nodes of node 1 are trav-
ersed in the same manner. The example graph traversal
vertex order in Fig. 2(a)is shown in Fig. 2(b).

(a)36-node example diagram

(b)Example graph vertex traversal order
Fig. 2　 BAR algorithm vertex reordering process

3　 Mapping of BAR on APR-16

BAR algorithm is a serial algorithm, which often
takes a long time to be executed and has low efficiency
when processing large graph data. The problem of poor
locality of graph data during graph processing is diffi-
cult to effectively solve. To solve the problem of low
runtime efficiency of software algorithms, this paper
conducts parallel analysis of the algorithm and maps it
onto the reconfigurable array (APR-16) [19] . By activa-
ting multiple processing element(PE) pairs simultane-

ously, the algorithm can run in parallel to improve the
efficiency of the algorithm.

3. 1　 The reconfigurable array
The processing core of the reconfigurable video ar-

ray processor is a PE array composed of 16 PEs. The
PE array is mainly used to perform processing func-
tions. At the same time, each PE corresponds to a data
bank, and 16 distributed data banks are used to cache
the intermediate results generated by the calculation.
The global unified addressing method is adopted, and
the row and column two-level switching unit is used to
achieve PE access to any data bank.

A single cluster reconfigurable array processor
consists of one 4 × 4 PE array, 16 distributed data
banks, H-tree[19] instruction transmission network, in-
put first in first out(FIFO), output FIFO, instruction /
data distribution controller, data recovery controller,
status register, input data buffer, output data buffer,
frame buffer, and array data judgment unit. The overall
structure is shown in the Fig. 3.

The 4 × 4 PE array is mainly used to perform pro-
cessing functions. The 16 distributed data banks are
used to cache intermediate results generated by calcu-
lations. The input data FIFO is used to cache data in-
formation from the upper computer, and the output da-
ta FIFO is used to send the results of the internal cal-
culation of the chip to the upper computer. The input
data buffer is used to store the code blocks to be pro-
cessed, the output data buffer is used to store the data
blocks after the calculation is completed, and the frame
buffer is used to store the reference frame pixels re-
quired for the next frame after the calculation is com-
pleted. The status register is composed of three control
bits, namely I, D, and C. I is used to indicate that the
currently transmitted instruction information; D is used
to indicate that the currently transmitted is coded block
data information; C is used to configure the test circuit
and read out the initialized configuration information
from the test circuit.

3. 2　 Algorithm mapping scheme
Due to the large amount of graph data and strong

community in the graph calculation process, the main
issues affecting the energy efficiency of graph calcula-
tion are the large amount of graph data. Therefore, in
the process of algorithm mapping, this paper divides the
mapping process into two parts: graph data preprocess-
ing and reordering, aiming at the performance impact of
the large amount of graph data on the algorithm.
3. 2. 1　 Preprocessing of graph data

To mitigate the impact of a large graph dataset on

43 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

Fig. 3　 Graph data preprocessing PE mapping diagram

the reordering process, this paper allocates 14 PEs to
preprocess all vertices in the graph dataset, as shown

in Fig. 4. Find the adjacent points of all nodes, and
store the found node information in FRAME.

Fig. 4　 Graph data preprocessing PE mapping diagram

　 　 In APR-16, PE33 is responsible for cyclically
reading graph data (CR), PE32 is responsible for as-
sign nodes (AN), and the remaining PEs are responsi-
ble for search nodes (SN). PE33 connects input buffer,
frame, and output buffer. Iterate through PE33 to re-
trieve data. PE32 finds all adjacent points of the source
node, and stores the node in FRAME. After that, PE32
is responsible for sending unprocessed nodes to the re-

maining 14 PEs, and each PE finds all adjacent points
of each allocation node by looking for the data input in
the loop in PE33. After all PEs have processed a set of
vertex data, the data is stored in FRAME, and the
PE32 resends the new unprocessed node data, repeating
the work. When the graph dataset has a large amount of
data, the data in FRAME is output to external storage
through PE33. The preprocessing of graph data is comple-

53　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024

ted until all neighbor nodes are found for each vertex in the graph data. The flowchart is shown in Fig. 5.

Fig. 5　 Graph data preprocessing mapping flowchart

3. 2. 2　 Vertex reordering
After the data and processing are completed, the

adjacent point information of each vertex in the graph

dataset is in FRAME, and begin the reordering
process. The functional structure design of PE is shown
in Fig. 6.

Fig. 6　 Vertex reordering PE mapping diagram

　 　 In Fig. 6, PE33 is responsible for transmitting da-
ta (TD), PE32 for BFS vertex traversal based on the
source node, PE30 and PE31 for data distribution, and
the remaining PEs are responsible for vertex traversal
(TR). PE33 transmits the data required by each PE

from the FRAME and external memory. After the algo-
rithm starts executing, PE30 first starts traversing the
original vertices in BFS traversal mode. When the spec-
ified number of layers is reached, the traversal results
are stored in FRAME, and all vertices within the cur-

63 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

rent number of layers are placed in the data bank.
PE30 and PE31 distribute the vertex data in the bank
to 12 PEs, and begin alternating depth and breadth
traversal. In traversing the PE, the reordering of the
branches starts with the received node as the source
node. After the sorting is completed, the processing re-
sult is sent to the frame buffer, and an end signal is

sent to PE30 and PE31. Wait for PE30 and PE31 to
send a new node and restart the traversal. After all
nodes in PE30 and PE31 have been distributed and
traversed, the algorithm will be executed, and the re-
ordered vertices can be taken out in FRAME. The flow-
chart of vertex reordering is shown in Fig. 7.

Fig. 7　 Vertex reordering mapping flowchart

4　 Experimental results and analysis

4. 1　 Experiment setup
This paper selects the graph processing framework

GraphBIG[10] for testing and validation. GraphBIG is a
graph benchmarking effort initiated by Georgia TechHP
Arch, which is a comprehensive set of graph processing

tools and solutions for big data. GraphBIG includes rep-
resentative benchmarks for both CPU and GPU to
achieve an overall view of general graph processing.
Fig. 8 shows the overall design of a verification scheme
based on the GraphBIG framework.

The experiments in this paper are performed on an
HPE580 high-performance server equipped with an In-
ter(R)Xeon(R)Platinum 8164 CPU. With 208 physi-

73　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024

cal cores and 416 threads, each core has a 32 kB L1-
level data cache, a 32 kB L1-level instruction cache, a
1 024 kB L2-level cache, and a 36 608 kB L3-level
cache, with a memory size of 1 TB, running Linux ker-
nel 4. 15. 0 system. In order to test more accurately, the

ubuntu16. 04 version is installed on the server, and the
compiler is gcc 5. 5. 0 version. This chapter uses the e-
valuation tool Perf to perform parameter statistics on dif-
ferent real graph data onto performance events of trav-
ersal applications based on GraphBIG.

Fig. 8　 GraphBIG framework verification scheme design

4. 2　 Experimental results
The graph data set used in the paper is selected

from the Stanford Network Analysis Platform (SNAP).
SNAP[20] dataset includes feather-deezer-social (De-
ezer), Wiki-Vote (Wiki)of social networks, ca-Astro-
Ph (CA) in Collaboration networks, Soc-brightkite
(Bright), Soc_gemsec_HU (HU) and Soc_gemsec_
HR (HR)of social networks in the network data repos-
itory with interactive graph analytics and visualization
dataset[21] . Table 1 lists the information for the node
scale and edge scale of the selected graph dataset. Five
algorithms of BFS, DFS, DBR[8], Corder[18] and BAR
are used to preprocess six different graph datasets, and
the preprocessing results are applied to the three trav-
ersal algorithms based on BFS, single source shortest
path (SSSP) and betweenness centrality (BC), and
Perf tools are used for parameter statistics.

Table 1　 Dataset information
Nodes Edges

Deezer 28 281 92 752
Wiki 7 115 103 689
CA 18 772 198 110

Bright 56 739 212 945
HU 47 538 222 887
HR 54 572 498 202

After experimental comparison, it is found that
with the increase of algorithm complexity, the more
breadth-first search layers and depth-first search lay-
ers, the better the acceleration effect. When the dataset
size is large, the more depth-first search layers, the
better the acceleration effect. In the BFS algorithm and

SSSP algorithm, BAR sets the number of breadth first
search layers to 1, and the number of depth first search
layers to 2 for the best results. In the BC algorithm,
BAR sets the number of breadth first search layers to
2, and the number of depth first search layers to 3 for
the best results.
4. 2. 1　 Execution time

The graph dataset selected in this paper is sorted
by BFS, DFS, DBR, Corder, and BAR algorithms,
and implemented in three traversal algorithms: BFS,
SSSP, and BC. The execution time of each edge is
counted. The three sorting results for traversal applica-
tions specifically show that after BAR sorting, each
edge have the least execution time, followed by the
DBR algorithm, and the effect of the Corder algorithm
is worse than the first two. It has been proved that reor-
dering and adjusting the data can effectively reduce the
time between memory accesses and optimize locality,
with the best optimization effect of BAR algorithm.

As shown in Fig. 9, in the application of BFS al-
gorithm, the execution time of HR dataset sorted by
BAR algorithm is 33. 64% shorter than DBR algo-
rithm, and the execution time of HR dataset sorted by
Corder algorithm is 27. 00% shorter than HR dataset
sorted by BAR algorithm. The execution time of Wiki
dataset sorted by BAR algorithm is 16. 67% shorter
than DBR algorithm, and 37. 50% shorter than Corder
algorithm. Compared with DBR algorithm, the execu-
tion time of HU data set after BAR algorithm is short-
ened by 8. 42% , and the execution time of HU data
set after Corder algorithm is increased by 1. 16% .

As shown in Fig. 10, in SSSP algorithm applica-
tions, the execution time of Wiki dataset sorted by
BAR algorithm is 30. 65% shorter than DBR algo-

83 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

rithm, and 39. 44% shorter than Corder algorithm. The
execution time of the HU dataset sorted by the BAR al-
gorithm is 2. 94% shorter than DBR algorithm, and the
execution time is 3. 13% longer than Corder algorithm.

Fig. 9　 The execution time of different vertex sorting
methods on the BFS algorithm

Fig. 10　 The execution time of different vertex sorting
methods on the SSSP algorithm

Due to the high complexity of the BC algorithm,
the execution time of each edge is also long. As shown
in Fig. 11, in the BC algorithm application, the execu-
tion time of Wiki dataset sorted by the BAR algorithm
is 25. 90% shorter than DBR algorithm, and the exe-
cution time is 33. 51% shorter than Corder algorithm.
The execution time of Bright dataset sorted by BAR al-
gorithm is 24. 39% shorter than DBR algorithm, and
51. 56% shorter than Corder algorithm. The execution
time of HU dataset sorted by BAR algorithm is
15. 87% shorter than DBR algorithm, and 5. 36%
shorter than Corder algorithm.

From the above analysis, it can be seen that the
BAR algorithm can effectively reduce the execution
time of each edge. The maximum reduction is 37. 50%
compared with the DBR algorithm and 51. 56% com-
pared with the Corder algorithm.
4. 2. 2　 Data movement

Six different graph datasets are sorted through
BFS, DFS, DBR, Corder, and BAR algorithms, and

then implemented in BFS, SSSP, and BC traversal al-
gorithms. After that, data movement is counted. From
the overall trend, the data movement amount of each
side of the BC algorithm is higher than that of the BFS
and SSSP algorithms. The three sorting results for trav-
ersal applications specifically show that after BAR sor-
ting, the amount of data movement of the algorithm has
been significantly reduced.

Fig. 11　 The execution time of different vertex sorting
methods on the BC algorithm

As shown in Fig. 12, in the application of BFS al-
gorithm, data movement of Wiki data set after BAR al-
gorithm sorting is reduced by 37. 37% compared with
DBR algorithm, and data movement after Corder algo-
rithm sorting is reduced by 24. 85% . Compared with
DBR algorithm, the data movement volume of Bright
dataset after BAR algorithm sorting is 21. 18% lower
than that after DBR algorithm sorting, and 26. 77%
lower than that after Corder algorithm sorting. The data
movement of HR data set after BAR algorithm sorting is
22. 53% lower than that after DBR algorithm sorting,
and 4. 18% higher than that after Corder algorithm sor-
ting.

Fig. 12　 The amount of data movement of different vertex
sorting methods on the BFS algorithm

As shown in Fig. 13, in the application of SSSP
algorithm, the data movement of HU dataset after sor-
ting by BAR algorithm is reduced by 23. 27% com-
pared with DBR algorithm, and 10. 26% lower than
Corder algorithm. The data movement of HR dataset af-

93　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024

ter sorting by BAR algorithm is reduced by 9. 62%
compared with DBR algorithm, and 1. 91% lower than
Corder algorithm.

Fig. 13　 The amount of data movement of different vertex
sorting methods on the SSSP algorithm

As shown in Fig. 14, in the application of BC al-
gorithm, the data movement volume of CA data set af-
ter BAR algorithm sorting is reduced by 39. 00% com-
pared with that after DBR algorithm sorting, and that
after Corder algorithm sorting is reduced by 29. 66% .
The data movement of HR data set after BAR algorithm
sorting is 4. 95% lower than that after DBR algorithm
sorting, and 1. 08% higher than that after Corder algo-
rithm sorting.

Fig. 14　 The amount of data movement of different vertex
sorting methods on the BC algorithm

From the above analysis, it can be seen that com-
pared with DBR algorithm, BAR algorithm can effec-
tively reduce the amount of data movement of the algo-
rithm by up to 39. 00% . Compared with Corder algo-
rithm, BAR algorithm has a significant optimization
effect in some data sets, with a maximum reduction of
29. 66% in data movement.
4. 2. 3　 Amount of computation

Six different graph datasets are sorted through
BFS, DFS, DBR, Corder, and BAR algorithms, and
then implemented in three traversal algorithms: BFS,
SSSP, and BC. After that, the calculation amount of
each edge is counted. The calculation amount is closely
related to the number of instructions, the number of
loaded and stored instructions. From the overall trend

analysis in the graph, the calculation amount imple-
mented in traversal class applications for the dataset
through the three sorting methods is relatively large,
especially on the BC algorithm, the calculation amount
of each side is higher than that of BFS and SSSP algo-
rithms.

As shown in Fig. 15, in the application of the BFS
algorithm, the computational complexity of the CA
dataset sorted by BAR algorithm is 14. 71% lower than
DBR algorithm, and 38. 29% lower than Corder algo-
rithm. The calculation amount of HU dataset sorted by
BAR algorithm is 26. 31% lower than DBR algorithm,
and 27. 36% lower than Corder algorithm.

Fig. 15　 The amount of computation for different vertex sorting
methods on the BFS algorithm

As shown in Fig. 16, in the SSSP algorithm appli-
cation, the calculation amount of the CA dataset sorted
by the BAR algorithm decreases by 20. 99% compared
with DBR algorithm, and the calculation amount de-
creases by 44. 75% compared with Corder algorithm.
After sorting the Bright dataset using the BAR algorithm,
the computational complexity is reduced by 32. 56% com-
pared with DBR algorithm, and by 43. 47% compared
with Corder algorithm.

Fig. 16　 The amount of computation for different vertex
sorting methods on the SSSP algorithm

As shown in Fig. 17, in the application of BC al-
gorithm, the calculation amount of Deezer dataset sor-
ted by BAR algorithm is 21. 98% lower than DBR al-

04 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

gorithm, and 44. 96% lower than Corder algorithm. Af-
ter sorting the HR dataset using the BAR algorithm,
the computational complexity is reduced by 25. 96%
compared with DBR algorithm, and by 26. 55% com-
pared with Corder algorithm.

Fig. 17　 The amount of computation for different vertex
sorting methods on the BC algorithm

From the above analysis, it can be seen that BAR
algorithm can effectively reduce the computational com-
plexity. The maximum reduction is 32. 56% compared
with DBR algorithm and 44. 96% compared with Cor-
der algorithm.

Through the analysis of experimental results, in a
few cases, the execution time of BAR algorithm is
greater than Corder algorithm. The amount of data
movement is higher than that of the Corder algorithm.
However, it can be found that after the graph dataset is
preprocessed by the BAR algorithm, it can effectively
reduce the execution time, reduce the amount of data
movement and calculation of the algorithm. Therefore,
it can be concluded that the BAR algorithm can effec-
tively alleviate the problem of poor locality of graph da-
ta in the process of graph calculation.

5　 Conclusions

This paper focuses on the problem of poor locality
of graph data in graph computation. Based on the idea
of graph vertex reordering and the DBR algorithm, this
paper proposes a BAR algorithm. And map the BAR al-
gorithm onto a reconfigurable video array for accelera-
tion. The experimental results show that compared with
previous algorithms, BAR algorithm achieves signifi-
cant improvements in performance such as execution
time, data movement, and computational complexity,
effectively alleviating the bottleneck caused by poor lo-
cality of graph data. However, the unstructured and ir-
regular nature of large-scale graph data remains a huge
challenge for graph computing. In future research work,
the idea of reordering graph vertices remains an impor-
tant approach to solving these problems. At the same
time, the reconfigurable graph computing accelerator

will also be one of the important directions to solve the
bottleneck of graph computing.

References
[1] SAKR S, BONIFATI A, VOIGT H, et al. The future is

big graphs: a community view on graph processing systems
[J]. Communications of the ACM, 2021, 64(9): 62-71.

[2] WANG X, LIU K, LU W, et al. A fast cycle detection
method for power grids based on graph processing [J].
CSEE Journal of Power and Energy Systems, 2023 (9):
2204-2213.

[3] MUKKARA A, BECKMANN N, ABEYDEERA M, et al.
Exploiting locality in graph analytics through hardware-ac-
celerated traversal scheduling [C] / / 2018 51st Annual
IEEE / ACM International Symposium on Microarchitecture
(MICRO). Fukuoka, Japan: IEEE, 2018: 1-14.

[4] LEE J, AMORNPAISANNON B, MITRA T, et al. Graph-
Wave: a highly-parallel compute-at-memory graph process-
ing accelerator[C] / / 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE). Antwerp, Bel-
gium: IEEE, 2022: 256-261.

[5] AWADELKARIM A, UGANDER J. Prioritized restreaming
algorithms for balanced graph partitioning [C] / / Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. New York, USA:
Association for Computing Machinery, 2020: 1877-1887.

[6] SINGHANIA S, SHARMA N, VENKITARAMAN V, et
al. CAR: community aware graph reordering for efficient
cache utilization in graph analytics[C] / / VLSI Design and
Test: 26th International Symposium. Jammu, India:
Springer, 2022: 453-467.

[7] GREEN O. Inverse-deletion BFS-revisiting static graph
BFS traversals with dynamic graph operations[C] / / 2021
IEEE High Performance Extreme Computing Conference
(HPEC). Waltham, USA: IEEE, 2021: 1-7.

[8] CHAKRABORTY S, ENGELS C. Lower bounds for lexico-
graphical DFS data structures [C] / / 2022 Data Compres-
sion Conference (DCC). Snowbird, USA: IEEE, 2022:
449-449.

[9] JIANG L, FENG R, WANG J, et al. DBR: a depth-
branch-resorting algorithm for locality exploration in graph
processing[C] / / 2022 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference
(APSIPA ASC). Chiang Mai, Thailand: IEEE, 2022:
178-184.

[10] XIAO Y, SHAN R, YE Z, et al. APR-16: the physical
design of a reconfigurable array processor chip[C] / / 2022
7th International Conference on Integrated Circuits and
Microsystems (ICICM). Xian, China: IEEE, 2022:
422-429.

[11] NAI L, XIA Y, TANASE I G, et al. GraphBIG: under-
standing graph computing in the context of industrial solu-
tions[C] / / Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis. Austin, USA: IEEE, 2015: 1-12.

[12] KUMAR P, HUANG H H. Graphone: a data store for re-
al-time analytics on evolving graphs[J]. ACM Transac-
tions on Storage (TOS), 2020, 15(4): 1-40.

[13] GUI C Y, ZHENG L, HE B, et al. A survey on graph
processing accelerators: challenges and opportunities[J].

14　 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024

Journal of Computer Science and Technology, 2019, 34:
339-371.

[14] LAKHOTIA K, SINGAPURA S, KANNAN R, et al. Re-
call: reordered cache aware locality based graph process-
ing[C] / / 2017 IEEE 24th International Conference on
High Performance Computing (HiPC). Jaipur, India:
IEEE, 2017: 273-282.

[15] BALAJI V, LUCIA B. Combining data duplication and
graph reordering to accelerate parallel graph processing
[C] / / Proceedings of the 28th International symposium on
high-performance parallel and distributed computing. New
York, USA: Association for Computing Machinery,
2019: 133-144.

[16] ESFAHANI M K, KILPATRICK P, VANDIERENDON-
CK H. Locality analysis of graph reordering algorithms
[C] / / 2021 IEEE International Symposium on Workload
Characterization (IISWC). Storrs, USA: IEEE, 2021:
101-112.

[17] CHEN Y A, CHUNG Y C. Workload balancing via graph
reordering on multicore systems[J]. IEEE Transactions
on Parallel and Distributed Systems, 2021, 33 (5):
1231-1245.

[18] CHEN Y A, CHUNG Y C. Workload balancing via graph
reordering on multicore systems[J]. IEEE Transactions
on Parallel and Distributed Systems, 2021, 33 (5):

1231-1245.
[19] DENG J, JIANG L, ZHU Y, et al. HRM: H-tree based

reconfiguration mechanism in reconfigurable homogeneous
PE array[J]. Journal of Semiconductors, 2020, 41(2):
45-53.

[20] LESKOVEC J, KREVL A. SNAP datasets: stanford large
network dataset collection [EB / OL]. (2014-06-30)
[2023-05-06]. http: / / snap. stanford. edu / data.

[21] ROSSI R, AHMED N. The network data repository with
interactive graph analytics and visualization [C] / / Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence. Austin, USA: AAAI Press, 2015: 1-6.

DENG Junyong, born in 1981. He received his
Ph. D degree in system design of integrated circuit, at
School of Microelectronics, in Xidian University in
2015. He visited the Laboratory of Computer Architec-
ture of ECE, the University of Texas at Austin, as a
post-doctoral researcher for one year and a half. His
current research interests include ASIC design, recon-
figurable computing, graph processing accelerator de-
sign, and performance evaluation of high-performance
computing systems.

24 HIGH TECHNOLOGY LETTERS | Vol. 30 No. 1 |Mar. 2024　

