基于统计数据分析的英国科研活动特征 及科学产出特点

李振兴

(中国科学技术发展战略研究院,北京 100038)

摘 要: 2011 年, 英国国内研发总投入为 274 亿英镑, 占 GDP 的 1.79%, 达到近 10 年的最好水平; 研 发经费主要来自企业、政府、海外和大学, 其中, 企业占 46%; 企业使用经费占总经费的 63%, 高等院校 使用经费占 26%。研究发现, 英国 25% 的职工持有高等教育资格; 制药领域研发强度最大, 为 38.9%; 英国的论文引用率每年增长 7.2%, 高于世界平均水平; 在全球 1% 的高引用论文中, 英国占 13.8%, 仅次 于美国。分析显示, 英国科学产出具有研究质量和效率高、研究领域全面、知识流动活跃、国际合作产出 较高但专利申请低等特点。我国与英国在科学研究合作方面具有良好的基础, 应充分利用英国领先的 科学研究资源带动我国科学研究整体水平的提升。

关键词:英国;科研活动;科学产出;统计数据;国际比较

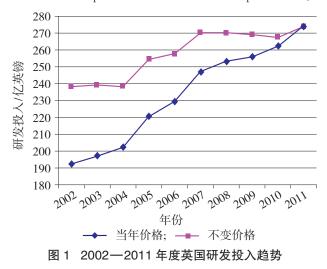
中图分类号: G325.61 文献标识码: A DOI: 10.3772/j.issn.1009-8623.2014.08.001

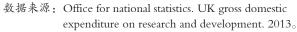
近年来,中英两国科技合作发展迅速。2013 年,中英两国政府签署协议,宣布将成立中英科学 与创新基金,两国政府将各出资1亿英镑,支持在 研究和创新方面开展双边合作。^[1] 2014 年 6 月 17 日, 两国政府签订了中英科学与创新基金首批项目实 施方案,科学与创新基金首批项目总计投入超过 5000万英镑,将面向解决全球气候变化、长期可 再生能源供应以及人类疾病等重大全球性问题支持 中英开展合作研发。^[2]中英科学与创新基金的提出 和实施,标志着中英两国科学与创新合作取得了新 的进展。本文结合最新统计数据,从研发投入、经 费来源、经费使用、科研队伍和企业研发等6个方 面,分析了英国科研活动的主要特征,并结合国际 比较研究数据,总结了英国科学产出的几个特点, 包括研究质量和效率高、研究领域全面、专利申请 低、知识流动活跃、国际合作产出较高等,以为我 国科研人员进一步了解英国科研活动特征及科学产 出特点,深入了解英国科技发展现状并推动中英科 学与创新合作提供参考。

1 科研活动的主要特征^[3]

1.1 研发投入

根据英国国家统计局 2013 年 3 月 18 日公布的数 据显示,2011 年,英国国内研发总投入(GERD)^① 为 274 亿英镑,占 GDP 的 1.79%,比 2010 年有所上 升(2010 年为 1.77%)。按当年价格计算,2011 年 的总投入比 2010 年增长 5%(2010 年为 262 亿英 镑)。如果按不变价格计算,2011 年的研发总投 入要比 2010 年增长 2%(见表 1、图 1)。其中, 民口为 253 亿英镑(按当年价格计算比 2010 年 增长 5%),军口为 20 亿英镑(按当年价格计算 比 2010 年增长 5%)。


作者简介: 李振兴(1980—), 男, 博士, 副研究员, 主要研究方向为科技和创新政策、技术预测与路线图以及农业科技。 **收稿日期:** 2014-06-24


① the UK's gross domestic expenditure on research and development.

-10	1 2002 2		
年份	研发投入/百万英镑		GERD 占 GDP
平历	当年价格	不变价格	的比例/%
2002	19 243	23 874	1.77
2003	19 727	23 946	1.71
2004	20 242	23 867	1.67
2005	22 106	25 482	1.72
2006	22 993	25 811	1.70
2007	24 696	27 049	1.72
2008	25 345	27 022	1.78
2009	25 632	26 923	1.81
2010	26 179	26 738	1.77
2011	27 383	27 383	1.79
ツロナゴ			

表 1 2002—2011 年英国研发	む投入
---------------------	-----

数据来源: Office for national statistics. UK gross domestic expenditure on research and development. 2013。

无论是按当年价格(current prices)还是按不 变价格(constant prices)计算,2011年,英国研发 投入都是近 10年的最好水平。从GERD占GDP 的比重来看,2011年为1.79%,也仅低于2009年 的1.81%。^[4]如果考虑2009年英国经济经历了有记 载历史以来的最大程度的衰退(比2008年下降了 4.9%)这一背景,比较而言,英国2011年GERD 占GDP的比例是比较高的。即便如此,如果从国 际比较的视角,英国GERD占GDP的比例较欧盟 平均水平低。^[5]

1.2 经费来源

从经费来源看,英国研发经费主要包括来自企 业、政府、海外和大学等的投入。企业(Business Enterprises)为125.6亿英镑,政府(Government, 这里主要指政府各部门的直接研发经费投入)为 31.2 亿英镑, 研究理事会 (Research Councils, 这部分经费实际上也来自政府)为29.4亿英镑, 高等教育基金管理委员会(Higher Education Funding Councils, 这部分经费实际上也来自政府) 为 22.6 亿英镑, 高等院校 (Higher Education, 这部分经费主要是大学自身投入的研发经费) 为 3.17 亿英镑, 非营利机构 (Private Non-profit) 为13.1亿英镑,海外资金为48.6亿英镑,其各部 分所占比例见图 2 所示。可见,英国研发经费来 源,按照投入比例主要来自于企业、政府(包括, 政府直接投入、研究理事会、高教基金管理委员 会等3部分经费,占总投入的30%)、海外资金、 非营利机构和大学。

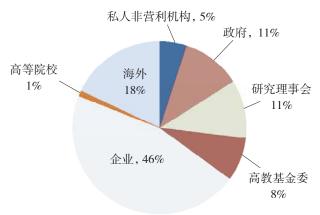


图 2 2011 年英国研发经费不同来源所占比例 数据来源: Office for national statistics. UK gross domestic

expenditure on research and development. 2013_o

1.3 经费使用

从经费使用来看,2011年,英国企业使用经费174.1亿英镑(其中,民口为155.6亿英镑,军口为18.5亿英镑),占总投入经费的63%;高等院校使用经费71.3亿英镑(其中,民口为70.9亿英镑,军口为0.4亿英镑),政府使用经费13.1亿英镑(其中,民口为11.5亿英镑,军口为1.6亿英镑),研究理事会使用经费10.4亿英镑,私营非营利机构使用经费4.96亿英镑(其中,民口为4.94亿英镑,军口为0.02亿英镑),其各部分

所占比例见图 3 所示。所以,从经费使用的比例顺 序来看,主要是企业、大学、政府(政府各部门所 属的公共研究机构)、研究理事会(主要是指所属 的研究机构)、以及非营利研究机构。

图 3 2011 年英国研发经费按支出部门分配比例

数据来源: Office for national statistics.UK gross domestic expenditure on research and development. 2013。

1.4 科研队伍情况

相比于其他国家,英国劳动力接受科技专业培 训比例很高。2011年,英国适合工作年龄人口有 3903万人,其中,25%持有高等教育资格。在受 过高等教育的人中,有412万人是有资格的工程师 和科学家,占适合工作年龄人口总数的11%。工程 师和科学家占专业研究就业人口的38%,工程师和 科学家占专业职业与技术就业人口的14%。从性别 角度看,男性工程师和科学家214万人,占男性就 业人口总数的11%,女性工程师与科学家199.6万 人,占女性就业人口总数的10%。

1.5 企业研发状况

2011年,英国企业研发绝对投入为 174.08 亿 英镑,其投入较多的前 5 个领域见表 2 所示。可 见,制药 (Pharmaceuticals)领域对研发的投入超

表 2 2011 年英国一些领域研发投入	青况
----------------------	----

排名	领域	投入/亿英镑	占比/%
1	制药	48.50	27.9
2	计算机编程和信息服务	18.19	10.4
3	汽车和零部件	15.23	8.8
4	航空航天	14.17	8.1
5	通讯	10.51	6.0

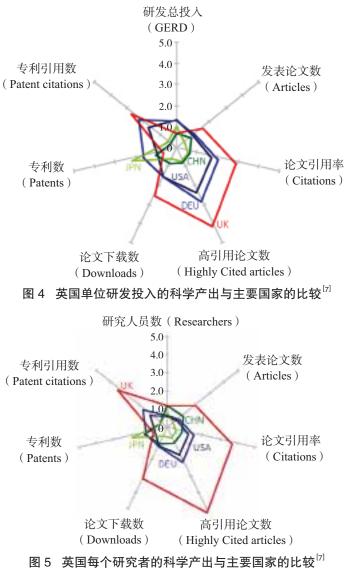
过任何一个领域,占总投入的 27.9%。与 2010 年 相比,排名前 5 位的领域没有变化,但汽车和零部 件领域的研发投入超越航空航天领域,上升了一个 名次。

从研发投入总体强度来看,2009—2011年,英 国制造业平均研发投入强度为3.3%~3.7%,即企 业把销售总额的3.3%~3.7%用于研究开发。2011 年,英国一些领域研发投入强度见表3所示。其 中,制药领域研发投入强大最大。此外,精密仪 器、光学和照相设备领域的研发投入强度较2010 年增长0.2%。按照英国2012年出版的《2010年 研发记分板》报告^[6],全球企业研发投入强度为 3.6%,据了解,2013年英国企业的研发强度已经 超过这一水平。

表 3 2011 年英国一些领域研发投入强度

排名	领 域	投入强度/%
1	制药	38.9
2	电子通讯	12.3
3	计算机及外围产品	9.9
4	航空航天	7.6
5	造船	6.7
6	精密仪器、光学和照相设备	5.6

2 科学产出的主要特点


英国最新发表的《2013 年英国研究基础国际 比较》^[7]报告,从科学产出的几个方面总结了英国 科学产出的主要特点。

2.1 研究质量和效率高

2008 以来,英国论文发表量每年增长 2.35%, 论文数量占世界的比重稍有下降(2008 年为 6.56%, 2010 年为 6.43%),但 2012 年较 2011 年略有增 长。值得注意的是,英国的论文引用率每年增长 7.2%,高于世界平均水平 6.3%,占全球引用的比 重也从 2008 年的 10.5% 增长到 2012 年的 11.63%; 在 1% 的高引用论文中,英国已上升到 13.8%,仅 次于美国。同时,相对于世界其他国家(如,美 国、中国、日本和德国等),英国研究人员少,研 究投入也少,所以,从单个研究人员、单位研发投 入的产出来看,英国除了专利产出,其他方面均远

— 3 —

远超过其他国家,体现出极高的研究效率(见 图 4、图 5 所示)。

2.2 研究领域全面

根据对 10 个研究领域的活性指数(Activity Index)^①进行的统计(2002 和 2012 年 2 年), 相对于世界平均水平,英国研究领域较为全面 (Well-rounded),优势领域主要集中在临床医 学、健康与医学、生命科学、社会科学、商业和人 文学科;在工程、物质科学和数学领域,活性指数 稍低于世界平均水平(见图 6 所示)。

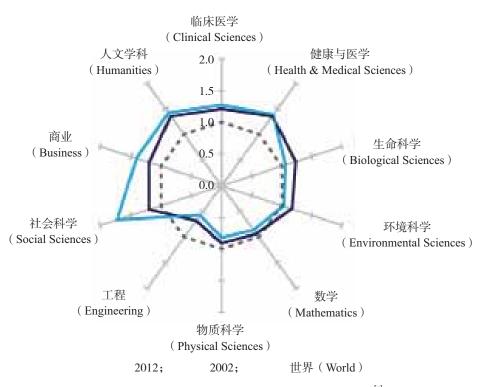
2.3 专利申请低

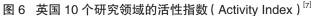
尽管从 2007 年到 2011 年,英国专利申请 逐年增长 0.3%,但仍比较低。2011 年,英国研 究人员申请专利 50 749 件,占全球专利申请的 2.4%。但英国专利授权数以及有效专利数增长 较快,2008 和 2012 年,年均增长分别为 5.4% 和 1.7%,分别达到 18 314 件和 83 261 件。就全球 专利引用的论文数而言,2012 年,英国论文被 专利引用数占全球的 10.9%,每年增长5.4%。

2.4 知识流动活跃

英国跨部门之间的知识流动比较活跃,由 企业署名的论文下载使用者中,有 61.7% 来自 于学术界;大学署名的论文下载使用者中,有 52.6% 来自于企业界。表明,英国知识流动和 转移很有活力。此外,英国单位 GERD 产出的 派生企业和初创公司数较高,单位 GERD 获得 专利许可收入也较高,分别位列 G8 国家的第 2 位和第 3 位。特别是单位 GERD 产出的专利 许可收入增加较快,2008—2012 年,年增加 13.2%。

2.5 国际合作论文产出较高


2012年,英国国际合作论文占发表总论文数的47.6%,年增长2.9%,国际合作论文占论文总量的比重仅次于法国。英国国际合作论文影响因子较高,较英国国内不同机构合作论文影响因子高出20%,较其国内同一机构内部合作论文影响因子高出61%。英国在国际科学合作中处于中心位置,其最重要的合作伙伴是西欧国家。近年,中英合作论文数量增长迅速。就合作发表论文而言,英国已经超越日本成为


中国第二大合作伙伴,中国是英国第三大合作伙伴。中英两国研究人员联合发表论文引用率达 12%,是世界平均水平的3倍。^[8]

3 启示

英国全球领先的大学研究力量、稳定的支持科 学研究的"双重支持系统"以及基于"霍尔丹原

① The Activity Index is each country's share of its total articles relative to the world's share of articles in each of the 10 research fields. A value of 1.00 indicates that a country's research effort (indicated by article outputs) in that field corresponds precisely with the world average. Source: Scopusy.

则"的同行评议制度,是英国保持其高水平高效率 科学研究的重要保障。英国政府认为,英国强大的 研究基础是创新和未来经济增长的源泉,对科学研 究的持续支持也是英国依靠研究和创新促进经济 增长战略的重要组成部分。^[9] 2008 年以来,英国政 府在开支大幅缩减的情况下,仍然维持了资源性 科学预算 46 亿英镑水平,并不断增加资本性科学 预算。值得关注的是,2013 年,英国政府秋季财 政声明中提出,将于 2014 年推出"科学与创新战 略"。^[10] 战略的核心内容是设计一个打造研究与创 新基础设施的"路线图",通过对研究和创新基础 设施的投入,确保英国的科学与创新能力保持世界 领先地位,并对经济发展和科学卓越发挥关键作 用。目前,英国关于研究与创新基础设施投入的政 策咨询工作正在有序开展。^[11]

从上述对英国科研活动特征及科研产出特点的 分析可以看出,英国在科学研究方面仍居全球领先 地位,特别是科学研究效率较高。我国与英国在 科学研究合作方面具有良好的基础,且发展势头良 好。仅从联合发表科研论文方面看,英国已取代日 本成为中国第二大科学合作伙伴。如何通过开展合 作,充分利用英国领先的科学研究资源带动我国科 学研究整体水平提升,利用英国大学原始创新成果 服务我国创新发展战略是值得我们认真思考的问题。此外,英国着眼长远、面向未来对科学研究提 供持续稳定支持的理念,也值得我们借鉴。■

参考文献:

- [1] 刘海英, 中英务实合作将有诸多亮点 签署六项科学合作 协议[EB/OL]. (2014-01-14)[2014-02-22]. http://www. stdaily.com/shouye/guoji/201401/t20140114_626002.shtml.
- [2] 中国新闻网. 中英达成联合创新研究项目 总金额达 5 300 万英镑[EB/OL].(2014-06-19)[2014-06-20].http://finance. chinanews.com/cj/2014/06-19/6296586.shtml.
- [3] Office for National Statistics. UK Gross Domestic Expenditure on Research and Development, 2011[R/OL]. (2011-03-13)
 [2014-03-17]. http://www.ons.gov.uk/ons/dcp171778_302928.pdf.
- [4] Office for National Statistics. UK Gross Domestic Expenditure on Research and Development, 2009 [R/OL]. (2011-03-18)
 [2014-03-17]. http://www.ons.gov.uk/ons/rel/rdit1/grossdomestic-expenditure-on-research-and-development/2009/ index.html.
- [5] OECD(2012). OECD Science, Technology and Industry Outlook 2012[R/OL]. [2014–03–17]. http://dx.doi.org/10.1787/

-5-

sti_outlook-2012.en.

- [6] BIS. The 2010 R&D Scoreboard: The Top 1,000 UK and 1,000 Global Companies by R&D investment, Commentary and Analysis[R/OL].(2010)[2014-04-12]. http://webarchive. nationalarchives.gov.uk/20101208170217/http://www. innovation.gov.uk/rd_scoreboard/downloads/2010_RD_ Scoreboard_analysis.pdf.
- [7] BIS. International Comparative Performance of the UK Research Base-2013[R/OL]. (2013)[2014-04-12]. https:// www.gov.uk/government/uploads/system/uploads/attachment_ data/file/263729/bis-13-1297-international-comparativeperformance-of-the-UK-research-base-2013.pdf.
- [8] Bound K, Saunders T, Wilsdon J, et al. China's Absorptive State, Research, Innovation and the Prospects for China-UK Coolaboration [R]. London: Nesta, 2013-10.

- BIS. Innovation and Research Strategy for Growth [R/OL].
 (2011-12) [2014-04-20]. https://www.gov.uk/government/ uploads/system/uploads/attachment_data/file/32450/11-1387-innovation-and-research-strategy-for-growth.pdf.
- [10] HM Treasury. Autumn Statement 2013 [R/OL]. (2013-12)
 [2014-04-20]. https://www.gov.uk/government/uploads/ system/uploads/attachment_data/file/263942/35062_ Autumn Statement 2013.pdf.
- [11] BIS. Creating The Future: A 2020 Vision for Science & Research (A Consultation on Proposals for Long-Term Capital Investment in Science & Research)[R/OL].
 (2014-04)[2014-05-03]. https://www.gov.uk/government/ uploads/system/uploads/attachment_data/file/321522/bis-14-757-consultation-on-proposals-for-long-term-capitalinvestment-in-science-and-research-v2.pdf.

Analysis on Characteristics of R&D Activities and Science Output of UK on the Basis of Statistics Data

LI Zhen-xing

(Chinese Academy of Science and Technology for Development, Beijing 100038)

Abstract: The UK's gross domestic expenditure on research and development (GERD) increased to £27.4 billion in 2011, accounting for 1.79% of Gross Domestic Product (GDP), the highest in the past 10 years. The R&D investment mainly comes from business, government, oversea and high education institutes, and the investment by business occupied 46% of the total R&D expenditure. The expenditure by business and high educational institutes occupied 63% and 26% of the total R&D expenditure individually. On the basis of statistics data, we find that 25% of UK employees has high education degree, pharmaceutical is the most R&D intensive sector with intensity of 38.9%, the citation of UK research papers was increased by 7.2% annually which is higher than the world average level, UK occupied 13.8% of the 1% highest cited research papers. From the view of international comparison, characteristics of science output of UK were also summarized as follows, such as higher quality and efficient research basis, comprehensive research field, lower patent generation, active knowledge transfer and higher international cooperation output. As science and technology collaboration between UK and China has very strong basis, science and technology development of China will benefit from utilizing the advanced research sources of UK.

Key words: UK; R&D activities; science output; statistics data; international comparison