李超,李文法,段洣毅.用于网络入侵检测的VFSA C4.5特征选择算法[J].高技术通讯(中文),2011,21(12):1240~1245 |
用于网络入侵检测的VFSA C4.5特征选择算法 |
VFSA C4.5 feature selection algorithm for network intrusion detection |
修订日期:2011-03-18 |
DOI: |
中文关键词: 网络入侵检测, 特征选择, 快速模拟退火(VFSA), 决策树 |
英文关键词: network intrusion detection, feature selection, very fast simulated annealing (VFSA), decision tree |
基金项目:863计划(2007AA01Z416)和973计划(2007CB311100)资助项目 |
作者 | 单位 | 李超 | 北京航空航天大学计算机学院北京;北京交通大学计算技术研究所北京 | 李文法 | 北京交通大学计算技术研究所北京 | 段洣毅 | 北京航空航天大学计算机学院北京;北京交通大学计算技术研究所北京 |
|
摘要点击次数: 3320 |
全文下载次数: 2378 |
中文摘要: |
提出了一种新的用于网络入侵检测的特征选择算法——VFSA C4.5算法。该算法采用快速模拟退火(VFSA)搜索策略对特征子集空间进行随机搜索,然后利用提供的数据在C4.5决策树上的分类错误率作为特征子集的评估标准来为入侵检测获取最优特征子集。在著名的KDD1999入侵检测数据集上进行了大量的实验,结果表明该算法相对于其它一些应用于入侵检测的特征选择算法,在保证较高检测率的前提下,可有效地降低误报率、入侵检测的计算复杂度和提高检测速度,能更适用于现实高速网络应用环境 |
英文摘要: |
The VFSA C4.5 a new feature selection algorithm is proposed to detect network intrusions. The algorithm uses the very fast simulated annealing (VFSA) as the search strategy to specify a candidate subset for evaluation, and then uses the decision tree of C4.5 as the evaluation function to obtain the optimum feature subset for intrusion detection by the data classification error rate. The feasibility of the feature selection algorithm was examined by conducting several experiments on the KDD 1999 intrusion detection dataset. The experimental results show that the VFSA C4.5 algorithm has higher detection rate and lower false alarm rate compared with other feature selection algorithms for network intrusion detection. Furthermore, the proposed algorithm can reduce computational resources of intrusion detection, improve the detection speed and is more suitable for the real network applications than the traditional ones |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |