文章摘要
慕晓冬,常瑞花,宋国军,宋洪军.基于混沌免疫谱聚类的软件缺陷预测[J].高技术通讯(中文),2012,22(12):
基于混沌免疫谱聚类的软件缺陷预测
Software defect prediction based on chaotic immune spectral clustering
  修订日期:2011-12-06
DOI:
中文关键词: 无标识数据, 免疫, 谱聚类, 混沌, 软件缺陷预测
英文关键词: unlabeled data, immune, spectral clustering, chaos, software defect prediction
基金项目:863计划(2010AA7010213),国家自然科学基金(61179005,61179004)和十一五国防预研(513270104)资助项目
作者单位
慕晓冬 第二炮兵工程大学403教研室 西安 
常瑞花 武警工程大学科研部 西安 
宋国军 第二炮兵工程大学403教研室 西安 
宋洪军 第二炮兵青州士官学校计算机室 青州 
摘要点击次数: 3510
全文下载次数: 2515
中文摘要:
      为提高无标识软件缺陷预测的准确性,提出一种谱聚类与混沌免疫相结合的软件缺陷预测方法。该方法首先将谱聚类算法引入到软件缺陷预测领域中,然后针对谱聚类算法中K Means局部收敛的缺点,用一种混沌免疫聚类算法来替换K Means算法。同时,在免疫克隆选择算法的框架下,借鉴混沌和免疫理论,设计免疫克隆聚类适应度函数计算方法,并给出分层混沌变异算子,以实现种群多样性的增加,促进无标识软件缺陷数据预测精度的提高。在Iris和3组商业软件模块数据集上进行了仿真实验,实验结果验证了该方法的有效性。
英文摘要:
      To improve the accuracy of defect prediction for unlabeled software data sets, a novel software defect prediction method based on the combination of spectral clustering and chaotic immune is presented. The method first introduces the Ng Jordan Weiss (NJW) algorithm, a spectral clustering algorithm, into the field of software defect prediction, and then uses a new chaotic immune clustering algorithm go replace the K Means algorithm to overcome the K Means’s problem of easily getting trap local optima in spectral clustering. And under the framework of immune clone selection, it designs a new affinity function for immune clone clustering and gives the layered chaotic mutation operator based on the immune and chaotic theory to diversify the antibodies and improve the accuracy of software defect prediction. Two case studies are used to validate the method on the Iris and three commercial software data sets. The experimental results illustrate the effectiveness of the proposed method.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮