文章摘要
陈强,胡如海,胡轶.一类非参数不确定运动系统的自适应空间重复学习控制[J].高技术通讯(中文),2022,32(6):565~575
一类非参数不确定运动系统的自适应空间重复学习控制
Adaptive spatial repetitive learning control for a class of nonparametric uncertain motion systems
  
DOI:10.3772/j.issn.1002-0470.2022.06.002
中文关键词: 空间重复学习控制(SRLC); 自适应控制; 非参数不确定; 空间运动系统
英文关键词: spatial repetitive learning control (SRLC), adaptive control, nonparametric uncertainty, spatial motion system
基金项目:
作者单位
陈强 (浙江工业大学信息工程学院杭州 310023) 
胡如海 (浙江工业大学信息工程学院杭州 310023) 
胡轶 (浙江工业大学信息工程学院杭州 310023) 
摘要点击次数: 1103
全文下载次数: 882
中文摘要:
      针对一类在空间区间内重复运行的非参数不确定运动系统,本文提出一种基于李雅普诺夫方法的自适应空间重复学习控制(SRLC)策略。首先,引入空间微分算子将系统从时间域转换到空间域形式,并将系统非参数不确定性划分为空间周期不确定和非周期不确定两部分。其次,设计全饱和空间重复学习律估计和补偿空间周期非参数不确定部分,同时保证被估计值的连续性和有界性。此外,将非周期不确定部分转换为参数化不确定形式,并设计其上界参数的空间自适应更新律用以补偿系统非周期不确定。最后,设计控制器确保系统输出能够精确跟踪空间周期性期望信号。仿真结果验证了所提方法的有效性。
英文摘要:
      In this paper, an adaptive spatial repetitive learning control (SRLC) scheme is proposed based on Lyapunov method for a class of nonparametric uncertain motion systems running repeatedly in the space domain. Firstly, spatial differential operators are introduced to transform the system from the time domain to the space domain, and nonparametric system uncertainty can be divided into two parts: spatial periodic uncertainty and nonperiodic uncertainty. Secondly, a fully saturated spatial repetitive learning law is presented to estimate and compensate for the spatial periodic nonparametric uncertainty. Meanwhile, the continuity and boundedness of the estimated value can be guaranteed by the presented repetitive learning law. In addition, the nonperiodic uncertainty is transformed into the parametric uncertainty and compensated by designing a spatial adaptive update law of the upper bound parameter. Lastly, a repetitive learning controller is designed to ensure that the system output can accurately track the spatial periodic expected signal. Simulation results are given to verify the effectiveness of the proposed method.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮